Academic literature on the topic 'Ionospheric waves'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ionospheric waves.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ionospheric waves"
Liu, Moran, Chen Zhou, Xiang Wang, Bin Bin Ni, and Zhengyu Zhao. "Numerical simulation of oblique ionospheric heating by powerful radio waves." Annales Geophysicae 36, no. 3 (June 13, 2018): 855–66. http://dx.doi.org/10.5194/angeo-36-855-2018.
Full textAburjania, G. D., K. Z. Chargazia, G. V. Jandieri, A. G. Khantadze, and O. A. Kharshiladze. "On the new modes of planetary-scale electromagnetic waves in the ionosphere." Annales Geophysicae 22, no. 4 (April 2, 2004): 1203–11. http://dx.doi.org/10.5194/angeo-22-1203-2004.
Full textOnohara, A. N., I. S. Batista, and H. Takahashi. "The ultra-fast Kelvin waves in the equatorial ionosphere: observations and modeling." Annales Geophysicae 31, no. 2 (February 7, 2013): 209–15. http://dx.doi.org/10.5194/angeo-31-209-2013.
Full textHusin, Asnawi, and Buldan Muslim. "EFEK GELOMBANG TSUNAMI ACEH 2004 PADA GANGGUAN IONOSFER BERGERAK SKALA MENENGAH DARI PENGAMATAN JARINGAN GPS SUMATRA." Komunikasi Fisika Indonesia 16, no. 2 (October 31, 2019): 130. http://dx.doi.org/10.31258/jkfi.16.2.130-137.
Full textRothkaehl, H., A. Krakowski, I. Stanislawska, J. Błęcki, M. Parrot, J. J. Berthelier, and J. P. Lebreton. "Wave and plasma measurements and GPS diagnostics of the main ionospheric trough as a hybrid method used for Space Weather purposes." Annales Geophysicae 26, no. 2 (February 26, 2008): 295–304. http://dx.doi.org/10.5194/angeo-26-295-2008.
Full textHe, L. M., L. X. Wu, S. J. Liu, and S. N. Liu. "Superimposed disturbance in the ionosphere triggered by spacecraft launches in China." Annales Geophysicae 33, no. 11 (November 9, 2015): 1361–68. http://dx.doi.org/10.5194/angeo-33-1361-2015.
Full textZhang, X., and L. Tang. "Traveling ionospheric disturbances triggered by the 2009 North Korean underground nuclear explosion." Annales Geophysicae 33, no. 1 (January 30, 2015): 137–42. http://dx.doi.org/10.5194/angeo-33-137-2015.
Full textPavelyev, A. G., K. Zhang, J. Wickert, T. Schmidt, Y. A. Liou, V. N. Gubenko, A. A. Pavelyev, R. R. Salimzjanov, and Y. Kuleshov. "Identification and localization of layers in the ionosphere using the eikonal and amplitude of radio occultation signals." Atmospheric Measurement Techniques Discussions 4, no. 2 (March 1, 2011): 1465–92. http://dx.doi.org/10.5194/amtd-4-1465-2011.
Full textPokhotelov, D., W. Lotko, and A. V. Streltsov. "Simulations of resonant Alfvén waves generated by artificial HF heating of the auroral ionosphere." Annales Geophysicae 22, no. 8 (September 7, 2004): 2943–49. http://dx.doi.org/10.5194/angeo-22-2943-2004.
Full textRapoport, Yuriy G., Oleg K. Cheremnykh, Volodymyr V. Koshovy, Mykola O. Melnik, Oleh L. Ivantyshyn, Roman T. Nogach, Yuriy A. Selivanov, et al. "Ground-based acoustic parametric generator impact on the atmosphere and ionosphere in an active experiment." Annales Geophysicae 35, no. 1 (January 5, 2017): 53–70. http://dx.doi.org/10.5194/angeo-35-53-2017.
