Academic literature on the topic 'Ionic Solids'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ionic Solids.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ionic Solids"
Kim, Sangtae, Shu Yamaguchi, and James A. Elliott. "Solid-State Ionics in the 21st Century: Current Status and Future Prospects." MRS Bulletin 34, no. 12 (December 2009): 900–906. http://dx.doi.org/10.1557/mrs2009.211.
Full textShimizu, Y., H. Sogabe, and Y. Terashima. "The effects of colloidal humic substances on the movement of non-ionic hydrophobic organic contaminants in groundwater." Water Science and Technology 38, no. 7 (October 1, 1998): 159–67. http://dx.doi.org/10.2166/wst.1998.0289.
Full textRamli, Nur Aainaa Syahirah, and Nor Aishah Saidina Amin. "Ionic Solid Nanomaterials: Synthesis, Characterization and Catalytic Properties Investigation." Advanced Materials Research 699 (May 2013): 155–60. http://dx.doi.org/10.4028/www.scientific.net/amr.699.155.
Full textShimizu, Y., and H. M. Liljestrand. "Sorption of Polycyclic Aromatic Hydrocarbons onto Natural Solids: Determination by Fluorescence Quenching Method." Water Science and Technology 23, no. 1-3 (January 1, 1991): 427–36. http://dx.doi.org/10.2166/wst.1991.0442.
Full textLiaw, B. Y. "Electrochemical Aspects of Ionic Solids." Key Engineering Materials 125-126 (October 1996): 133–62. http://dx.doi.org/10.4028/www.scientific.net/kem.125-126.133.
Full textWintersgill, Mary C. "Dielectric spectroscopy of ionic solids." Radiation Effects and Defects in Solids 119-121, no. 1 (November 1991): 217–22. http://dx.doi.org/10.1080/10420159108224878.
Full textHueckel, Theodore, Glen M. Hocky, Jeremie Palacci, and Stefano Sacanna. "Ionic solids from common colloids." Nature 580, no. 7804 (April 2020): 487–90. http://dx.doi.org/10.1038/s41586-020-2205-0.
Full textThurzo, I., and D. R. T. Zahn. "Revealing ionic motion molecular solids." Journal of Applied Physics 99, no. 2 (January 15, 2006): 023701. http://dx.doi.org/10.1063/1.2158136.
Full textItoh, Noriaki, and Katsumi Tanimura. "Radiation effects in ionic solids." Radiation Effects 98, no. 1-4 (September 1986): 269–87. http://dx.doi.org/10.1080/00337578608206118.
Full textKumar, Binod. "Ionic Transport through Heterogeneous Solids." Transactions of the Indian Ceramic Society 66, no. 3 (July 2007): 123–30. http://dx.doi.org/10.1080/0371750x.2007.11012264.
Full textDissertations / Theses on the topic "Ionic Solids"
Swaminathan, Narasimhan. "Stress-defect transport interactions in ionic solids." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/28273.
Full textCommittee Chair: Qu, Jianmin; Committee Member: Kohl,Paul A.; Committee Member: Liu, Meilin; Committee Member: McDowell, David L.; Committee Member: Zhu, Ting.
Melle-Franco, Manuel. "Computer simulation of ionic solids of technological interest." Thesis, University of Kent, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327447.
Full textZachariah, Manesh. "Electronic & ionic conduction & correlated dielectric relaxations in molecular solids." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/404446.
Full textEl estudio de los materiales cristalinos juega un papel destacado en la física del estado sólido. Sin embargo, los materiales desordenados son más abundantes en la naturaleza que los cristalinos y, además, muchas de las aplicaciones prácticas utilizan materiales que son débilmente o fuertemente desordenados, como vidrios, líquidos, cristales plásticos, cristales moleculares, polímeros, o cristales líquidos. Desde un punto de vista fundamental, aún carecemos de una comprensión de de los materiales desordenados y de la transición vítrea: la comprensión de las propiedades asociadas desorden requiere el uso de conceptos que se alejan de los aplicables al estado cristalino. Desde una perspectiva aplicada, la investigación en los sólidos desordenados está promovida por la importancia tecnológica de estos materiales en la vida cotidiana. Los sólidos desordenados pueden conducir electricidad por transporte de electrones o de iones. En el primer caso, los materiales desordenados muestran menor conductividad que sus respectivas fases cristalinas, debido a la localización de los electrones de conducción por la existencia de desorden, que da lugar a saltos de electrones como principal mecanismo de transporte de carga. Por otro lado, el mismo desorden puede permitir la difusión de iones a través de intersticios; la conductividad iónica de materiales desordenados es más alta que sus fases homólogas cristalinas. Esta tesis presenta un estudio experimental de la conducción eléctrica y de la dinámica molecular de sólidos moleculares formados por derivados de fullereno (C60Br6, C60(ONa)24) o por moléculas con dos grupos nitrilos (succinonitrila (C2H4(CN)2), glutaronitrila (C3H6 (CN)2)). Estos materiales presentan, según el caso, conducción electrónica, protónica, o iónica. La tesis analiza los diferentes tipos de conducción de carga en materiales moleculares así como los procesos físicos relacionados, tales como las relajaciones de carga espacial. En el material C60Br6 observamos conducción electrónica tipo n y un comportamiento de fase no trivial. La dependencia de la conductividad con la temperatura está de acuerdo con el modelo de salto de rango variable (VRH). El C60(ONa)24 tiene un comportamiento de fase aún más rico. Se sintetiza como un hidrato policristalino, y se puede obtener como material puro por calentamiento. Mientras que el material puro es un semiconductor de tipo n, su exposición a una atmósfera húmeda aumenta la conductividad de forma dramática debido al transporte de carga a través de las capas de hidratación, lo que probablemente se debe a un mecanismo de intercambio de protones como en el agua pura o en el hielo. La conductividad del hidrato depende fuertemente de la temperatura en el proceso de deshidratación. Ambas formas, pura e hidratada, muestran un proceso dinámico asociado a la acumulación de electrones en los límites de grano. La presencia de agua tiene un fuerte impacto en tal proceso. Por último se analizan la dinámica molecular y la conductividad iónica de cristales plásticos, en particular, de las aleaciones moleculares en fase plástica formadas entre la succinonitrila y la glutaronitrila. En las fases plásticas las moléculas ocupan los sitios cristalográficos de la red, pero se encuentran orientacionalmente desordenadas. Se demuestra que las aleaciones succinonitrila-glutaronitrila son los primeros cristales plásticos que se conocen en los que existe una correlación perfecta entre la corriente de iones y la dinámica reorientational de las moléculas en los sitios cristalográficos. El dopaje de las aleaciones con sales de Li aumenta la conductividad pero destruye la correlación anterior, lo que indica que la correlación sólo es válida cuando el transporte de carga está dominado por la difusión de iones moleculares. Tal correlación puede ser consecuencia de una correlación entre las escalas de tiempo de rotación y de difusión.
Datta, Biswajit. "Exploration of miscellaneous interfaces of some ionic solids and ionic liquids Prevailing in various solvent systems by the process of psysicochemical contrivance." Thesis, University of North Bengal, 2017. http://ir.nbu.ac.in/handle/123456789/2673.
Full textBurgess, Kevin. "Solid-State Nuclear Magnetic Resonance of Exotic Quadrupolar Nuclei as a Direct Probe of Molecular Structure in Organic Ionic Solids." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/31971.
Full textSwartz, Charles W. "First Principles Calculations for Liquids and Solids Using Maximally Localized Wannier Functions." Diss., Temple University Libraries, 2014. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/274283.
Full textPh.D.
The field of condensed matter computational physics has seen an explosion of applicability over the last 50+ years. Since the very first calculations with ENIAC and MANIAC the field has continued to pushed the boundaries of what is possible; from the first large-scale molecular dynamics simulation, to the implementation of Density Functional Theory and large scale Car-Parrinello molecular dynamics, to million-core turbulence calculations by Standford. These milestones represent not only technological advances but theoretical breakthroughs and algorithmic improvements as well. The work in this thesis was completed in the hopes of furthering such advancement, even by a small fraction. Here we will focus mainly on the calculation of electronic and structural properties of solids and liquids, where we shall implement a wide range of novel approaches that are both computational efficient and physically enlightening. To this end we routinely will work with maximally localized Wannier functions (MLWFs) which have recently seen a revival in mainstream scientific literature. MLWFs present us with interesting opportunity to calculate a localized orbital within the planewave formalism of atomistic simulations. Such a localization will prove to be invaluable in the construction of layer-based superlattice models, linear scaling hybrid functional schemes and model quasiparticle calculations. In the first application of MLWF we will look at modeling functional piezoelectricity in superlattices. Based on the locality principle of insulating superlattices, we apply the method of Wu et al to the piezoelectric strains of individual layers under iifixed displacement field. For a superlattice of arbitrary stacking sequence an accurate model is acquired for predicting piezoelectricity. By applying the model in the superlattices where ferroelectric and antiferrodistortive modes are in competition, functional piezoelectricity can be achieved. A strong nonlinear effect is observed and can be further engineered in the PbTiO 3 /SrTiO 3 superlattice and an interface enhancement of piezoelectricity is found in the BaTiO 3 /CaTiO 3 superlattice. The second project will look at The ionization potential distributions of hydrated hydroxide and hydronium which are computed within a many-body approach for electron excitations using configurations generated by ab initio molecular dynamics. The experimental features are well reproduced and found to be closely related to the molecular excitations. In the stable configurations, the ionization potential is mainly perturbed by solvent water molecules within the first solvation shell. On the other hand, electron excitation is delocalized on both proton receiving and donating complex during proton transfer, which shifts the excitation energies and broadens the spectra for both hydrated ions. The third project represents a work in progress, where we also make use of the previous electron excitation theory applied to ab initio x-ray emission spectroscopy. In this case we make use of a novel method to include the ultrafast core-hole electron dynamics present in such situations. At present we have shown only strong qualitative agreement with experiment.
Temple University--Theses
Mbogo, Francis Njagi. "Vibrational spectroscopy and latent symmetry effects in metal tricarbonyls and ionic solids : and dynamics of unusually H-bonded systems." Thesis, University of East Anglia, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304529.
Full textShakhov, Alexander. "Structure-Dynamics Relationships in Complex Fluids and Disordered Porous Solids Assessed using NMR." Doctoral thesis, Universitätsbibliothek Leipzig, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-153105.
Full textCastillo, Adriana. "Structure et mobilité ionique dans les matériaux d’électrolytes solides pour batteries tout-solide : cas du grenat Li7-3xAlxLa3Zr2O12 et des Nasicon Li1.15-2xMgxZr1.85Y0.15(PO4)3." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX107/document.
Full textOne of the issues for the development of all-solid-state batteries is to increase the ionic conductivity of solid electrolytes. The thesis work focuses on two types of materials as crystalline inorganic solid electrolytes: a Garnet Li7-3xAlxLa3Zr2O12 (LLAZO) and a Nasicon Li1.15-2xMgxZr1.85Y0.15(PO4)3 (LMZYPO). The objective of this study is to understand to what extent the conduction properties of the studied materials are impacted by structural modifications generated either by a particular treatment process, or by a modification of the chemical composition. Structural data acquired by X-ray diffraction (XRD) and Magic Angle Spinning (MAS) Nuclear Magnetic Resonance (NMR) were then crossed with ions dynamics data deduced from NMR measurements at variable temperature and electrochemical impedance spectroscopy (EIS).The powders were synthesized after optimizing thermal treatments using solid-solid or sol-gel methods. Spark Plasma Sintering (SPS) technique was used for the densification of the pellets used for ionic conductivity measurements by EIS.In the case of garnets LLAZO, the originality of our work is to have shown that a SPS sintering treatment, beyond the expected pellets densification, also generates structural modifications having direct consequences on the lithium ions mobility in the material and therefore on the ionic conductivity. A clear increase of the lithium ions microscopic dynamics after SPS sintering was indeed observed by variable temperature 7Li NMR measurements and the monitoring of the relaxation times.The second part of the study provides an exploratory work on the substitution of Li+ by Mg2+ in LMZYPO. We studied the ionic conduction properties of these mixed Li/Mg compounds, in parallel with a fine examination of the crystalline phases formed. We have showed in particular that the presence of Mg2+ favors the formation of the less conductive β’ (P21/n) and β (Pbna) phases, which explains the decrease of the ionic conductivity with the substitution level of Li+ by Mg2+ observed in these Nasicon type materials.Our work therefore highlights the crucial importance of structural effects on the conduction properties of ceramic solid electrolyte materials
Mu, Xiaoke [Verfasser], Hans-Joachim [Akademischer Betreuer] Kleebe, and Peter A. van [Akademischer Betreuer] Aken. "TEM study of the structural evolution of ionic solids from amorphous to polycrystalline phases in the case of alkaline earth difluoride systems: Experimental exploration of energy landscape / Xiaoke Mu. Betreuer: Hans-Joachim Kleebe ; Peter A. van Aken." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2013. http://d-nb.info/1107771218/34.
Full textBooks on the topic "Ionic Solids"
Galwey, Andrew K. Thermal decomposition of ionic solids. Amsterdam: Elsevier, 1999.
Find full textM, Stoneham A., ed. Ionic solids at high temperatures. Singapore: World Scientific, 1989.
Find full textMaier, Joachim. Physical chemistry of ionic materials: Ions and electrons in solids. Chichester: Wiley, 2004.
Find full textTakehiko, Takahashi, and International Conference on Solid State Ionics (6th : 1987 : Garmisch-Partenkirchen, Germany), eds. High conductivity solid ionic conductors: Recent trends and applications. Singapore: World Scientific, 1989.
Find full textF, Imbusch G., ed. Optical spectroscopy of inorganic solids. Oxford [Oxfordshire]: Clarendon Press, 1989.
Find full textFreund, Hans-Joachim, and Eberhard Umbach, eds. Adsorption on Ordered Surfaces of Ionic Solids and Thin Films. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78632-7.
Full textW.E. Heraeus Seminar (106th 1993 Bad Honnef, Germany). Adsorption on ordered surfaces of ionic solids and thin films. Berlin: Springer, 1993.
Find full textHoward, Sean. Multiple-scattering X [alpha] calculations on transition metal defects in ionic solids. Birmingham: University of Birmingham, 1990.
Find full textConference on Ionic Liquids and Solid Electrolytes (1st 1997 Szklarska Poręba, Poland). 1st Conference on Ionic Liquids and Solid Electrolytes: Proceedings : June 12-14, 1997, Szklarska Poręba, Poland. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 1997.
Find full textSymposium on Thin Film Solid Ionic Devices and Materials (1995 Chicago, Ill.). Proceedings of the Symposium on Thin Film Solid Ionic Devices and Materials. Pennington, NJ: Electrochemical Society, 1996.
Find full textBook chapters on the topic "Ionic Solids"
Mahan, Gerald D., and K. R. Subbaswamy. "Ionic Solids." In Local Density Theory of Polarizability, 131–213. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-2486-5_5.
Full textSpaeth, Johann-Martin. "Spectroscopic Studies of Defects in Ionic and Semi-Ionic Solids." In Defects in Solids, 205–41. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4757-0761-8_9.
Full textBalian, Roger. "Paramagnetism of Ionic Solids." In From Microphysics to Macrophysics, 15–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-540-45475-5_2.
Full textHammou, Abdelkader, and Samuel Georges. "Transport in ionic solids." In Solid-State Electrochemistry, 91–169. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39659-6_3.
Full textLaskar, A. L. "Diffusion in Ionic Solids." In Diffusion in Materials, 459–69. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1976-1_21.
Full textYoo, Han-Ill. "Diffusion in Ionic Solids." In Lectures on Kinetic Processes in Materials, 247–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-25950-1_7.
Full textAppel, Fritz, and Ulrich Messerschmidt. "Dislocation Cutting Processes in Ionic Crystals." In Dislocations in Solids, 463–66. London: CRC Press, 2023. http://dx.doi.org/10.1201/9780429070914-111.
Full textLunden, Arnold. "Ionic Conduction in Sulphates." In Fast Ion Transport in Solids, 181–201. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1916-0_10.
Full textMagistris, A. "Ionic Conduction in Glasses." In Fast Ion Transport in Solids, 213–30. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1916-0_12.
Full textEconomou, Eleftherios N. "Crystal Structure and Ionic Vibrations." In The Physics of Solids, 245–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02069-8_9.
Full textConference papers on the topic "Ionic Solids"
Lineberger, W. Carl. "Time Resolved Photochemistry in Ionic Clusters." In Modern Spectroscopy of Solids, Liquids, and Gases. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/msslg.1995.sthb1.
Full textNegrut, Dan, Mihai Anitescu, Todd Munson, and Peter Zapol. "Simulating Nanoscale Processes in Solids Using DFT and the Quasicontinuum Method." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81755.
Full textAsokamani, R., and Mercy Amirthakumari. "Metallisation and superconductivity in some of the ionic and covalent solids under pressure." In High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46420.
Full textWilliams, Richard M., Kenneth M. Beck, Alan G. Joly, J. Thomas Dickinson, and Wayne P. Hess. "Pulse-width influence on laser-induced desorption of positive ions from ionic solids." In Optoelectronics '99 - Integrated Optoelectronic Devices, edited by Jan J. Dubowski, Henry Helvajian, Ernst-Wolfgang Kreutz, and Koji Sugioka. SPIE, 1999. http://dx.doi.org/10.1117/12.352727.
Full textStrobel, Andreas, Ingo Fischer, Klaus Müller-Dethlefs, and Vladimir E. Bondybey. "Zeke Photoelectron Spectroscopy as a Probe of Dissociative States." In Modern Spectroscopy of Solids, Liquids, and Gases. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/msslg.1995.sfa1.
Full textBasiev, Tasoltan T., Petr G. Zverev, Alexander A. Sobol, and R. C. Powell. "Solid State Materials for Raman Lasers." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.cwf40.
Full textLotshaw, William T., P. Randall Staver, Steven Palese, Lynn Schilling, and R. J. Dwayne Miller. "Femtosecond probes of molecular and structural dynamics in liquid water: dependence on temperature and ionic solutes." In Modern Spectroscopy of Solids, Liquids, and Gases. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/msslg.1995.sfb3.
Full textWu, Di, Hui Sun, Cody Cockreham, Xianghui Zhang, Megan Hawkins, Hongwu Xu, Su Ha, et al. "Thermodynamics of Materials and Minerals under Confinement: From Ionic and Organic Solids to Refractory Ceramics." In Goldschmidt2023. France: European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.18626.
Full textBisquert, Juan. "Extensions of the Stochastic Model of the Overdamped Oscillator Applied to AC Ionic Conductivity in Solids." In NOISE AND FLUCTUATIONS: 18th International Conference on Noise and Fluctuations - ICNF 2005. AIP, 2005. http://dx.doi.org/10.1063/1.2036698.
Full textGan, Yu, and Van P. Carey. "An Exploration of the Effects of Dissolved Ionic Solids on Bubble Merging in Water and Its Impact on the Leidenfrost Transition." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-23330.
Full textReports on the topic "Ionic Solids"
Zhou, Xiaowang, F. Patrick Doty, Michael E. Foster, Pin Yang, and Hongyou Fan. High Fidelity Modeling of Ionic Conduction in Solids. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1562645.
Full textHardy, John R. Studies on the Microwave Optics of Ionic Molecular Solids. Fort Belvoir, VA: Defense Technical Information Center, March 2002. http://dx.doi.org/10.21236/ada413643.
Full textWang, J. (Solid state ionics). Office of Scientific and Technical Information (OSTI), December 1989. http://dx.doi.org/10.2172/5241910.
Full textBalachandran, U., J. T. Dusek, P. S. Maiya, R. L. Mieville, B. Ma, M. S. Kleefisch, and C. A. Udovich. Separation of gases with solid electrolyte ionic conductors. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/459338.
Full textAngell, Charles A., Don Gervasio, Jean-Philippe Belieres, and Xiao-Guang Sun. Fuel Cells Using the Protic Ionic Liquid and Rotator Phase Solid Electrolyte Principles. Fort Belvoir, VA: Defense Technical Information Center, February 2008. http://dx.doi.org/10.21236/ada484415.
Full textGervasio, Dominic, and C. A. Angell. Fuel Cell Using the Protic Ionic Liquid and Rotator Phase Solid Electrolyte Principles. Fort Belvoir, VA: Defense Technical Information Center, July 2008. http://dx.doi.org/10.21236/ada520641.
Full textBae, Young K., and Philip C. Cosby. Ionic Solid Hydrogen Fuel: Production and Properties of Hydrogen ion and Energetic Neutral Clusters. Fort Belvoir, VA: Defense Technical Information Center, September 1990. http://dx.doi.org/10.21236/ada227683.
Full textBlack, Hayden T., and Katharine Lee Harrison. Ionic Borate-Based Covalent Organic Frameworks: Lightweight Porous Materials for Lithium-Stable Solid State Electrolytes. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1330204.
Full textROY, LINDSAY. SOLID STATE IONICS: MATERIALS DEVELOPMENT BY MULTISCALE MODELING AND ADVANCED MANUFACTURING TECHNIQUES. Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1827690.
Full textTurner, Allen. Power and Thermal Technologies for Air and Space. Delivery Order 0001: Single Ionic Conducting Solid-State Electrolyte. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada460518.
Full text