Academic literature on the topic 'IoT Architecture'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'IoT Architecture.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "IoT Architecture"
Aguru, Aswani Devi, Erukala Suresh Babu, Soumya Ranjan Nayak, Abhisek Sethy, and Amit Verma. "Integrated Industrial Reference Architecture for Smart Healthcare in Internet of Things: A Systematic Investigation." Algorithms 15, no. 9 (August 29, 2022): 309. http://dx.doi.org/10.3390/a15090309.
Full textZhang, Yongqiang, Hongchang Yu, Wanzhen Zhou, and Menghua Man. "Application and Research of IoT Architecture for End-Net-Cloud Edge Computing." Electronics 12, no. 1 (December 20, 2022): 1. http://dx.doi.org/10.3390/electronics12010001.
Full textVishwakarma, Niraj Kumar, Rohit Kumar Singh, and R. R. K. Sharma. "Internet of things architectures: do organizational strategies matters?" Business Process Management Journal 26, no. 1 (June 12, 2019): 102–31. http://dx.doi.org/10.1108/bpmj-03-2018-0092.
Full textEjike, Christian Nonyelum, Tebella Mathaba, and Francois Du Rand. "General-Purpose Architectural Model for IoT-Based In-situ Monitoring Systems." MATEC Web of Conferences 370 (2022): 05006. http://dx.doi.org/10.1051/matecconf/202237005006.
Full textAldea, Constantin Lucian, Razvan Bocu, and Anca Vasilescu. "Relevant Cybersecurity Aspects of IoT Microservices Architectures Deployed over Next-Generation Mobile Networks." Sensors 23, no. 1 (December 24, 2022): 189. http://dx.doi.org/10.3390/s23010189.
Full textR, Jithin, and Priya Chandran. "Secure and Dynamic Memory Management Architecture for Virtualization Technologies in IoT Devices." Future Internet 10, no. 12 (November 30, 2018): 119. http://dx.doi.org/10.3390/fi10120119.
Full textUngurean, Ioan, and Nicoleta Cristina Gaitan. "A Software Architecture for the Industrial Internet of Things—A Conceptual Model." Sensors 20, no. 19 (September 30, 2020): 5603. http://dx.doi.org/10.3390/s20195603.
Full textZahoor, Saniya, and Shabir A.Sofi. "Internet of Things: A Review of Functionality, Applications, Architectures and Challenges." Journal of University of Shanghai for Science and Technology 23, no. 09 (September 25, 2021): 1216–24. http://dx.doi.org/10.51201/jusst/21/09676.
Full textAstier, Jean Y., Igor Y. Zhukov, Oleg N. Murashov, and Alexey P. Bardin. "A NEW OS ARCHITECTURE FOR IOT." Bezopasnost informacionnyh tehnology 25, no. 1 (March 2018): 19–33. http://dx.doi.org/10.26583/bit.2018.1.02.
Full textMarah, Bockarie Daniel, Zilong Jing, Tinghuai Ma, Raeed Alsabri, Raphael Anaadumba, Abdullah Al-Dhelaan, and Mohammed Al-Dhelaan. "Smartphone Architecture for Edge-Centric IoT Analytics." Sensors 20, no. 3 (February 7, 2020): 892. http://dx.doi.org/10.3390/s20030892.
Full textDissertations / Theses on the topic "IoT Architecture"
BOTLER, Léo Happ. "An IOT architecture for counting people." Universidade Federal de Pernambuco, 2017. https://repositorio.ufpe.br/handle/123456789/25234.
Full textApproved for entry into archive by Alice Araujo (alice.caraujo@ufpe.br) on 2018-07-27T16:56:44Z (GMT) No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) DISSERTAÇÃO Léo Happ Botler.pdf: 11089344 bytes, checksum: 86a0a174c2ae1305daee53b383a906db (MD5)
Made available in DSpace on 2018-07-27T16:56:44Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) DISSERTAÇÃO Léo Happ Botler.pdf: 11089344 bytes, checksum: 86a0a174c2ae1305daee53b383a906db (MD5) Previous issue date: 2017-03-02
CNPq
Knowing whether a room is occupied or not is crucial for improving electrical energy efficiency. For instance, if a given room is empty there is usually no need for the lights to be turned on. Usually in small spaces such as elevator halls, a Passive Infrared (PIR) sensor is used together with the lighting, but as it lacks accuracy, people often are left in the dark after a few minutes. Another factor that deteriorates energy efficiency is that these sensors are seldom connected to a network, limiting the application scenarios to simple tasks, such as controlling lamps. The same data could be used to improve other services such as adjusting the temperature of an air conditioner, which usually has a high impact on energy costs in countries with warm weather. In the present dissertation a wireless device capable of counting people in a room is implemented using Infrared (IR) Light Emitting Diode (LED)s. The implemented device is analyzed regarding energy consumption, cost, error count and installation time. It is also compared to other existing solutions. An architecture for interfacing this device with the Internet of Things (IoT) is provided as well as some of its applications in real scenarios. The results show that the architecture provided as well as the device implemented are useful in the presented scenarios, presenting a distance range of up to 30cm, a false negatives percentual error around 4% and an energy consumption of 1.519W.