Full textDissertations / Theses on the topic "Ionospheric waves"
Borderick, James David. "Ionospheric signatures of ultra low frequency waves." Thesis, University of Leicester, 2011. http://hdl.handle.net/2381/9170.
Full textNorton, Andrew David. "Analysis of Ionospheric Data Sets to Identify Periodic Signatures Matching Atmospheric Planetary Waves." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/101791.
Full textMaster of Science
The thermosphere and ionosphere are impacted by many sources. The sun and the magnetosphere externally impact this system. Planetary waves, which originate in the lower atmosphere, internally impact this system. This interaction leads to periodic signatures in the ionosphere that reflect periodic signatures seen in the lower atmosphere, the sun and the magnetosphere. This study identifies these times of similar oscillations in the neutral atmosphere, the ionosphere, and the sun, in order to characterize these interactions. Events are cataloged through wavelet analysis and thresholding techniques. Using a time-span of 17 years, trends are identified using histograms and percentages. From these trends, the characteristics of this coupling can be concluded. This study is meant to confirm the theory and provide new insights that will hopefully lead to further investigation through modeling. The goal of this study is to gain a better understanding of the role that planetary waves have on the interaction of the atmosphere and the ionosphere.
Thomas, Edwin Christopher. "Phase and amplitude variations in the wave fields of ionospherically reflected radio waves." Thesis, University of Leicester, 1986. http://hdl.handle.net/2381/35807.
Full textTakiguchi, Yu. "Emission of whistler waves from an ionospheric tether." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/54621.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 121-122).
In this thesis, we analyze how electromagnetic waves propagate in ionosphere around the earth which is magnetized plasma. We calculate the electromagnetic wave field made by a dipole antenna at an arbitrary observation point far from the antenna using the Stationary Phase Method. With this wave field, wave energy flux is calculated, and by integrating this wave energy flux on the sphere around the antenna, the radiation resistance of this antenna is computed. We compare the results with some past analytical and experimental works. We also analyze the wave propagation characteristics. The wave propagation ways are different for different wave frequencies. We precisely analyze this different wave propagation ways by analyzing the group velocity and k surface of the wave. There are intense radiation directions. We discuss the nature of these intense radiation directions and compare the characteristics with the past works. There are spatial oscillations of wave fields and wave energy flux. We also discuss the reason of this oscillation and compare with the past works.
by Yu Takiguchi.
S.M.
Löfås, Henrik. "Ionospheric modification by powerful HF-waves : Underdense F-region heating by X-Mode." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-121898.
Full textFrissell, Nathaniel A. "Ionospheric Disturbances: Midlatitude Pi2 Magnetospheric ULF Pulsations and Medium Scale Traveling Ionospheric Disturbances." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/74976.
Full textPh. D.
Kalkavage, Jean Hogan. "Nonlinear wave-wave interactions in ionospheric plasmas caused by injected VLF and HF waves." Thesis, Boston University, 2014. https://hdl.handle.net/2144/21184.
Full textThe study of wave-wave interactions in the ionosphere is important for designing communication systems, satellite systems, and spacecraft. Ionospheric research also informs laser and magnetic fusion plasma physics. This thesis focuses on two nonlinear wave-wave interactions in the ionosphere. The first interaction is a nonlinear mode conversion. Very Low Frequency (VLF) waves transmitted from the ground travel through the ionosphere as injected whistler waves. The whistler waves interact with naturally-occurring density fluctuations in the ionosphere and are mode converted into lower hybrid waves. The lower hybrid waves accelerate electrons along the geomagnetic field and the resulting beam mode Langmuir waves are detectable by radar. This type of mode conversion may combine additively with a four wave interaction with the same VLF wave as its source. Data collected at the Arecibo Observatory in Puerto Rico during the occurrence of spread F and sporadic E was analyzed. Plasma line enhancements may indicate the nonlinear mode conversion both separately from and in conjunction with the four wave interaction. The second nonlinear wave-wave interaction is the parametric decay instability (PDI) excited by High Frequency (HF) heater waves at the High Frequency Active Auroral Research Program facility in Gakona, Alaska. Resonant PDI cascades downwards, resulting in up-shifted ion line enhancements as detected by radar. This process has been detected in the presence of down-shifted ion line enhancements which may be caused by beating between PDI-produced Langmuir waves, or by naturally occurring ionospheric currents.
