Academic literature on the topic 'Ionospheric modeling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ionospheric modeling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ionospheric modeling"
Wang, Yafeng, Hu Wang, Yamin Dang, Hongyang Ma, Changhui Xu, Qiang Yang, Yingying Ren, and Shushan Fang. "BDS and Galileo: Global Ionosphere Modeling and the Comparison to GPS and GLONASS." Remote Sensing 14, no. 21 (October 31, 2022): 5479. http://dx.doi.org/10.3390/rs14215479.
Full textКим, Антон, Anton Kim, Елена Романова, Elena Romanova, Галина Котович, Galina Kotovich, Сергей Пономарчук, and Sergey Ponomarchuk. "Modeling z-shaped disturbance along the Pedersen ray of oblique sounding ionogram using adaptation of IRI to experimental data." Solar-Terrestrial Physics 2, no. 4 (February 2, 2017): 55–69. http://dx.doi.org/10.12737/24273.
Full textSu, Ke, and Shuanggen Jin. "Three Dual-Frequency Precise Point Positioning Models for the Ionospheric Modeling and Satellite Pseudorange Observable-Specific Signal Bias Estimation." Remote Sensing 13, no. 24 (December 15, 2021): 5093. http://dx.doi.org/10.3390/rs13245093.
Full textHåkansson, Martin. "Nadir-Dependent GNSS Code Biases and Their Effect on 2D and 3D Ionosphere Modeling." Remote Sensing 12, no. 6 (March 19, 2020): 995. http://dx.doi.org/10.3390/rs12060995.
Full textJee, Geonhwa. "Fundamentals of Numerical Modeling of the Mid-latitude Ionosphere." Journal of Astronomy and Space Sciences 40, no. 1 (March 2023): 11–18. http://dx.doi.org/10.5140/jass.2023.40.1.11.
Full textРоманова, Елена, Elena Romanova, Галина Котович, Galina Kotovich, Сергей Пономарчук, Sergey Ponomarchuk, Антон Ким, and Anton Kim. "Modeling z-shaped disturbance along the Pedersen ray of oblique sounding ionogram using adaptation of IRI to experimental data." Solnechno-Zemnaya Fizika 2, no. 4 (December 20, 2016): 43–53. http://dx.doi.org/10.12737/21815.
Full textOnohara, A. N., I. S. Batista, and H. Takahashi. "The ultra-fast Kelvin waves in the equatorial ionosphere: observations and modeling." Annales Geophysicae 31, no. 2 (February 7, 2013): 209–15. http://dx.doi.org/10.5194/angeo-31-209-2013.
Full textDABBAKUTI, J. R. K. Kumar, D. Venkata RATNAM, and Surendra SUNDA. "MODELLING OF IONOSPHERIC TIME DELAYS BASED ON ADJUSTED SPHERICAL HARMONIC ANALYSIS." Aviation 20, no. 1 (April 11, 2016): 1–7. http://dx.doi.org/10.3846/16487788.2016.1162197.
Full textDanzer, J., S. B. Healy, and I. D. Culverwell. "A simulation study with a new residual ionospheric error model for GPS radio occultation climatologies." Atmospheric Measurement Techniques 8, no. 8 (August 21, 2015): 3395–404. http://dx.doi.org/10.5194/amt-8-3395-2015.
Full textWang, Jin, Guanwen Huang, Peiyuan Zhou, Yuanxi Yang, Qin Zhang, and Yang Gao. "Advantages of Uncombined Precise Point Positioning with Fixed Ambiguity Resolution for Slant Total Electron Content (STEC) and Differential Code Bias (DCB) Estimation." Remote Sensing 12, no. 2 (January 17, 2020): 304. http://dx.doi.org/10.3390/rs12020304.
Full textDissertations / Theses on the topic "Ionospheric modeling"
Arora, Balwinder Singh Amrit Singh. "Ionospheric modeling for low frequency radioastronomy." Thesis, Curtin University, 2016. http://hdl.handle.net/20.500.11937/56529.
Full textMoraes, Alison de Oliveira. "Advances in statistical modeling of ionospheric scintillation." Instituto Tecnológico de Aeronáutica, 2013. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2240.
Full textIsmail, Atikah. "Fourier spectral methods for numerical modeling of ionospheric processes." Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-03142009-040454/.
Full textBrosie, Kayla Nicole. "Ionospheric Scintillation Prediction, Modeling, and Observation Techniques for the August 2017 Solar Eclipse." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/78710.
Full textMaster of Science
Deshpande, Kshitija Bharat. "Investigation of High Latitude Ionospheric Irregularities utilizing Modeling and GPS Observations." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/49507.
Full textPh. D.
Lyu, Haixia. "Contributions to ionospheric modeling with GNSS in mapping function, tomography and polar electron." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/670334.