Saber se um cômodo está ocupado ou não é crucial para melhorar a eficiência de energia elétrica. Por exemplo, se um quarto está desocupado, geralmente, não há necessidade de as lâmpadas estarem ligadas. Geralmente, em ambientes pequenos como em halls de elevador, um sensor Infravermelho Passivo (PIR) é usado em conjunto com as lâmpadas, mas como estes sensores não são precisos, as pessoas são frequentemente deixadas no escuro após alguns minutos. Outro fator que prejudica a eficiência energética é que raramente estes sensores estão conectados a uma rede, limitando os cenários de aplicação a tarefas simples, como controlar lâmpadas, enquanto os dados do sensor poderiam ser utilizados para melhorar outros serviços, como ajustar a temperatura de um aparelho de ar condicionado, que geralmente tem um alto impacto nas contas de energia, em países quentes. Nesta dissertação, um dispositivo sem fio capaz de contar pessoas em um quarto é implementado utilizando Diodos Emissores de Luz (LED)s Infravermelhos (IR). O dispositivo implementado é analisado nos seguintes aspectos: consumo de energia, custo, contagem de erros e tempo de instalação. Este também é comparado a outras soluções existentes. Uma arquitetura para fazer a interface entre este dispositivo e a Internet das Coisas (IoT) é fornecida, assim como alguns cenários em que esta pode ser aplicada. Os resultados mostram que a arquitetura, assim como o dispositivo implementado são úteis nos cenários apresentados, apresentando um alcance de 30cm, um percentual de erros do tipo falso negativo da ordem de 4% e um consumo de energia de 1.519W.
Islam, J. (Johirul). "Container-based microservice architecture for local IoT services." Master's thesis, University of Oulu, 2019. http://jultika.oulu.fi/Record/nbnfioulu-201906072492.
Full textMontanari, Luca. "A Network Function Virtualization Architecture for Distributed IoT Gateways." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13345/.
Full textSgarbi, Andrea. "Machine Cloud Connectivity: a robust communication architecture for Industrial IoT." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textCoimbra, Rafael Melo. "Framework based on lambda architecture applied to IoT: case scenario." Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/21739.
Full textDesde o início da primeira década do presente milénio, tem-se testemunhado um aumento exponencial da quantidade de dados produzidos de dia para dia. Numa primeira instância, o aumento foi atribuído aos dados gerados pelos dispositivos GPS; numa segunda fase, à rápida expansão das redes sociais, agora não devido a um fator específico, mas devido ao surgimento de um novo conceito denominado de Internet das Coisas. Este novo conceito, com resultados já mensuráveis, nasceu da premissa de facilitar o dia-a-dia das pessoas fazendo com que os dispositivos eletrónicos comunicassem entre si com o objetivo de sugerir e assistir a pequenas decisões dado os comportamentos observados no passado. Com o objetivo de manter o conceito possível e o estender para além das já existentes aplicações, os dados gerados pelos dispositivos necessitam não apenas de serem armazenados, mas igualmente processados. Adicionando ao volume de dados a sua variedade e velocidade de produção, estes são igualmente fatores que quando não ultrapassados da maneira correta podem apresentar diversas dificuldades, ao ponto de inviabilizarem a criação de novas aplicações baseadas neste novo conceito. Os mecanismos e tecnologias existentes não acompanharam a evolução das novas necessidades, e para que o conceito possa evoluir, novas soluções são obrigatórias. A liderar a lista das novas tecnologias preparadas para este novo tipo de desafios, composto por um sistema de ficheiros distribuído e uma plataforma de processamento distribuída, está o Hadoop. O Hadoop é uma referência para a resolução desta nova gama de problemas, e já comprovou ser capaz de processar enormes quantidades de dados de maneira económica. No entanto, dadas as suas características, tem alguma dificuldade em processar menores quantidades de dados e tem como desvantagem a grande latência necessária para a iniciação do processamento de dados. Num mercado volátil, ser capaz de processar grandes quantidades de dados baseadas em dados passados não é o suficiente. Tecnologias capazes de processar dados em tempo real são igualmente necessárias para complementar as necessidades de processamento de dados anteriores. No panorama atual, as tecnologias existentes não se demonstram à prova de tão distintas necessidades e, quando postas à prova, diferentes produtos tecnológicos necessitam ser combinados. Resultado de um ambiente com as características descritas é o ambiente que servirá de contexto para a execução do trabalho que se segue. Tendo com base as necessidades impostas por um caso de uso pertencente a IoT, através da arquitetura Lambda, diferentes tecnologias serão combinadas com o objetivo de que no final todos os requisitos impostos possam ser ultrapassados. No final, a solução apresentada será avaliada sobre um ambiente real como forma de prova de conceito.
