Academic literature on the topic 'Ionic Liquid interaction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ionic Liquid interaction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ionic Liquid interaction"
Jorda-Faus, Pepe, Enrique Herrero, and Rosa Arán-Ais. "Study of M(hkl)| Ionic Liquid Interfaces in Well-Defined Surroundings." ECS Meeting Abstracts MA2022-01, no. 55 (July 7, 2022): 2325. http://dx.doi.org/10.1149/ma2022-01552325mtgabs.
Full textJesus, Ana R., Luís R. Raposo, Mário R. C. Soromenho, Daniela A. S. Agostinho, José M. S. S. Esperança, Pedro V. Baptista, Alexandra R. Fernandes, and Patrícia M. Reis. "New Non-Toxic N-alkyl Cholinium-Based Ionic Liquids as Excipients to Improve the Solubility of Poorly Water-Soluble Drugs." Symmetry 13, no. 11 (October 31, 2021): 2053. http://dx.doi.org/10.3390/sym13112053.
Full textXu, Qiang, Wei Jiang, Jianbai Xiao, and Xionghui Wei. "Absorption of Sulfur Dioxide by Tetraglyme–Sodium Salt Ionic Liquid." Molecules 24, no. 3 (January 26, 2019): 436. http://dx.doi.org/10.3390/molecules24030436.
Full textHeinze, M. T., J. C. Zill, J. Matysik, W. D. Einicke, R. Gläser, and A. Stark. "Solid–ionic liquid interfaces: pore filling revisited." Phys. Chem. Chem. Phys. 16, no. 44 (2014): 24359–72. http://dx.doi.org/10.1039/c4cp02749c.
Full textZhou, Yafei, Junfeng Zhan, Xiang Gao, Cao Li, Konstantin Chingin, and Zhanggao Le. "The cation−anion interaction in ionic liquids studied by extractive electrospray ionization mass spectrometry." Canadian Journal of Chemistry 92, no. 7 (July 2014): 611–15. http://dx.doi.org/10.1139/cjc-2014-0023.
Full textPutz, Mihai V., Ana-Maria Lacrama, and Vasile Ostafe. "Spectral SAR Ecotoxicology of Ionic Liquids: TheDaphnia magnaCase." Research Letters in Ecology 2007 (2007): 1–5. http://dx.doi.org/10.1155/2007/12813.
Full textAlguacil, Francisco J., and Félix A. Lopez. "Insight into the Liquid–Liquid Extraction System AuCl4−/HCl/A327H+Cl− Ionic Liquid/Toluene." Processes 9, no. 4 (March 30, 2021): 608. http://dx.doi.org/10.3390/pr9040608.
Full textPatil, Amol Baliram, and Bhalchandra Mahadeo Bhanage. "Modern ab initio valence bond theory calculations reveal charge shift bonding in protic ionic liquids." Physical Chemistry Chemical Physics 18, no. 23 (2016): 15783–90. http://dx.doi.org/10.1039/c6cp02819e.
Full textVerevkin, Sergey P., Dzmitry H. Zaitsau, and Ralf Ludwig. "Molecular Liquids versus Ionic Liquids: The Interplay between Inter-Molecular and Intra-Molecular Hydrogen Bonding as Seen by Vaporisation Thermodynamics." Molecules 28, no. 2 (January 5, 2023): 539. http://dx.doi.org/10.3390/molecules28020539.
Full textZeindlhofer, Veronika, and Christian Schröder. "Computational solvation analysis of biomolecules in aqueous ionic liquid mixtures." Biophysical Reviews 10, no. 3 (April 23, 2018): 825–40. http://dx.doi.org/10.1007/s12551-018-0416-5.
Full textDissertations / Theses on the topic "Ionic Liquid interaction"
Biplab, Rajbanshi. "Investigation of host- guest inclusion complexation of some biologically potent molecules and solvent consequences of some food preservations with the manifestation of synthesis, characterization and innovative applications." Thesis, University of North Bengal, 2020. http://ir.nbu.ac.in/handle/123456789/3963.
Full textHossain, Mohammad Zahid. "A new lattice fluid equation of state for associated CO₂ + polymer and CO₂ + ionic liquid systems." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53475.
