Academic literature on the topic 'Ionizing effects'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ionizing effects.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ionizing effects"

1

Wagner, Louis K., Patricia Eifel, and Richard Geise. "Effects of Ionizing Radiation." Journal of Vascular and Interventional Radiology 6, no. 6 (November 1995): 988–89. http://dx.doi.org/10.1016/s1051-0443(95)71232-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wong, F. C., and E. E. Kim. "Medical Effects of Ionizing Radiation." Journal of Nuclear Medicine 50, no. 12 (November 12, 2009): 2090. http://dx.doi.org/10.2967/jnumed.109.069864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Guleria, Ravinder. "Harmful Effects of Ionizing Radiation." International Journal for Research in Applied Science and Engineering Technology 7, no. 12 (December 31, 2019): 887–89. http://dx.doi.org/10.22214/ijraset.2019.12141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Boice, John D., Robert W. Miller, Fred A. Mettler, and Arthur C. Upton. "Medical Effects of Ionizing Radiation." Radiation Research 144, no. 1 (October 1995): 121. http://dx.doi.org/10.2307/3579246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fry, R. J. M., and S. A. Fry. "Health Effects of Ionizing Radiation." Medical Clinics of North America 74, no. 2 (March 1990): 475–88. http://dx.doi.org/10.1016/s0025-7125(16)30574-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Die Schriftleitung. "Medical Effects of ionizing radiation." Zeitschrift für Medizinische Physik 7, no. 3 (1997): 202. http://dx.doi.org/10.1016/s0939-3889(15)70260-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Coggle, J. E. "Medical Effects of Ionizing Radiation." International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine 50, no. 4 (January 1986): 755. http://dx.doi.org/10.1080/09553008614551151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sheaff, Michael, and Suhail Baithun. "Pathological effects of ionizing radiation." Current Diagnostic Pathology 4, no. 2 (June 1997): 106–15. http://dx.doi.org/10.1016/s0968-6053(05)80090-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Angle, J. Fritz. "Medical Effects of Ionizing Radiation." Journal of Vascular and Interventional Radiology 19, no. 11 (November 2008): 1675. http://dx.doi.org/10.1016/j.jvir.2008.07.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Krymskii, G. F., V. V. Kolosov, and I. S. Tyryshkin. "Vapor condensation under ionizing effects." Atmospheric and Oceanic Optics 24, no. 2 (April 2011): 218–21. http://dx.doi.org/10.1134/s1024856011020102.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Ionizing effects"

1

Hasan, N. M. "Effects of ionizing radiation on biomolecules." Thesis, University of Salford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Barbary, O. M. "Effects of ionizing radiation on lipids." Thesis, University of Salford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bagatin, Marta. "Effects of Ionizing Radiation in Flash Memories." Doctoral thesis, Università degli studi di Padova, 2010. http://hdl.handle.net/11577/3426925.