Since the beginning of the first decade of current millennium, it has been witnessed an exponential grow of data being produced every day. First, the increase was given to the amount of data generated by GPS devices, then, the quickly arise of social networks, and now because a new trend as emerged named Internet of Things. This new concept, which is already a reality, was born from the premise of facilitating people's lives by having small electronic devices communicating with each other with the goal to suggest small daily decisions based on the behaviours experienced in the past. With the goal to keep this concept alive and extended further to other applications, the data produced by the target electronic devices is however need to be process and storage. The data volume, velocity and variety are the main variables which when not over planned on the correct way, a wall is created at the point of enviabilize the leverage of the true potential of this new group of applications. Traditional mechanisms and technologies did not follow the actual needs and with the goal to keep the concept alive the address of new technologies are now mandatory. On top of the line, leading the resolution of this new set of challenges, composed by a distributed file system and a parallel processing Framework is Hadoop. Hadoop have proven to fit under the new imposed challenges being capable of process and storage high volumes of data on a cost-effective batch-oriented way. However, given its characteristics on other hand it presents some drawbacks when faced with small amounts of data. In order to gain leverage on market, the companies need not only to be capable of process the data, but process it in a profitable way. Real time processing technologies are needed to complement batch oriented technologies. There is no one size fits all system and with the goal to address the multiples requirements, different technologies are required to be combined. Result of the demanding requirements imposed by the IoT concepts, is the environment which on will be relied the address of the business use case under analyses. Based on the needs imposed by a use case belonging to IoT, through the Lambda architecture, different technologies will be combined with the goal that in the end all the imposed requirements can be accomplished and exceeded. In the end, the solution presented will be evaluated on a real environment as proof of concept.
Rajakaruna, A. (Archana). "Lightweight edge-based networking architecture for low-power IoT devices." Master's thesis, University of Oulu, 2019. http://jultika.oulu.fi/Record/nbnfioulu-201906072483.
Full textDeserranno, Allen Ronald. "Enhancing the Internet of Things Architecture with Flow Semantics." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/7016.
Full textAravind, Meera. "Event-Based Messaging Architecture for Vehicular Internet of Things (IoT) Platforms." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-35905.
Full textPincheira, Caro Miguel Rodrigo. "A trustless architecture for blockchain-based IoT applications using constrained devices." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/304533.
Full textNumair, M., D.-EA Mansour, and Geev Mokryani. "A Proposed IoT Architecture for Effective Energy Management in Smart Microgrids." IEEE, 2020. http://hdl.handle.net/10454/18491.
Full textThe current electricity grid suffers from numerous challenges due to the lack of an effective energy management strategy that is able to match the generated power to the load demand. This problem becomes more pronounced with microgrids, where the variability of the load is obvious and the generation is mostly coming from renewables, as it depends on the usage of distributed energy sources. Building a smart microgrid would be much more economically feasible than converting the large electricity grid into a smart grid, as it would require huge investments in replacing legacy equipment with smart equipment. In this paper, application of Internet of Things (IoT) technology in different parts of the microgrid is carried out to achieve an effective IoT architecture in addition to proposing the Internet-of-Asset (IoA) concept that will be able to convert any legacy asset into a smart IoT-ready one. This will allow the effective connection of all assets to a cloud-based IoT. The role of which is to perform computations and big data analysis on the collected data from across the smart microgrid to send effective energy management and control commands to different controllers. Then the IoT cloud will send control actions to solve microgrid's technical issues such as solving energy mismatch problem by setting prediction models, increasing power quality by the effective commitment of DERs and eliminating load shedding by turning off only unnecessary loads so consumers won't suffer from power outages. The benefits of using IoT on various parts within the microgrid are also addressed.
Books on the topic "IoT Architecture"
Hirakawa, Hitoshi, Nobuhiro Takahashi, Ferdinand C. Maquito, and Norio Tokumaru, eds. Innovative ICT Industrial Architecture in East Asia. Tokyo: Springer Japan, 2017. http://dx.doi.org/10.1007/978-4-431-55630-5.