Full textelectrones en resolución vertical baja y alta a partir de medidas GNSS terrestres y a bordo de satélites de órbita baja (LEO), además de utilizar medidas GNSS desde buques y medidas DORIS, además de mejorar el conocimiento de la climatología de la ionosfera en las regiones polares y en latitudes medias del hemisferio norte. Las contribuciones se pueden resumir en los siguientes cuatro aspectos: La primera contribución consiste en proponer un nuevo concepto de función de mapeo ionosférico: la función de mapeo ionosférico de Barcelona (BIMF), con el fin de mejorar la precisión de conversión de STEC (contenido total de electrones inclinado) a partir de cualquier modelo de VTEC (contenido total de electrones vertical). BIMF se basa en el modelado climático de la fracción VTEC en la segunda capa - μ2, que es el subproducto de UQRG generado por UPC. La primera implementación de BIMF es BIMF-nml para las latitudes medias del hemisferio norte. μ2 se modela en función del dia y la hora local. Desde la perspectiva del usuario, BIMF es la combinación lineal de μ2 y la función de mapeo ionosférico estándar, y solo necesita 41 coeficientes constantes, lo que hace que BIMF sea facilmente aplicable. Su buen comportamiento se demostró en la evaluación dSTEC para diferentes IGS GIM: UQRG, CODG y JPLG. La segunda contribución se centró en confirmar la capacidad de los GIM UQRG para detectar características ionosféricas representativas en regiones polares a través de seis estudios de casos, que incluyen lenguas de ionización (TOI), depresión de ionización en forma de canal, sucesos de transferencia de flujo, theta-aurora, patrones de convección ionosférica y densidad aumentada durante tormentas geomagnéticas. Los datos a largo plazo de VTEC y μ2 proporcionan valiosas bases de datos para estudiar la morfología y climatología de los fenómenos ionosféricos polares. Los resultados de agrupamiento no supervisados de la distribución normalizada de VTEC muestran que los TOI y los parches en los casquetes polares exhiben una dependencia anual, es decir, la mayoría de los TOI y parches ocurren en el invierno del Hemisferio Norte y el verano del Hemisferio Sur. La tercera contribución ha consistido en proponer un método híbrido: AVHIRO (el modelo híbrido Abel-VaryChap a partir de datos de RO incompletos en la parte superior), para resolver un problema de rango deficiente en la recuperación de la densidad electrónica con el modelo de Abel. Este trabajo está motivado por el futuro sistema polar EUMETSAT de segunda generación, que proporciona datos truncados de RO ionosférica, sólo por debajo de las alturas de impacto de 500 km, con el fin de garantizar una recopilación completa de medidas de la parte neutra. AVHIRO aprovecha un modelo Linear Vary-Chap, donde la altura de la escala aumenta linealmente con la altitud por encima del pico de la capa F2, y utiliza la búsqueda Powell para resolver las densidades completas de electrones, el término de ambig ¨ uedad y cuatro parámetros del modelo Vary-Chap simultáneamente, teniendo en cuenta las interacciones no lineales entre los parámetros desconocidos. La cuarta contribución es aprovechar la geometría aportada por la combinación de datos GPS DORIS, Galileo en tierra, LEO-POD y en barco, e incorporar las mediciones de la fase de la portadora de doble frecuencia de múltiples fuentes en el modelo tomográfico para mejorar la precisión de estimación de GIM VTEC. El impacto de agregar cada tipo de mediciones, que son datos de Galileo, datos de GPS basados en embarcaciones, datos de GPS DORIS y LEO-POD, a datos de GPS terrestres en productos GIM se examina de acuerdo con dos criterios de evaluación complementarios, comparación con VTEC[JASON-3] y con dSTEC[GPS]. Este estudio demuestra el mejor rendimiento esperado de GIM por la nueva ingesta de datos en el modelo tomográfico, que es un exitoso paso adelante desde la concepción hasta la validación experimental inicial.
Aghakarimi, Armin. "Local Modeling Of The Ionospheric Vertical Total Electron Content (vtec) Using Particle Filter." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614867/index.pdf.
Full textR2011 software has been used for programing all processes and algorithms of the study.
Kindervatter, Tim. "Survey of Ionospheric Propagation Effects and Modeling Techniques for Mitigation of GPS Error." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1515106508878179.
Full textPinkepank, James Alan. "The applicability of neural networks to ionospheric modeling in support of relocatable over-the-horizon radar." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1994. http://handle.dtic.mil/100.2/ADA286114.
Full textEltrass, Ahmed Said Hassan Ahmed. "The Mid-Latitude Ionosphere: Modeling and Analysis of Plasma Wave Irregularities and the Potential Impact on GPS Signals." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/51804.
Full textPh. D.