Full textWang, Yong-Lei. "Electrostatic Interactions in Coarse-Grained Simulations : Implementations and Applications." Doctoral thesis, Stockholms universitet, Institutionen för material- och miljökemi (MMK), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-92707.
Full textFrança, João. "Solid-liquid interaction in ionanofluids. Experiments and molecular simulation." Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAC077.
Full textOne of the main areas of research in chemistry and chemical engineering involves the use of ionic liquids and nanomaterials as alternatives to many chemical products and chemical processes, as the latter are currently considered to be environmentally non-friendly. Their possible use as new heat transfer fluids and heat storage materials, which can obey to most principles of green chemistry or green processing, requires the experimental and theoretical study of the heat transfer mechanisms in complex fluids, like the ionanofluids. It was the purpose of this dissertation to study ionanofluids, which consist on the dispersion of nanomaterials in an ionic liquid.The first objective of this work was to measure thermophysical properties of ionic liquids and ionanofluids, namely thermal conductivity, viscosity, density and heat capacity in a temperature range between -10 e 150 ºC and at atmospherical pressure. In this sense, the thermophysical properties of a considerable set of ionic liquids and ionanofluids were measured, with particular emphasis on the thermal conductivity of the fluids. The ionic liquids studied were [C2mim][EtSO4], [C4mim][(CF3SO2)2N], [C2mim][N(CN)2], [C4mim][N(CN)2], [C4mpyr][N(CN)2], [C2mim][SCN], [C4mim][SCN], [C2mim][C(CN)3], [C4mim][C(CN)3], [P66614][N(CN)2], [P66614][Br] and their suspensions with 0.5% and 1% w/w of multi-walled carbon nanotubes (MWCNTs). The results obtained show that there is a substantial enhancement of the thermal conductivity of the base fluid due to the suspension of the nanomaterial, considering both mass fractions. However, the enhancement varies significantly when considering different base ionic liquids, with a range between 2 to 30%, with increasing temperature. This fact makes it more difficult to unify the obtained information in order to obtain a model that allows predicting the enhancement of the thermal conductivity. Current models used to calculate the thermal conductivity of nanofluids present values that are considerably underestimated when compared to the experimental ones, somewhat due to the considerations on the role of the solid-liquid interface on heat transport.Considering density, the impact from the addition of MWCNTs on the base fluid’s density is very low, ranging between 0.25% and 0.5% for 0.5% w/w and 1% w/w MWCNTs, respectively. This was fairly expected and is due to the considerable difference in density between both types of materials. However, viscosity was the property for which the highest values of enhancement were verified, ranging between 28 and 245% in both mass fractions of MWCNTs. The heat capacity was the only of the four properties mentioned above not to be studied in this work due to technical issues with the calorimeter to be used. Nevertheless, the amount of data collected on the remainder thermophysical properties was extensive. It is believed that the latter contributes meaningfully to a growing database of ionic liquids and ionanofluids’ properties, while providing insight on the variation of said properties obtained from the suspension of MWCNTs in ionic liquids.The second objective of this work consisted on the development of molecular interaction models between ionic liquids and highly conductive nanomaterials, such as carbon nanotubes and graphene sheets. These models were constructed based on quantum calculations of the interaction energy between the ions and a cluster, providing interaction potentials. Once these models were obtained, a second stage on this computational approach entailed to simulate, by Molecular Dynamics methods, the interface nanomaterial/ionic liquid, in order to understand the specific interparticle/molecular interactions and their contribution to the heat transfer. This would allow to study both structural properties, such as the ordering of the ionic fluid at the interface, and dynamic ones, such as residence times and diffusion. (...)
Cremer, Till [Verfasser], and Hans-Peter [Akademischer Betreuer] Steinrück. "Ionic Liquid Bulk and Interface Properties : Electronic Interaction, Molecular Orientation and Growth Characteristics = Ionische Flüssigkeiten und deren Volumen- und Grenzflächeneigenschaften / Till Cremer. Betreuer: Hans-Peter Steinrück." Erlangen : Universitätsbibliothek der Universität Erlangen-Nürnberg, 2012. http://d-nb.info/1021259578/34.