Full text
Abstract:
Semiconductor memories operating at sea level are constantly bombarded by ionizing radiation. Alpha particles, emitted by the radioactive contaminants that are inevitably present in the package and solder materials, may reach the sensitive areas of the chips and generate bit upsets. Furthermore, a shower of neutrons caused by interactions of cosmic rays with the external atmospheric layers can be a serious threat for the correct operation of electronics in the terrestrial environment. Satellite and spacecraft electronics must work reliably in an environment that is much harsher, because the huge presence of ionizing radiation, in particular protons, electrons, and heavy-ions, constantly threatens its correct behavior. Flash memories are susceptible to radiation effects. They are multifaceted devices with a large number of miscellaneous building blocks, hence their response to ionizing radiation features different signatures, which may sometimes be very complex to interpret. SRAM memories, for their part, are the most common benchmark to evaluate the sensitivity to soft error of a given CMOS generation. In addition, they are present virtually everywhere in integrated circuits, for instance in the page buffer of Flash memories. This thesis provides several original contributions to the field of radiation effects in Flash memories and SRAMs. A complete study, both experimental and modeling work, has been performed on Flash memories, using x-rays, heavy ions, and neutrons, to emulate both the space and terrestrial environments. Concerning total ionizing dose results, the failure doses of the floating gate memory matrix, the charge pump circuitry, and the row decoder are assessed by selectively irradiating the device building blocks, in contrast to the common procedure of exposing the whole device. As far as single event effects are concerned, the role of the page buffer is elucidated and the dependence of page buffer errors on the operating conditions (e.g., the read activity) during heavy-ion irradiation is clarified. An ‘effective’ device cross section is proposed that measures the device sensitivity, accounting for the main usage patterns. During last years annealing effects in floating gate errors have been discussed several times after heavy-ion exposure, but apparently collided with observations on the floating gate charge loss. New results are presented in this work, which proves that the existing theories of charge loss and charge trapping can actually coexist. This work shows for the first time that atmospheric neutrons are able to induce errors in advanced Flash memories, an effect that until a short time ago was believed to exist only in SRAMs and DRAMs. These results highlight new issues for the use of Flash in the terrestrial environment. Finally, last section illustrates the main factors determining temperature dependence of the soft error in SRAMs. Experimental results, simulations, and analytical modeling are presented to show the complex mixture of parameters at play, most of them strongly dependent on the technological features of the devices.
Le memorie a semiconduttore che operano al livello del mare sono costantemente bombardate dalla radiazione ionizzante. Particelle alfa, emesse dai contaminanti radioattivi che sono inevitabilmente presenti nei materiali dei componenti e delle saldature, possono raggiungere le aree sensibili dei chip e generare cambiamenti indesiderati dello stato logico dei bit di memoria. Inoltre, una continua pioggia di neutroni causata dalle interazioni dei raggi cosmici con gli strati esterni dell’atmosfera costituisce una seria minaccia per il corretto funzionamento dell’elettronica in ambiente terrestre. L'elettronica che opera nello spazio deve funzionare in un ambiente ancora più critico dal punto di vista delle radiazioni ionizzanti, data la presenza massiccia di protoni, elettroni e ioni pesanti. Le memorie Flash sono sensibili agli effetti di radiazione. Essendo componenti sfaccettati, con blocchi funzionali eterogenei, la loro risposta alle radiazioni ionizzanti è variegata e talvolta la sua interpretazione può risultare complessa. Le SRAM, dal canto loro, sono il benchmark più comune per valutare la sensibilità al soft error di una data generazione tecnologica CMOS, nonchè dispositivi presenti virtualmente in tutti i circuiti integrati, non da ultimo nel page buffer delle memorie Flash. Questo lavoro di tesi contiene dei contributi originali nel campo degli effetti delle radiazioni sulle memorie Flash e SRAM. E’ stato effettuato uno studio completo, sperimentale e teorico, di memorie Flash commerciali, usando raggi x, ioni pesanti e neutroni, per simulare sia l’ambiente spaziale che quello terrestre. Per quanto riguarda gli effetti di dose totale, si studiano le diverse dosi di fallimento della matrice di celle Floating Gate, delle pompe di carica e del decoder di riga, irraggiando selettivamente i vari blocchi funzionali del dispositivo, in contrasto con la metodologia più comune di esporre alla radiazione l’intero chip. Nel Capitolo 3, dedicato agli effetti da evento singolo, si chiarisce il ruolo del page buffer nel determinare la sensibilità a ioni pesanti di una memoria NAND, studiando anche la dipendenza dei diversi tipi di errori (page buffer vs celle Floating Gate) dalle condizioni operative del dispositivo. Si propone quindi una ‘sezione d’urto efficace’ allo scopo di tenere conto di questi parametri. Negli ultimi anni sono stati discussi gli effetti di annealing post-irraggiamento degli errori osservati nelle celle Floating Gate, ma, apparentemente, le spiegazioni fornite collidevano con le teorie di perdita di carica dal Floating Gate. In questo lavoro di tesi si presentano risultati nuovi su questo fronte (Capitolo 4), che dimostrano come le teorie di perdita e intrappolamento di carica nel Floating Gate possano in realtà coesistere e spiegare in modo efficace i dati sperimentali. Il Capitolo 5 mostra, per la prima volta, che i neutroni atmosferici sono in grado di indurre errori in memorie Flash avanzate, cosa che fino a poco fa si riteneva possibile solo per memorie SRAM e DRAM. Questi risultati rivelano l’importanza di una nuova tematica connessa all’uso questi dispositivi in ambito terrestre. Infine, il Capitolo 6 illustra i fattori principali che determinano la dipendenza dalla temperatura del tasso di soft error in una memoria SRAM. Si presentano i risultati sperimentali, di simulazioni SPICE e modellizzazione analitica, per evidenziare la complessa miscela di parametri in gioco, molti dei quali fortemente dipendenti dalle caratteristiche tecnologiche del dispositivo.
APA, Harvard, Vancouver, ISO, and other styles
4