2031-01-01
Negale, Michael. "Investigating the Climatology of Mesospheric and Thermospheric Gravity Waves at High Northern Latitudes." DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/6937.
Full textYang, Heng 1985. "On the detection of ionospheric waves, relationship with earthquakes and tsunamis." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/667175.
Full textEsta tesis aborda la detección y caracterización de las ondas ionosféricas y su aplicación a las perturbaciones ionosféricas itinerantes (TID traveling ionospheric disturbances) inducidas por eventos naturales. La caracterización se realiza a partir de mapas regionales de Contenido Total Vertical de Electrones (VTEC) que se obtienen a partir de medidas de un conjunto de satélites del Sistema Navegación GNSS (Global Navigation Satellite System). Obsérvese que, desde el punto de vista matemático y de procesamiento de señales, el problema presenta dos dificultades: a) el hecho de que el muestreo ionosférico no es uniforme, con una densidad de muestras diferente que refleja de alguna manera la distribución de las estaciones sobre la superficie terrestre, y b) el hecho de que el método de estimación no puede introducir ninguna limitación en el número de perturbaciones y sus parámetros de propagación a detectar. En la primera contribución de la tesis, proponemos un método para detectar el número de TIDs simultáneas de una serie temporal de mapas VTEC filtrados por paso alto y sus parámetros. El método, al que denominamos como el Detector de Descomposición Atómica de TIDs (ADDTID), lo probamos con mapas VTEC, que corresponden a un escenario realista simulado en la red GEONET en Japón. La contribución consiste en la detección del número exacto de TIDs independientes a partir de un muestreo no uniforme de los IPPs de la ionosférica. La solución al problema se establece como la estimación de las perturbaciones representativas a partir de un diccionario de átomos que abarcan un espacio lineal de posibles TIDs mediante una variación del algoritmo LASSO. Estos átomos consisten en ondas planas caracterizadas por una longitud de onda, dirección y fase en una superficie definida. Como segunda contribución, aplicamos ADDTID a los datos VTEC a la red GEONET. Para probar el método, hemos estudiado los MSTIDs durante el día del Equinoccio de Primavera del 21 de marzo de 2011. La contribución geofísica es: (a) la detección de ondas circulares MSTID compatibles por tiempo y centro con un terremoto específico; (b) la superposición simultánea de dos MSTID distintos, con casi el mismo acimut; y (c) la presencia durante la noche de MSTID con velocidades en el rango de 400-600 m/s. En la tercera contribución presentamos una caracterización detallada de los TIDs originados por el eclipse solar total del 21 de agosto de 2017, cuya sombra atravesó los Estados Unidos desde el Pacífico hasta el Océano Atlántico. La evolución temporal de las TID producidas por el eclipse, que dependen del ángulo vertical del sol con la superficie de la tierra, y también aparece en un fenómeno de doble onda de choque. Finalmente, detectamos un patrón claro de MSTIDs, que aparecieron antes de la llegada de la penumbra, lo que podríamos hipotetizar como ondas de solitón asociadas con la onda de choque. En la cuarta contribución caracterizamos los MSTIDs generados durante el terremoto de Tohoku en Japón el 11 de marzo de 2011. Lo encontramos: a) una confirmación de la prestación del algoritmo frente al multi-TID simultáneas, la robustez frente a la curvatura de los frentes de onda de las perturbaciones y la precisión en la estimación de los parámetros. Los resultados se verificaron por duplicado mediante la inspección visual adicional de los mapas de VTEC y de los diagramas de keogramas; b) la detección de diferentes frentes de onda entre los MSTID del oeste y del este en torno al epicentro, coherentes en el tiempo y en el espacio con el maremoto posterior al terremoto; c) la evolución completa de las MSTID circulares que impulsó el maremoto durante el período observable en la zona de observación de los GNSS; y d) la detección de las MSTID circulares cortas y rápidas en el espacio en relación con las ondas acústicas asociadas con el terremoto.