Full textCho, Chul-Woong [Verfasser], Jorg Akademischer Betreuer] Thöming, and Ingo [Akademischer Betreuer] [Krossing. "The contribution of molecular interaction potentials to properties and activities of ionic liquid ions in solution / Chul-Woong Cho. Gutachter: Jorg Thöming ; Ingo Krossing. Betreuer: Jorg Thöming." Bremen : Staats- und Universitätsbibliothek Bremen, 2012. http://d-nb.info/1071993739/34.
Full textAshworth, Claire. "A computational investigation of local interactions within ionic liquids and ionic liquid analogues." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/58256.
Full textMamusa, Marianna. "Colloidal interactions in ionic liquids." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2014. http://tel.archives-ouvertes.fr/tel-01058482.
Full textHessey, Stephen. "Surface interactions of ionic liquids." Thesis, University of Nottingham, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664318.
Full textChoudhury, Subhankar. "Physicochemical study of diverse interactions of ionic liquids and biologically active solutes prevailing in liquid environments." Thesis, University of North Bengal, 2016. http://ir.nbu.ac.in/handle/123456789/2763.
Full textBooks on the topic "Ionic Liquid interaction"
Cremer, Till. Ionic Liquid Bulk and Interface Properties: Electronic Interaction, Molecular Orientation and Growth Characteristics. Heidelberg: Springer International Publishing, 2013.
Find full textZhang, Suojiang, Jianji Wang, Xingmei Lu, and Qing Zhou, eds. Structures and Interactions of Ionic Liquids. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-38619-0.
Full textIonic Liquid Bulk And Interface Properties Electronic Interaction Molecular Orientation And Growth Characteristics. Springer International Publishing AG, 2013.
Find full textCremer, Till. Ionic Liquid Bulk and Interface Properties: Electronic Interaction, Molecular Orientation and Growth Characteristics. Springer, 2013.
Find full textCremer, Till. Ionic Liquid Bulk and Interface Properties: Electronic Interaction, Molecular Orientation and Growth Characteristics. Springer International Publishing AG, 2015.
Find full textZhou, Qing, Suojiang Zhang, Jianji Wang, and Xingmei Lu. Structures and Interactions of Ionic Liquids. Springer London, Limited, 2013.
Find full textStructures And Interactions Of Ionic Liquids. Springer-Verlag Berlin and Heidelberg GmbH &, 2013.
Find full textStructures and Interactions of Ionic Liquids. Springer Berlin / Heidelberg, 2016.
Find full textBook chapters on the topic "Ionic Liquid interaction"
Zhou, Ting, and Guiying Xu. "Aggregation Behavior of Ionic Liquid-Based Gemini Surfactants and Their Interaction with Biomacromolecules." In Ionic Liquid-Based Surfactant Science, 127–49. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118854501.ch6.
Full textSingh, Surya Pratap, Ramalingam Anantharaj, and Tamal Banerjee. "UNIFAC Group Interaction Prediction for Ionic Liquid-Thiophene Based Systems Using Genetic Algorithm." In Lecture Notes in Computer Science, 195–204. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17298-4_20.
Full textBerthod, Alain, Ines Girard, and Colette Gonnet. "Stationary Phase in Micellar Liquid Chromatography: Surfactant Adsorption and Interaction with Ionic Solutes." In ACS Symposium Series, 130–41. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0342.ch005.
Full textCui, Guokai. "Quasi-chemisorption by Ionic Liquids Through Quasi-chemical Interaction." In Encyclopedia of Ionic Liquids, 1–8. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-10-6739-6_139-1.
Full textCui, Guokai. "Quasi-chemisorption by Ionic Liquids Through Quasi-chemical Interaction." In Encyclopedia of Ionic Liquids, 1154–60. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-33-4221-7_139.
Full textYang, Zhen. "Ionic Liquids and Proteins: Academic and Some Practical Interactions." In Ionic Liquids in Biotransformations and Organocatalysis, 15–71. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118158753.ch2.
Full textWalrafen, G. E., and W. H. Yang. "Fluctuations of Thermodynamic Properties of Supercooled Liquid Water." In Interactions of Water in Ionic and Nonionic Hydrates, 141–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72701-6_24.