Travis, Neil. "Effects of ionizing radiation on diaphyseal cortical bone." Connect to this title online, 2007. http://etd.lib.clemson.edu/documents/1181666404/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brucoli, Matteo. "Total ionizing dose monitoring for mixed field environments." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS093/document.

Full text
Abstract:
La mesure de la dose ionisante est aujourd'hui une tâche cruciale pour une large gamme d'applications fonctionnant dans des environnements de rayonnement sévères. Dans le contexte de l'amélioration de la luminosité du grand collisionneur de hadrons (LHC), la mesure des niveaux de rayonnement le long du complexe d'accélérateurs du CERN va devenir encore plus difficile. A cet effet, une connaissance plus détaillée du champ de rayonnement dans le tunnel de l'accélérateur et ses zones adjacentes devient nécessaire pour définir les exigences d'installation, de déplacement ou de blindage de l'électronique sensible au rayonnement. Dans l’objectif d’améliorer la mesure de la dose absorbée par les systèmes exposés au champ de rayonnement mixte généré par l’accélérateur, des investigations sur des nouveaux dosimètres ont été menées.Dans le cadre de cette recherche, deux dispositifs ont été étudiés et caractérisés pour être utilisés comme dosimètres et éventuellement pour compléter l'utilisation du dosimètre au silicium actuellement utilisé au CERN, à savoir le RADFET (RADiation-sensitive Field Effect Transistor) : un NMOS commercial et un ASIC (Application-specific Integrated Circuit) nommé FGDOS. Les dispositifs ont été sélectionnés selon deux approches opposées : d'une part, la réduction des coûts permettrait d'augmenter la densité des capteurs déployés. En conséquence directe, une carte des doses plus détaillée serait obtenue pour les grands systèmes distribués comme le LHC. D'autre part, la dosimétrie peut être améliorée en déployant des détecteurs plus sensibles, ce qui permettrait de mesurer la dose lorsque les niveaux sont trop faibles pour le RADFET. De plus, des capteurs à plus haute résolution permettraient de caractériser le champ de rayonnement dans un temps plus court, c'est-à-dire avec une luminosité intégrée plus faible.La première approche a été réalisée en recherchant des solutions alternatives basées sur des dispositifs COTS (Commercial Off-The-Shelf), qui réduiraient considérablement les coûts et garantiraient une disponibilité illimitée sur le marché. À cette fin, des recherches ont été menées sur un transistor NMOS discret commercial, qui s'est révélé très sensible au rayonnement.La nécessité d'améliorer la résolution de la mesure de dose a conduit à étudier le FGDOS, un dosimètre en silicium innovant à très haute sensibilité qui permet de détecter des doses extrêmement faibles.La calibration du transistor NMOS et du FGDOS a été effectuées en exposant les dosimètres à des rayons gamma. Leur réponse au rayonnement a été caractérisée en termes de linéarité, de variabilité d'un lot à l'autre et d'effet du débit de dose. L'influence de la température a été étudiée et une méthode pour compenser l'effet de la température a été développée et mise en œuvre.Le FGDOS étant un système sur puce (SoC) avec plusieurs caractéristiques qui font du dosimètre un système extrêmement flexible, la caractérisation de ses différents modes de fonctionnement (actif, passif et autonome) a été effectuée. Suite à la première caractérisation, des questions se sont posées concernant les mécanismes de dégradation de la sensibilité affectant le dosimètre. Pour étudier ce phénomène, des campagnes d’irradiations ont été effectuées avec une puce d'essai incorporant seulement le circuit sensible au rayonnement du FGDOS. L'analyse des expériences a permis de comprendre les processus responsables de la dégradation de la sensibilité, en séparant la contribution du transistor de lecture de celle du condensateur à grille flottante. Les résultats de cette étude nous ont amenés à envisager de nouvelles solutions de conception et des méthodes de compensation.L’aptitude du transistor NMOS et du FGDOS à mesurer la dose ionisante dans les champs de rayonnement mixtes produits par le complexe d’accélérateurs du CERN a été vérifiée à l’aide de test radiatifs accélérés effectués dans le centre de tests en champs mixte à haute énergie du CERN (CHARM)