Books on the topic "Ionospheric modeling"
N, Korenkov Jurij, ed. Ionospheric modeling. Basel: Birkhäuser, 1988.
Find full textUnited States. National Aeronautics and Space Administration., ed. Semi-annual report on NASA grant NAGW5-1097: MIAMI, modeling of the magnetosphere-ionosphere-atmosphere system, 1 November 1996 to 31 March 1997. [Washington, DC: National Aeronautics and Space Administration, 1997.
Find full textMemarzadeh, Y. Ionospheric modeling for precise GNSS applications. Delft: Nederlandse Commissie voor Geodesie = Netherlands Geodetic Commission, 2009.
Find full textVogler, Lewis E. A new approach to HF channel modeling and simulation. Boulder, Colo: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 1988.
Find full textA, Hoffmeyer J., and United States. National Telecommunications and Information Administration., eds. A new approach to HF channel modeling and simulation. Boulder, Colo: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 1988.
Find full textVogler, Lewis E. A new approach to HF channel modeling and simulation. Boulder, Colo: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 1988.
Find full textVogler, Lewis E. A new approach to HF channel modeling and simulation. [Boulder, CO]: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 1988.
Find full textVogler, Lewis E. A new approach to HF channel modeling and simulation. Boulder, Colo: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 1988.
Find full textKorenkov, Jurij N., ed. Ionospheric Modelling. Basel: Birkhäuser Basel, 1988. http://dx.doi.org/10.1007/978-3-0348-6532-6.
Full textR, Cander L., Kouris S, Zolesi B, and European Geophysical Society, eds. Ionospheric variability, modelling and predictions. Oxford: Pergamon, 2001.
Find full textBook chapters on the topic "Ionospheric modeling"
Richmond, A. D., and A. Maute. "Ionospheric Electrodynamics Modeling." In Modeling the Ionosphere-Thermosphere System, 57–71. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118704417.ch6.
Full textHysell, D. L., H. C. Aveiro, and J. L. Chau. "Ionospheric Irregularities." In Modeling the Ionosphere-Thermosphere System, 217–40. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118704417.ch18.
Full textMingalev, V. S., V. N. Krivilev, M. L. Yevlashina, and G. I. Mingaleva. "Numerical Modeling of the High-Latitude F-Layer Anomalies." In Ionospheric Modelling, 323–34. Basel: Birkhäuser Basel, 1988. http://dx.doi.org/10.1007/978-3-0348-6532-6_6.
Full textSaenko, Yu S., N. S. Natsvalyan, and N. Yu Tepenitsyna. "Modeling of the Planetary Structure of the Ionosphere and the Protonosphere Coupling." In Ionospheric Modelling, 335–52. Basel: Birkhäuser Basel, 1988. http://dx.doi.org/10.1007/978-3-0348-6532-6_7.
Full textNigussie, Melessew, Baylie Damtie, Endawoke Yizengaw, and Sandro M. Radicella. "Modeling the East African Ionosphere." In Ionospheric Space Weather, 207–24. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781118929216.ch17.
Full textKamide, Yohsuke, and Wolfgang Baumjohann. "Modeling of Ionospheric Electrodynamics." In Magnetosphere-Ionosphere Coupling, 79–121. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-50062-6_4.
Full textYau, A. W., W. K. Peterson, and E. G. Shelley. "Quantitative parametrization of energetic ionospheric ion outflow." In Modeling Magnetospheric Plasma, 211–17. Washington, D. C.: American Geophysical Union, 1988. http://dx.doi.org/10.1029/gm044p0211.
Full textWinglee, R. M., R. D. Sydora, and M. Ashour-Abdalla. "Alfvén ion-cyclotron heating of ionospheric O+ Ions." In Modeling Magnetospheric Plasma, 205–9. Washington, D. C.: American Geophysical Union, 1988. http://dx.doi.org/10.1029/gm044p0205.
Full textFuller-Rowell, T. J., A. D. Richmond, and N. Maruyama. "Global modeling of storm-time thermospheric dynamics and electrodynamics." In Midlatitude Ionospheric Dynamics and Disturbances, 187–200. Washington, D. C.: American Geophysical Union, 2008. http://dx.doi.org/10.1029/181gm18.
Full textHaider, S. A. "Solar Flux for Ionospheric Modeling of Mars." In Aeronomy of Mars, 89–96. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3138-5_11.
Full textConference papers on the topic "Ionospheric modeling"
Schunk, R., and J. Sojka. "Advances in ionospheric modeling." In 37th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-628.
Full textSchunk, R., L. Scherliess, and J. Sojika. "Ionospheric specification and forecast modeling." In 39th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-236.
Full textJi, Yuanfa, Yu Liu, Xiyan Sun, Ning Guo, Songke Zhao, and Kamarul Hawari Ghazali. "Modeling and Correction Analysis of Regional Ionospheric Modeling." In 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). IEEE, 2022. http://dx.doi.org/10.1109/itoec53115.2022.9734319.
Full textChao-Lun Mai and Jean-Fu Kiang. "Modeling of tsinami-induced ionospheric irregularities." In 2008 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting. IEEE, 2008. http://dx.doi.org/10.1109/aps.2008.4619019.
Full textMeng, Xing, Attila Komjathy, Olga P. Verkhoglyadova, Giorgio Savastano, Mattia Crespi, and Michela Ravanelli. "Modeling the Near-field Ionospheric Disturbances During Earthquakes." In ION 2019 Pacific PNT Meeting. Institute of Navigation, 2019. http://dx.doi.org/10.33012/2019.16844.
Full textScales, W. A. "Recent advances in modeling ionospheric stimulated electromagnetic emissions." In 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). IEEE, 2021. http://dx.doi.org/10.23919/ursigass51995.2021.9560621.
Full textMoore, Robert C., and Anthony J. Erdman. "Nonlinear FDTD modeling of ionospheric cross-modulation experiments." In 2018 International Applied Computational Electromagnetics Society Symposium (ACES). IEEE, 2018. http://dx.doi.org/10.23919/ropaces.2018.8364241.
Full textLi, Zhangyi, Lixin Guo, Jingchun Li, Benchao Wang, and Yanan Zhao. "Multi-dimensional Time Series Modeling of Ionospheric foF2." In 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC). IEEE, 2020. http://dx.doi.org/10.1109/csrswtc50769.2020.9372525.
Full textMeyer, Franz J., and Piyush S. Agram. "Modeling ionospheric phase noise for NISAR mission data." In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2017. http://dx.doi.org/10.1109/igarss.2017.8127829.
Full textHobara, Y., M. Iwamoto, K. Ohta, T. Otsuyama, and M. Hayakawa. "TLE producing ionospheric disturbances: Observation and numerical modeling." In 2011 XXXth URSI General Assembly and Scientific Symposium. IEEE, 2011. http://dx.doi.org/10.1109/ursigass.2011.6050944.
Full textReports on the topic "Ionospheric modeling"
Mahalov, Alex. Multiscale Modeling of Ionospheric Irregularities. Fort Belvoir, VA: Defense Technical Information Center, October 2014. http://dx.doi.org/10.21236/ada612205.
Full textDoherty, Patricia H., Leo F. McNamara, William J. Burke, William J. McNeil, and Louise C. Gentile. Ionospheric Modeling: Development, Verification and Validation. Fort Belvoir, VA: Defense Technical Information Center, August 2007. http://dx.doi.org/10.21236/ada478630.
Full textCummer, Steven A., and Jingbo Li. Accurate Modeling of Ionospheric Electromagnetic Fields Generated by a Low Altitude VLF Transmitter. Fort Belvoir, VA: Defense Technical Information Center, March 2009. http://dx.doi.org/10.21236/ada534986.
Full textCummer, Steven A. Accurate Modeling of Ionospheric Electromagnetic Fields Generated by a Low-Altitude VLF Transmitter. Fort Belvoir, VA: Defense Technical Information Center, August 2007. http://dx.doi.org/10.21236/ada519257.
Full textTuck, Gary. Visit to Ionospheric Modeling and Remote Sensing Branch, Phillips Laboratory in Hanscom AFB, MA. Fort Belvoir, VA: Defense Technical Information Center, November 1994. http://dx.doi.org/10.21236/ada292339.
Full textLarmat, Carene, Marcel Remillieux, Lucie Rolland, and Philippe Lognonne. W15_ionisphere “3D modeling and inversion of ionospheric signals driven from below by earthquakes and tsunami". Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1345919.
Full textFox, Matthew W., Xiaoqing Pi, and Jeffrey M. Forbes. First Principles and Applications-Oriented Ionospheric Modeling Studies, and Wave Signatures in Upper Atmosphere Density,. Fort Belvoir, VA: Defense Technical Information Center, January 1997. http://dx.doi.org/10.21236/ada325072.
Full textMakela, Jonathan. Studies of Ionospheric Plasma Structuring at Low Latitudes from Space and Ground, Their Modeling and Relationship to Scintillations. Fort Belvoir, VA: Defense Technical Information Center, January 2009. http://dx.doi.org/10.21236/ada531096.
Full textKhattatov, Boris, Michael Murphy, Marianna Gnedin, Tim Fuller-Rowell, and Valery Yudin. Advanced Modeling of the Ionosphere and Upper Atmosphere. Fort Belvoir, VA: Defense Technical Information Center, June 2004. http://dx.doi.org/10.21236/ada429055.
Full textRoble, Raymond G. Thermosphere-Ionosphere-Mesosphere Modeling Using the TIME-GCM. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada628807.
Full text