Full textHunt, Patricia A. "CHAPTER 16. Noncovalent Interactions in Ionic Liquids." In Catalysis Series, 350–76. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788016490-00350.
Full textDeschamps, Johnny, and Agilio A. H. Pádua. "Interactions of Gases with Ionic Liquids: Molecular Simulation." In ACS Symposium Series, 150–58. Washington, DC: American Chemical Society, 2005. http://dx.doi.org/10.1021/bk-2005-0901.ch011.
Full textGomes, M. F. Costa, P. Husson, J. Jacquemin, and V. Majer. "Interactions of Gases with Ionic Liquids: Experimental Approach." In ACS Symposium Series, 207–18. Washington, DC: American Chemical Society, 2005. http://dx.doi.org/10.1021/bk-2005-0901.ch016.
Full textConference papers on the topic "Ionic Liquid interaction"
Takaoka, Gikan, H. Ryuto, and M. Takeuchi. "Surface Interaction and Processing Using Polyatomic Cluster Ions." In 13th International Conference on Plasma Surface Engineering September 10 - 14, 2012, in Garmisch-Partenkirchen, Germany. Linköping University Electronic Press, 2013. http://dx.doi.org/10.3384/wcc2.18-21.
Full textKohanoff, Jorge, Emilio Artacho, Károly Tokési, and Béla Sulik. "First-principles molecular dynamics simulations of the interaction of ionic projectiles with liquid water and ice." In RADIATION DAMAGE IN BIOMOLECULAR SYSTEMS: Proceedings of the 5th International Conference (RADAM 2008). AIP, 2008. http://dx.doi.org/10.1063/1.3058991.
Full textNazaripoor, Hadi, Charles R. Koch, and Subir Bhattacharjee. "Dynamics of Thin Liquid Bilayers Subjected to an External Electric Field." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-37302.
Full textPerlmutter, Stephen H., David Doroski, and Garret Moddel. "Liquid Crystal Device Performance Degradation through Selective Adsorption of Ions by Alignment Layers." In Spatial Light Modulators and Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/slma.1995.lthd3.
Full textGan, Yu, and Van P. Carey. "An Exploration of the Effects of Dissolved Ionic Solids on Bubble Merging in Water and Its Impact on the Leidenfrost Transition." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-23330.
Full textGuo, Hong, Rui Liu, Alfonso Fuentes-Aznar, and Patricia Iglesias Victoria. "Friction and Wear Properties of Halogen-Free and Halogen-Containing Ionic Liquids Used As Neat Lubricants, Lubricant Additives and Thin Lubricant Layers." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67971.
Full textYazdi, Shahrzad, Reza Monazami, and Mahmoud A. Salehi. "3D Numerical Analysis of Velocity Profiles of PD, EO and Combined PD-EO Flows Through Microchannels." In ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2006. http://dx.doi.org/10.1115/icnmm2006-96039.
Full textSharma, Neeraj, Gerardo Diaz, and Edbertho Leal-Quiros. "Effects of Externally Applied Electric Field on the Electric Double Layer Formed in an Electrolyte Layer and its Contribution Towards Joule Heating." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63329.
Full textKhan, Rizwan Ahmed, Hafiz Mudaser Ahmad, Mobeen Murtaza, Abdulazeez Abdulraheem, Muhammad Shahzad Kamal, and Mohamed Mahmoud. "Impact of Multi-Branched Ionic Liquid on Shale Swelling and Hydration for High Temperature Drilling Applications." In SPE/IADC Middle East Drilling Technology Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/202143-ms.
Full textDavidson, Jacob D., and N. C. Goulbourne. "Actuation and Charging Characteristics of Ionic Liquid-Ionic Polymer Transducers." In ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3892.
Full textReports on the topic "Ionic Liquid interaction"
Fayer, Michael D. Dynamics and Interactions in Room Temperature Ionic Liquids, Surfaces and Interfaces. Fort Belvoir, VA: Defense Technical Information Center, January 2016. http://dx.doi.org/10.21236/ad1003769.
Full textEucker, IV, and William. Probing the Interaction of Ionic Liquids with CO2: A Raman Spectroscopy and Ab Initio Study. Fort Belvoir, VA: Defense Technical Information Center, May 2008. http://dx.doi.org/10.21236/ada486611.
Full text