The Total Ionizing Dose (TID) monitoring is nowadays a crucial task for a wide range of applications running in harsh radiation environments. In view of the High-Luminosity upgrade for the Large Hadron Collider, the monitoring of radiation levels along the CERN’s accelerator complex will become even more challenging. To this extent, a more detailed knowledge of the radiation field in the accelerator tunnel and its adjacent areas becomes necessary to design installation, relocation or shielding requirements of electronics sensitive to radiation. Aiming to improve the monitoring of the TID delivered by the mixed radiation field generated within the accelerator system, investigations on new suitable dosimeters have been carried out.With this research, two devices have been studied and characterized to be employed as dosimeter and possibly to complete the use of the silicon sensor currently employed at CERN for TID monitoring, i.e. the RADiation-sensitive Field Effect Transistor (RADFET): a commercial NMOS, and an ASIC (Application-Specific Integrated Circuit) named FGDOS. The devices have been selected following two opposite approaches: on the one hand, reducing the costs would allow the density of the deployed sensors to increase. As a direct consequence, a more detailed dose map would be obtained for large distributed systems like the LHC. On the other hand, the radiation monitoring can be further improved by deploying more sensitive detectors, which would allow to measure the dose where the levels are too low for the RADFET. Moreover, sensors with higher resolution would permit the characterization of the radiation field in a shorter time, which means within a lower integrated luminosity.The first approach has been accomplished by searching for alternative solutions based on COTS (Commercial Off-The-Shelf) devices, which would significantly reduce the costs and guarantee unlimited availability on the market. For this aim, investigations on a commercial discrete NMOS transistor, which was found to be very sensitive to the radiation, has been carried out.The need for improving the resolution of TID monitoring led to investigate the FGDOS, which is an innovative silicon dosimeter with a very high sensitivity that permits to detect extremely low doses.The calibration of the NMOS and the FGDOS have been performed by exposing the dosimeters to γ-ray. Their radiation response has been characterized in terms of linearity, batch-to-batch variability, and dose rate effect. The influence of the temperature has been studied and a method to compensate the temperature effect has been developed and implemented.Being the FGDOS is a System-On-Chip with several features that make the dosimeter an extremely flexible system, the characterization of its operational modes (Active, Passive and Autonomous) have been performed. Following the first characterization, some questions arose concerning the sensitivity degradation mechanisms affecting the dosimeter. To investigate this phenomenon, radiation experiments were performed with a test chip embedding only the radiation sensitive circuit of the FGDOS. The analysis of the experiments allowed the understating of the processes responsible for the sensitivity degradation, by separating the contribution of the reading transistor and the floating gate capacitor. The results of this investigation led us to considerer new design solution and compensation methods.The suitability of the NMOS and the FGDOS for TID measurement in the mixed radiation field produced by the CERN’s accelerator complex has been verified by performing accelerated radiation tests at the Cern High energy AcceleRator Mixed field facility (CHARM). The consistency of both sensors with the RADFET measurement has been demonstrated. The high sensitivity of the FGDOS leads to a significant improvement in terms of TID measurement in mixed radiation fields with respect to the RadFET, especially for low radiation intensities
APA, Harvard, Vancouver, ISO, and other styles
6

Nguyen, Vinh. "Late Effects of Ionizing Radiation on Normal Microvascular Networks." View the abstract Download the full-text PDF version, 1999. http://etd.utmem.edu/ABSTRACTS/1999-001-nguyen-index.html.