Hoffmann, Peter, and Christoph Jacobi. "Analysis of planetary waves seen in ionospheric total electron content (TEC) perturbations." Universität Leipzig, 2006. https://ul.qucosa.de/id/qucosa%3A15490.
Full textThe DLR Neustrelitz regularly produces maps of the total total electron content (TEC) on a global scale using the navigation satellite systems GPS and GLONASS to forecast space weather. In this study we turn our attention to the higher middle latitudes TEC variations during September to November 2004 in a long-period range of several days with a zonal wavenumber up to 5. The results are compared with a planetary wave analysis using assimilated stratospheric data, mesosphere/lower thermosphere radar temperature data at Collm observatory (51.3◦N, 13.0◦E) and the ionosonde observed critical plasma frequency of the F2-layer (f0F2) at Juliusruh (54.6◦N, 13.4◦E) to investigate the meteorological influences on ionospheric variability.
Books on the topic "Ionospheric waves"
Wait, James R. Electromagnetic waves in stratified media. New York: Institute of Electrical and Electronics Engineers, 1996.
Find full textIEEE Antennas and Propagation Society., ed. Electromagnetic waves in stratified media. New York: Institute of Electrical and Electronics Engineers, 1995.
Find full textLaboratory), Ionospheric Effects Symposium (6th 1990 Naval Research. The effect of the ionosphere on radiowave signals and system performance: Based on Ionospheric Effects Symposium, 1-3 May 1990. [Washington, DC: U.S. G.P.O., 1990.
Find full textD, Borisov N., Moiseev B. S, and Institut zemnogo magnetizma, ionosfery i rasprostranenii͡a︡ radiovoln (Akademii͡a︡ nauk SSSR), eds. Issledovanie struktury i volnovykh svoĭstv prizemnoĭ plazmy. Moskva: In-t zemnogo magnetizma, ionosfery i rasprostranenii͡a︡ radiovoln AN SSSR, 1989.
Find full textM, Goodman John, and Naval Research Laboratory (U.S.), eds. The effect of the ionosphere on communication, navigation, and surveillance systems: Based on Ionospheric Effects Symposium, 5-7 May 1987. [Washington, DC: Naval Research Laboratory], 1988.
Find full textKarlovich, Sloka Viktor, and Radiotekhnicheskiĭ institut (Akademii͡a︡ nauk SSSR), eds. Radiotekhnicheskie voprosy issledovanii͡a︡ ionosfery: Sbornik nauchnykh trudov. Moskva: Akademii͡a︡ nauk SSSR, Radiotekhn. in-t, 1985.
Find full textM, Goodman John, Naval Research Laboratory (U.S.), United States. Defense Communications Agency., and United States. Defense Nuclear Agency., eds. Effect of the ionosphere on C³I systems: Based on Ionospheric Effects Symposium held in Old Town, Alexandria, Va., 1-3 May 1984. [Washington, D.C.?]: Naval Research Laboratory, 1985.
Find full textS, I͡A︡mpolʹskiĭ V., and Omskiĭ gosudarstvennyĭ pedagogicheskiĭ institut imeni A.M. Gorʹkogo., eds. Radiofizika i issledovanie svoĭstv veshchestva. Omsk: Omskiĭ gos. pedagog. in-t im. A.M. Gorʹkogo, 1990.
Find full textGurevich, Aleksandr Viktorovich. Long distance propagation of HF radio waves. Berlin: Springer-Verlag, 1985.
Find full textEvgenʹevna, T͡s︡edilina Elena, ed. Long distance propagation of HF radio waves. Berlin: Springer-Verlag, 1985.
Find full textBook chapters on the topic "Ionospheric waves"
Cander, Ljiljana R. "Ionospheric Irregularities and Waves." In Ionospheric Space Weather, 179–95. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99331-7_7.
Full textJin, Shuanggen, R. Jin, and X. Liu. "Seismo-ionospheric Rayleigh Waves." In GNSS Atmospheric Seismology, 167–94. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-3178-6_10.
Full textLeble, S. B. "Theory of Thermospheric Waves and their Ionospheric Effects." In Ionospheric Modelling, 491–527. Basel: Birkhäuser Basel, 1988. http://dx.doi.org/10.1007/978-3-0348-6532-6_14.
Full textTemerin, M., and P. M. Kintner. "Review of Ionospheric Turbulence." In Plasma Waves and Instabilities at Comets and in Magnetospheres, 65–80. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm053p0065.
Full textHunsucker, Robert D. "Ionospheric Modification by High Power Radio Waves." In Radio Techniques for Probing the Terrestrial Ionosphere, 142–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76257-4_6.
Full textFenrich, F. R., C. L. Waters, M. Connors, and C. Bredeson. "Ionospheric signatures of ULF waves: Passive radar techniques." In Magnetospheric ULF Waves: Synthesis and New Directions, 259–71. Washington, D. C.: American Geophysical Union, 2006. http://dx.doi.org/10.1029/169gm17.
Full textYeoman, T. K., D. M. Wright, and L. J. Baddeley. "Ionospheric signatures of ULF waves: Active radar techniques." In Magnetospheric ULF Waves: Synthesis and New Directions, 273–88. Washington, D. C.: American Geophysical Union, 2006. http://dx.doi.org/10.1029/169gm18.
Full textKomjathy, Attila. "Ionospheric Effects on the Propagation of Electromagnetic Waves." In Encyclopedia of Remote Sensing, 286–91. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-0-387-36699-9_72.
Full textLognonné, P. "Seismic Waves from Atmospheric Sources and Atmospheric/Ionospheric Signatures of Seismic Waves." In Infrasound Monitoring for Atmospheric Studies, 281–304. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9508-5_10.
Full textArata, H., and S. Yamazaki. "A Rejection Method for Interference Waves Caused by Sporadic-E Ionospheric Propagation." In Environmental and Space Electromagnetics, 410–16. Tokyo: Springer Japan, 1991. http://dx.doi.org/10.1007/978-4-431-68162-5_41.
Full textConference papers on the topic "Ionospheric waves"
Ivanov, I. I., V. A. Garbatsevich, and A. V. Tertyshnikov. "Shortwave Antenna for Ionospheric Satellites." In 2019 Radiation and Scattering of Electromagnetic Waves (RSEMW). IEEE, 2019. http://dx.doi.org/10.1109/rsemw.2019.8792737.
Full textBelakhovsky, Vladimir, Yaqi Jin, and Wojciech Miloch. "Impact of the substorms and polar cap patches on GPS radio waves at polar latitudes." In Physics of Auroral Phenomena. FRC KSC RAS, 2020. http://dx.doi.org/10.37614/2588-0039.2020.43.020.
Full textBelov, Sergej, Sergej Belov, Ija Belova, Ija Belova, Stepan Falomeev, and Stepan Falomeev. "MONITORING OF COASTAL ECOSYSTEMS BY METHOD OF REMOTE SENSING IN THE SHORT-WAVE RANGE OF RADIO WAVES." In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.31519/conferencearticle_5b1b93d0b9e123.60003193.
Full textBelov, Sergej, Sergej Belov, Ija Belova, Ija Belova, Stepan Falomeev, and Stepan Falomeev. "MONITORING OF COASTAL ECOSYSTEMS BY METHOD OF REMOTE SENSING IN THE SHORT-WAVE RANGE OF RADIO WAVES." In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.21610/conferencearticle_58b4316d2a67c.