Full textGupta, Maanak, Smriti Bhatt, Asma Hassan Alshehri, and Ravi Sandhu. Access Control Models and Architectures For IoT and Cyber Physical Systems. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-81089-4.
Full textVijay, Bollapragada, and Murphy Curtis, eds. Inside Cisco IOS Software Architecture. Indianapolis: Cisco Press, 2008.
Find full textEccheli, Maria Grazia, and Claudia Cavallo, eds. Il progetto nei borghi abbandonati. Florence: Firenze University Press, 2022. http://dx.doi.org/10.36253/978-88-5518-554-7.
Full textSal'kov, Nikolay. Descriptive geometry: tasks for term papers. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1200606.
Full textOselko, Ninel'. Introduction to the profession of "architect". ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1247118.
Full textWang, James. Challenging ICT applications in architecture, engineering, and industrial design education. Hershey, PA: Engineering Science Reference, 2012.
Find full textStavroulakis, Peter. Third Generation Mobile Telecommunication Systems: UMTS and IMT - 2000. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001.
Find full textCorreia, Mariana, Letizia Dipasquale, and Saverio Mecca, eds. VERSUS: Heritage for Tomorrow. Florence: Firenze University Press, 2015. http://dx.doi.org/10.36253/978-88-6655-742-5.
Full textCognitive Sensors and IoT: Architecture, Deployment, and Data Delivery. Taylor & Francis Group, 2017.
Find full textBook chapters on the topic "IoT Architecture"
Nath, Shyam Varan. "IoT ARCHITECTURE." In Internet of Things and Data Analytics Handbook, 239–49. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119173601.ch14.
Full textJabraeil Jamali, Mohammad Ali, Bahareh Bahrami, Arash Heidari, Parisa Allahverdizadeh, and Farhad Norouzi. "IoT Architecture." In Towards the Internet of Things, 9–31. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18468-1_2.
Full textChaudhuri, Abhik. "IoT Architecture." In Internet of Things, for Things, and by Things, 17–41. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019. | “A CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa plc.”: Auerbach Publications, 2018. http://dx.doi.org/10.1201/9781315200644-2.
Full textKalaga, Gunneswara Rao VSSS. "IoT Architecture." In Design of Internet of Things, 33–41. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003303206-7.
Full textMuccini, Henry, and Mahyar Tourchi Moghaddam. "IoT Architectural Styles." In Software Architecture, 68–85. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00761-4_5.
Full textBauer, Martin, Mathieu Boussard, Nicola Bui, Jourik De Loof, Carsten Magerkurth, Stefan Meissner, Andreas Nettsträter, Julinda Stefa, Matthias Thoma, and Joachim W. Walewski. "IoT Reference Architecture." In Enabling Things to Talk, 163–211. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40403-0_8.
Full textWu, Chuan-Kun. "IoT Security Architecture." In Internet of Things Security, 27–44. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1372-2_3.
Full textFamiliar, Bob. "Microservice Architecture." In Microservices, IoT, and Azure, 21–31. Berkeley, CA: Apress, 2015. http://dx.doi.org/10.1007/978-1-4842-1275-2_3.
Full textDelsing, Jerker, Pal Varga, Luis Ferreira, Michele Albano, Pablo Puñal Pereira, Jens Eliasson, Oscar Carlsson, and Hasan Derhamy. "3 The Arrowhead Framework architecture." In IoT Automation, 43–88. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315367897-4.
Full textStackowiak, Robert. "Modern IoT Architecture Patterns." In Azure Internet of Things Revealed, 1–27. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-5470-7_1.
Full textConference papers on the topic "IoT Architecture"
Saade, Sergio Daniel, Maria de los Angeles Gomez Lopez, Luis Eduardo Nieto Penalver, Esteban Daniel Volentini, Carlos Albaca Paravan, Federico Herman Lutz, and Javier Ignacio Bilbao. "IoT Architecture Prototype." In 2018 IEEE Biennial Congress of Argentina (ARGENCON). IEEE, 2018. http://dx.doi.org/10.1109/argencon.2018.8645983.
Full textLomotey, Richard K., Joseph Pry, Sumanth Sriramoju, Emmanuel Kaku, and Ralph Deters. "Wearable IoT Data Architecture." In 2017 IEEE World Congress on Services (SERVICES). IEEE, 2017. http://dx.doi.org/10.1109/services.2017.17.
Full textBoyanov, Luben, Valentin Kisimov, and Yavor Christov. "Evaluating IoT Reference Architecture." In 2020 International Conference Automatics and Informatics (ICAI). IEEE, 2020. http://dx.doi.org/10.1109/icai50593.2020.9311357.