Full text
Abstract:
Thesis (M.S. )--University of Tennessee Health Science Center, 1999.
Title from title page screen (viewed on October 17, 2008). Research advisor: Mohammad F. Kiani. Document formatted into pages (xi, 67 p. : ill.). Vita. Abstract. Includes bibliographical references (p. 55-67).
APA, Harvard, Vancouver, ISO, and other styles
7

Gasperin, Alberto. "Advanced Non-Volatile Memories: Reliability and Ionizing Radiation Effects." Doctoral thesis, Università degli studi di Padova, 2008. http://hdl.handle.net/11577/3425599.

Full text
Abstract:
Reliability study and investigation of ionizing radiation effects on advanced non-volatile memories. The memories addressed in this thesis are: nanocrystal memories, Phase Change Memories (PCM), and the Oxide-Nitride-Oxide stack. In the thesis there is also a brief description of the major interaction mechanisms between ionizing particles and electronic devices.
APA, Harvard, Vancouver, ISO, and other styles
8

MacPhail, Susan Helen. "Effect of intercellular contact on radiation-induced DNA damage." Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/27986.

Full text
Abstract:
Chinese hamster V79-171B cells grown for about 24 hours in suspension culture display increased resistance to cell killing by ionizing radiation compared with cells grown as monolayers, an observation originally termed the "contact effect". More recently, development of that resistance was shown to be accompanied by changes in the conformation of the DNA which reduce its denaturation rate in high salt/weak alkali. These changes in DNA conformation, mediated by the cellular micro-environment, appear to be responsible for the contact effect. The conditions necessary for the development of the effect are not, however, completely understood. In particular, when cells grown as monolayers on petri plates are suspended in spinner culture flasks, their growth characteristics change in three distinct ways. First, cells in suspension no longer have a solid substrate, so they remain round. Second, after several hours, they begin to aggregate to form "spheroids", so that three-dimensional intercellular cell contact develops. Third, cells in the stirred suspension cultures are not subjected to high local concentrations of metabolic by-products or surrounded by a zone depleted of nutrients, as are cells in monolayer culture. The studies described here were designed to determine how each of these factors influence changes in DNA conformation, as assayed using the alkali unwinding technique. Our results indicated that a round shape may not be an essential requirement, since cells spread out on the surface of cytodex beads in suspension culture, and sparsely-seeded cells in monolayer culture demonstrated at least a partial contact effect. Three-dimensional intercellular contact does not always seem necessary for the development of the contact effect. Cells grown in a methyl cellulose matrix developed radioresistance, even though the cells formed only small clusters of less than five cells. Similarly, suspension culture cells which were prevented from aggregating by frequent exposure to trypsin, also developed the contact effect. There was no evidence that nutrient depletion plays a role in the failure of cells grown as monolayers to develop a contact effect. However, cells grown as spheroids in the presence of monolayer cells, or in monolayer cell-conditioned medium, did not display a full contact effect. This indicates a role for monolayer cell-produced factors (possibly extracellular matrix proteins) in preventing the development of the contact effect. We conclude that changes in DNA conformation and the increase in radiation resistance, seen in V79-171b cells grown as spheroids, are not the result of intercellular contact or round shape of the cells. This radioresistance appears to be the result of an absence of monolayer cell-produced factors which could control both cell shape and DNA conformation.
Medicine, Faculty of
Pathology and Laboratory Medicine, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
9

Staaf, Elina. "Cellular effects after exposure to mixed beams of ionizing radiation." Doctoral thesis, Stockholms universitet, Institutionen för genetik, mikrobiologi och toxikologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-80809.