Full textIvanov, I. I. "Ionospheric monitoring in the arctic at reverse transionospheric sounding." In 2017 Radiation and Scattering of Electromagnetic Waves (RSEMW). IEEE, 2017. http://dx.doi.org/10.1109/rsemw.2017.8103582.
Full textMaltseva, Olga, and Tatyana Nikitenko. "Validation of Different Ionospheric Models by Norilsk Station Data." In 2019 Radiation and Scattering of Electromagnetic Waves (RSEMW). IEEE, 2019. http://dx.doi.org/10.1109/rsemw.2019.8792766.
Full textChayka, E. G., and G. G. Vertogradov. "Travelling ionospheric disturbances effect on the single station location accuracy." In 2017 Radiation and Scattering of Electromagnetic Waves (RSEMW). IEEE, 2017. http://dx.doi.org/10.1109/rsemw.2017.8103586.
Full textDighe, Kalpak A., Craig A. Tepley, Raul Garcia, and Jonathan Friedman. "The Arecibo Observatory Daytime Lidar : Preliminary Results." In Optical Remote Sensing of the Atmosphere. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/orsa.1993.tud.15.
Full textHo, A. Y., S. P. Kuo, and M. C. Lee. "Propagation and scattering of electromagnetic waves by the ionospheric irregularities." In International Conference on Plasma Sciences (ICOPS). IEEE, 1993. http://dx.doi.org/10.1109/plasma.1993.593523.
Full textLaryunin, Oleg A. "Ray paths for radio waves traveling through cosine ionospheric layer." In XXIII International Symposium, Atmospheric and Ocean Optics, Atmospheric Physics, edited by Oleg A. Romanovskii. SPIE, 2017. http://dx.doi.org/10.1117/12.2287318.
Full textReports on the topic "Ionospheric waves"
Kuo, S. P. Basis of Ionospheric Modification by High-Frequency Waves. Fort Belvoir, VA: Defense Technical Information Center, June 2007. http://dx.doi.org/10.21236/ada470291.
Full textSales, Gary S., Bodo W. Reinisch, and Claude G. Dozois. Preliminary Investigation of Ionospheric Modification Using Oblique Incidence High Power HF Radio Waves. Fort Belvoir, VA: Defense Technical Information Center, September 1986. http://dx.doi.org/10.21236/ada179174.
Full textKintner, Paul M. Studies of Electrostatic Waves and VLF-Wave Particle Interaction in the Ionosphere. Fort Belvoir, VA: Defense Technical Information Center, June 1993. http://dx.doi.org/10.21236/ada266013.
Full textForbes, J. M. Planetary Waves in the Ionosphere. Fort Belvoir, VA: Defense Technical Information Center, February 1998. http://dx.doi.org/10.21236/ada340358.
Full textKintner, Paul M. Studies of Electrostatic Waves, VLF-wave Particle Interactions, and Propagations in the Ionosphere. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada628007.
Full textMurphy, T. Propagation of electromagnetic waves in a structured ionosphere. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/285449.
Full textKersley, L., S. E. Pryse, and N. S. Wheadon. Radio-Wave Scintillations and Ionospheric Irregularities at High Latitudes. Fort Belvoir, VA: Defense Technical Information Center, May 1987. http://dx.doi.org/10.21236/ada192140.
Full textLay, Erin Hoffmann. Ionospheric acoustic and gravity wave activity above low-latitude thunderstorms. Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1341848.
Full textFox, Matthew W., Xiaoqing Pi, and Jeffrey M. Forbes. First Principles and Applications-Oriented Ionospheric Modeling Studies, and Wave Signatures in Upper Atmosphere Density,. Fort Belvoir, VA: Defense Technical Information Center, January 1997. http://dx.doi.org/10.21236/ada325072.
Full textBaker, Zachary Kent. Constrained Shortest Path Estimation on the D-Wave 2X: Accelerating Ionospheric Parameter Estimation Through Quantum Annealing. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1331299.
Full text