Full textKovacs, Laszlo, and Edit Csizmas. "Lightweight ontology in IoT architecture." In 2018 IEEE International Conference on Future IoT Technologies (Future IoT). IEEE, 2018. http://dx.doi.org/10.1109/fiot.2018.8325591.
Full textDatta, Soumya Kanti, and Christian Bonnet. "Extending DataTweet IoT Architecture for Virtual IoT Devices." In 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE, 2017. http://dx.doi.org/10.1109/ithings-greencom-cpscom-smartdata.2017.108.
Full textSicari, Sabrina, Alessandra Rizzardi, Luigi Alfredo Grieco, and Alberto Coen-Porisini. "A secure ICN-IoT architecture." In 2017 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, 2017. http://dx.doi.org/10.1109/iccw.2017.7962667.
Full textZhang, Jian, Huanran Jin, Liangyi Gong, Jing Cao, and Zhaojun Gu. "Overview of IoT Security Architecture." In 2019 IEEE Fourth International Conference on Data Science in Cyberspace (DSC). IEEE, 2019. http://dx.doi.org/10.1109/dsc.2019.00058.
Full textPudlewski, Scott, and Katherine Landers. "DIMA: Distributed IoT Modeling Architecture." In 2021 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, 2021. http://dx.doi.org/10.1109/iccworkshops50388.2021.9473662.
Full textKak, Emmanuel, Rita Orji, Joseph Pry, Kenneth Sofranko, Richard Lomotey, and Ralph Deters. "Privacy Improvement Architecture for IoT." In 2018 IEEE International Congress on Internet of Things (ICIOT). IEEE, 2018. http://dx.doi.org/10.1109/iciot.2018.00028.
Full textZhong, Tao, Kshitij A. Doshi, Zhongyan Lu, and Gang Deng. "Capability Adaptive Elastic IoT Architecture." In 2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity). IEEE, 2015. http://dx.doi.org/10.1109/smartcity.2015.138.
Full textReports on the topic "IoT Architecture"
Berkbigler, K. P., B. W. Bush, and J. F. Davis. TRANSIMS software architecture for IOC-1. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/572673.
Full textBurns-Dans, Elizabeth, Alexandra Wallis, and Deborah Gare. A History of the Architects Board of Western Australia, 1921-2021. The Architects Board of Western Australia and The University of Notre Dame Australia, 2021. http://dx.doi.org/10.32613/reports/2021.1.
Full textHay, Benjamin P., David M. Roundhill, Robert Treat Paine, Jr, Kenneth N. Raymond, Robin D. Rogers, James E. Hutchison, David A. Dixon, Gregg J. Lumetta, and Brian M. Rapko. Architectural Design Criteria for F-Block Metal Ion Sequestering Agents. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/827036.
Full textMichelson, Brenda. Designing a Fluid Enterprise Using an Adaptive, Customer-Centric IT Architecture. Boston, MA: Patricia Seybold Group, December 2004. http://dx.doi.org/10.1571/bda12-9-04cc.
Full textTayeb, Shahab. Taming the Data in the Internet of Vehicles. Mineta Transportation Institute, January 2022. http://dx.doi.org/10.31979/mti.2022.2014.
Full textSeybold, Patricia. Why IT Architecture Is Important in the Selection of a CRM Solution. Boston, MA: Patricia Seybold Group, August 2002. http://dx.doi.org/10.1571/psgp8-29-02cc.
Full textHay, Benjamin P., David A. Dixon, Gregg J. Lumetta, Brian M. Rapko, David M. Roundhill, R. D. Rogers, James E. Hutchison, R. T. Paine, and Kenneth N. Raymond. Architectural Design Criteria for f- Block Metal Ion Sequestering Agents--Final Report. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/15001497.
Full textBP Hay, DA Dixon, GJ Lumetta, BM Rapko, DM Roundhill, RD Rogers, JE Hutchison, RT Paine, and KN Raymond. Architectural Design Criteria for f-Block Metal Ion Sequestering Agents Final Report. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/756591.
Full textRush, Benjamin. A Novel Electrode Architecture Enabling Low-Cost, High-Energy Automotive Lithium-Ion Batteries- Final Technical Report. Office of Scientific and Technical Information (OSTI), May 2018. http://dx.doi.org/10.2172/1469643.
Full textSeidametova, Zarema S., Zinnur S. Abduramanov, and Girey S. Seydametov. Using augmented reality for architecture artifacts visualizations. [б. в.], July 2021. http://dx.doi.org/10.31812/123456789/4626.
Full text