Full text
Abstract:
Mixed beams of ionizing radiation in our environment originate from space, the bedrock and our own houses. Radiotherapy patients treated with boron neutron capture therapy or with high energy photons are also exposed to mixed beams of gamma radiation and neutrons. Earlier investigations have reported additivity as well as synergism (a greater than additive response) when combining radiations of different linear energy transfer. However, the outcome seemed to be dependent on the experimental setup, especially the order of irradiation and the temperature at exposure. A unique facility allowing simultaneously exposure of cells to X-rays and 241Am alpha particles at 37 ºC was constructed and characterized at the Stockholm University (Paper I). To investigate the cytogenetic response to mixed beam irradiation (graded doses of alpha particles, X-rays or a mixture of both) several different cell types were utilized. AA8 Chinese Hamster Ovary cells were analyzed for clonogenic survival (Paper I), human peripheral blood lymphocytes were analyzed for micronuclei and chromosomal aberrations (Paper II and Paper III respectively) and VH10 normal human fibroblasts were scored for gamma-H2AX foci (Paper IV). For clonogenic survival, mixed beam results were additive, while a significant synergistic effect was observed for micronuclei and chromosomal aberrations. The micronuclei dose responses were linear, and a significant synergistic effect was present at all investigated doses. From the analysis of micronuclei distributions we speculated that the synergistic effect was due to an impaired repair of X-ray induced DNA damage, a conclusion that was supported by chromosomal aberration results. Gamma-H2AX foci dose responses were additive 1 h after exposure, but the kinetics indicated that the presence of low LET-induced damage engages the DNA repair machinery, leading to a delayed repair of the more complex DNA damage induced by alpha particles. These conclusions are not necessary contradictory since fast repair does not necessarily equal correct repair. Taken together, the observed synergistic effects indicate that the risks of stochastic effects from mixed beam exposure may be higher than expected from adding the individual dose components.

At the time of the doctoral defence the following papers were unpublished and had a status as follows: Paper nr 3: Manuscript; Paper nr 4: Manuscript.


DNA damage and repair in cells exposed to mixed beams of radiation
APA, Harvard, Vancouver, ISO, and other styles
10

MacQueen, Daniel Montgomery. "Total ionizing dose effects on Xilinx field-programmable gate arrays." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ59840.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Ionizing effects"

1

Pathak, Bhawani. Health effects of ionizing radiation. 2nd ed. Hamilton, Ontario: Canadian Centre for Occupational Health and Safety, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

A, Mettler Fred. Medical effects of ionizing radiation. 2nd ed. Philadelphia: W.B. Saunders, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

1924-, Moseley Robert D., ed. Medical effects of ionizing radiation. Orlando, FL: Grune & Stratton, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

1923-, Upton Arthur C., ed. Medical effects of ionizing radiation. 3rd ed. Philadelphia, PA: Saunders / Elsevier, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shirley, Lehnert, ed. Biomolecular action of ionizing radiation. New York: Taylor & Francis, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alexandrou, Konstantinos. Ionizing Radiation Effects on Graphene Based Field Effects Transistors. [New York, N.Y.?]: [publisher not identified], 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Humans, IARC Working Group on the Evaluation of Carcinogenic Risks to. Non-ionizing radiation. Lyon, France: IARC Press, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

United States. Defense Nuclear Agency., ed. Effects of ionizing radiation on auditory and visual thresholds. Alexandria, VA: Defense Nuclear Agency, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

United States. Defense Nuclear Agency., ed. Effects of ionizing radiation on auditory and visual thresholds. Alexandria, VA: Defense Nuclear Agency, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

P, Ma T., and Dressendorfer Paul V, eds. Ionizing radiation effects in MOS devices and circuits. New York: Wiley, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Ionizing effects"

1

Horneck, Gerda. "Ionizing Radiation, Biological Effects." In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_806-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Horneck, Gerda. "Ionizing Radiation, Biological Effects." In Encyclopedia of Astrobiology, 1255. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fuger, Jean. "Effects of Ionizing Radiations." In Th Thorium, 191–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-07410-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Horneck, Gerda. "Ionizing Radiation (Biological Effects)." In Encyclopedia of Astrobiology, 845. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Horneck, Gerda. "Ionizing Radiation, Biological Effects." In Encyclopedia of Astrobiology, 1518. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wood, Andrew. "Possible Low-Level Radiofrequency Effects." In Non-ionizing Radiation Protection, 239–55. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119284673.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Foster, Kenneth R. "Thermal Effects of Microwave and Radiofrequency Radiation." In Non-ionizing Radiation Protection, 163–85. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119284673.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Elgazzar, Abdelhamid H. "Biological Effects of Ionizing Radiation." In Synopsis of Pathophysiology in Nuclear Medicine, 329–38. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03458-4_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Upton, Arthur C. "Carcinogenic Effects of Ionizing Radiation." In Mechanisms of Carcinogenesis, 54–70. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2526-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Elgazzar, Abdelhamid H., and Nafisa Kazem. "Biological Effects of Ionizing Radiation." In The Pathophysiologic Basis of Nuclear Medicine, 715–26. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06112-2_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ionizing effects"

1

Bourdarie, S., C. Inguimbert, J. R. Vaille, P. Calvel, A. Sicard-Piet, D. Falguere, E. Lorfevre, R. Ecoffet, and C. Poivey. "Benchmarking ionizing space environment models." In 2016 16th European Conference on Radiation and Its Effects on Components and Systems (RADECS). IEEE, 2016. http://dx.doi.org/10.1109/radecs.2016.8093135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Naceur, M., A. D. Touboul, M. Gedion, J. R. Vaille, F. Wrobel, E. Lorfevre, F. Bezerra, G. Chaumont, and F. Saigne. "Synergy of non-ionizing and ionizing processes in the reliability degradation of Power MOSFETs oxide." In 2011 12th European Conference on Radiation and Its Effects on Components and Systems (RADECS). IEEE, 2011. http://dx.doi.org/10.1109/radecs.2011.6131372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Witczak, Steven C., Jeremiah J. Horner, David C. Harms, Todd S. Mason, Kristin E. Marino, and Glen E. Macejik. "Ionizing Radiation Response of the 4558 Analog Processor / Analog-to-Digital Converter." In 2017 IEEE Nuclear & Space Radiation Effects Conference (NSREC): Radiation Effects Data Workshop (REDW). IEEE, 2017. http://dx.doi.org/10.1109/nsrec.2017.8115442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gadlage, Matthew J., Matthew J. Kay, David I. Bruce, Austin H. Roach, Adam R. Duncan, Aaron M. Williams, and J. David Ingalls. "Total Ionizing Dose Effects in Commercial Floating-Gate-Alternative Non-Volatile Memories." In 2017 IEEE Nuclear & Space Radiation Effects Conference (NSREC): Radiation Effects Data Workshop (REDW). IEEE, 2017. http://dx.doi.org/10.1109/nsrec.2017.8115457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chavez, R., B. Rax, and A. Johnston. "Total Ionizing Dose Effects and Bias Dependence in Selected Bipolar Devices." In 2006 IEEE Radiation Effects Data Workshop. IEEE, 2006. http://dx.doi.org/10.1109/redw.2006.295467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Simova, Eli, and Paul A. Rochefort. "Ionizing Radiation Effects in Non-Radiation-Tolerant Commercial Video Cameras." In 2015 IEEE Radiation Effects Data Workshop (REDW). IEEE, 2015. http://dx.doi.org/10.1109/redw.2015.7336719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Prahardi, R., and Arundito Widikusumo. "Zero Dose." In Seminar Si-INTAN. Badan Pengawas Tenaga Nuklir, 2021. http://dx.doi.org/10.53862/ssi.v1.062021.008.

Full text
Abstract:
Ionizing radiation in the medical world has long been used, both for diagnostic and therapeutic purposes. But the use of ionizing radiation, besides helping a lot in diagnosis and therapy, ionizing radiation is also hazardous for us. The effects of ionizing radiation on humans are divided into two types, namely stochastic effects, and non-stochastic (deterministic) effects. Of the two kinds of effects caused by ionizing radiation, the stochastic effect needs special attention. Because the dose-limiting parameter does not exist, how much radiation dose can cause the stochastic effect. We only have the principle that no matter how small the radiation that hits us, it will still impact us. The mechanism for this effect is either a direct effect or an indirect effect, or a newly discovered effect, namely the bystander effect, all of which lead to DNA damage. This DNA damage will cause various kinds of health problems for us. Keywords: Stochastic Effect, DNA Damage. Gene Mutation, Bystander Effect
APA, Harvard, Vancouver, ISO, and other styles
8

Slimani, Mariem, Jean-Marc Armani, and Remi Gaillard. "Evaluation of Total Ionizing Dose Effects on Commercial FRAMs." In 2018 IEEE Nuclear & Space Radiation Effects Conference (NSREC 2018). IEEE, 2018. http://dx.doi.org/10.1109/nsrec.2018.8584287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aksteiner, N., and J. Budroweit. "Total Ionizing Dose Effects on Current Sense Amplifiers." In 2021 21th European Conference on Radiation and Its Effects on Components and Systems (RADECS). IEEE, 2021. http://dx.doi.org/10.1109/radecs53308.2021.9954538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Griffiths, Benjamin J., Timothy R. Oldham, and Chad M. Whitney. "Compendium of Ball Aerospace Total Ionizing Dose Test Results." In 2018 IEEE Nuclear & Space Radiation Effects Conference (NSREC 2018). IEEE, 2018. http://dx.doi.org/10.1109/nsrec.2018.8584269.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Ionizing effects"

1

Little, John B. Bystander Effects of Ionizing Radiation. Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1339440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kraner, H. W., R. Beuttenmuller, W. Chen, J. A. Kierstead, Z. Li, Y. Zhang, L. Dou, E. Fretwurst, and G. Lindstroem. Ionizing radiation effects on silicon test structures. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10119896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Martz, Jr ,. H. E., and G. E. Jones. Calculations of Health Effects from Ionizing Radiation CAARS Program. US: Lawrence Livermore National Laboratory (LLNL), Livermore, CA, October 2006. http://dx.doi.org/10.2172/898432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Marsh, S. F., and K. K. S. Pillay. Effects of ionizing radiation on modern ion exchange materials. Office of Scientific and Technical Information (OSTI), October 1993. http://dx.doi.org/10.2172/10189480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Woloschak, G. E., P. Felcher, and Chin-Mei Chang-Liu. Combined effects of ionizing radiation and cycloheximide on gene expression. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10103819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wirtenson, G. R., and R. H. White. Effects of ionizing radiation on selected optical materials: An overview. Office of Scientific and Technical Information (OSTI), July 1992. http://dx.doi.org/10.2172/10178461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Webster, Edward W., A. B. Ashare, R. J. Baker, A. B. Brill, C. C. Chamberlain, R. O. Gorson, E. C. Gregg, et al. A Primer on Low-Level Ionizing Radiation and Its Biological Effects. AAPM, 1986. http://dx.doi.org/10.37206/17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dore, M. A., and G. H. Anno. Effects of Ionizing Radiation on the Performance of Selected Tactical Combat Crews. Fort Belvoir, VA: Defense Technical Information Center, May 1990. http://dx.doi.org/10.21236/ada222880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Blaylock, B. (The effects of ionizing radiation on terrestrial and freshwater organisms and ecosystems). Office of Scientific and Technical Information (OSTI), February 1988. http://dx.doi.org/10.2172/5650530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fleetwood, D. M. Total ionizing dose effects on MOS and bipolar devices in the natural space radiation environment. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/10160345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography