Academic literature on the topic 'Ionic homeostasi'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ionic homeostasi.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ionic homeostasi"
Coast, G. "Neuroendocrine control of ionic homeostasis." Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 150, no. 3 (July 2008): S133. http://dx.doi.org/10.1016/j.cbpa.2008.04.318.
Full textLeFurgey, Ann, Peter Ingram, J. J. Blum, M. C. Carney, L. A. Hawkey, J. F. Kronauge, Melvyn Lieberman, et al. "Ionic homeostasis and subcellular element compartmentation." Proceedings, annual meeting, Electron Microscopy Society of America 48, no. 2 (August 12, 1990): 150–51. http://dx.doi.org/10.1017/s042482010013434x.
Full textLane, Michelle, and David K. Gardner. "Understanding cellular disruptions during early embryo development that perturb viability and fetal development." Reproduction, Fertility and Development 17, no. 3 (2005): 371. http://dx.doi.org/10.1071/rd04102.
Full textVolman, Vladislav, Terrence J. Sejnowski, and Maxim Bazhenov. "Topological basis of epileptogenesis in a model of severe cortical trauma." Journal of Neurophysiology 106, no. 4 (October 2011): 1933–42. http://dx.doi.org/10.1152/jn.00458.2011.
Full textZeiske, W. "INSECT ION HOMEOSTASIS." Journal of Experimental Biology 172, no. 1 (November 1, 1992): 323–34. http://dx.doi.org/10.1242/jeb.172.1.323.
Full textLane, Michelle, and David K. Gardner. "Regulation of Ionic Homeostasis by Mammalian Embryos." Seminars in Reproductive Medicine 18, no. 02 (2000): 195–204. http://dx.doi.org/10.1055/s-2000-12558.
Full textPitlik, T. N., P. M. Bulai, A. A. Denisov, D. S. Afanasenkov, and S. N. Cherenkevich. "Redox regulation of ionic homeostasis in neurons." Neurochemical Journal 3, no. 2 (June 2009): 87–92. http://dx.doi.org/10.1134/s1819712409020020.
Full textWalid, Saibi, and Brini Faiçal. "Ion transporters and their molecular regulation mechanism in plants." Journal of Plant Science and Phytopathology 5, no. 2 (May 26, 2021): 028–43. http://dx.doi.org/10.29328/journal.jpsp.1001058.
Full textDeng, Jielin, Yunqiu Jiang, Zhen Bouman Chen, June-Wha Rhee, Yingfeng Deng, and Zhao V. Wang. "Mitochondrial Dysfunction in Cardiac Arrhythmias." Cells 12, no. 5 (February 21, 2023): 679. http://dx.doi.org/10.3390/cells12050679.
Full textBkaily, Ghassan, Levon Avedanian, Johny Al-Khoury, Lena Ahmarani, Claudine Perreault, and Danielle Jacques. "Receptors and ionic transporters in nuclear membranes: new targets for therapeutical pharmacological interventions." Canadian Journal of Physiology and Pharmacology 90, no. 8 (August 2012): 953–65. http://dx.doi.org/10.1139/y2012-077.
Full textDissertations / Theses on the topic "Ionic homeostasi"
Dionisi, Marianna. "Involvement of ionic channels in chemically-induced neurotoxicity: examples of different molecular mechanisms." Doctoral thesis, Università del Piemonte Orientale, 2020. http://hdl.handle.net/11579/114773.
Full textTROMBIN, FEDERICA. "Mechanisms of ictogenesis in an experimental model of temporal lobe seizures." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2010. http://hdl.handle.net/10281/11032.
Full textCrake, Thomas. "Myocardial ionic homeostasis during ischaemia and hypoxia." Thesis, University of Newcastle Upon Tyne, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241332.
Full textHaddock, Peter S. "Thiol compounds and their effects on ionic homeostasis in the isolated rat heart." Thesis, University of Bath, 1992. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303433.
Full textCroning, Micahel Daivd Richardson. "An investigation of the mechanisms mediating disturbances in brain ionic homeostasis during oxygen deprivation." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389194.
Full textDe, Bortoli Sara. "Characterization of ion channels in chloroplasts and mitochondria of land plants." Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3424874.
Full textCloroplasti e mitocondri hanno un ruolo fondamentale nella fisiologia vegetale e stanno emergendo come importanti attori nel signaling del Ca2+ intracellulare. Un ruolo fondamentale nel contesto dell’omeostasi ionica organellare è giocato dai canali ionici. Infatti essi sono responsabili della regolazione della distribuzione ionica fra compartimenti ed è stato proposto che contribuiscano a garantire il signaling del Ca2+, l’appropriato potenziale osmotico, il pH ottimale per le attività enzimatiche e il funzionamento delle catene di trasporto elettronico. Nelle piante, solo poche famiglie di canali sono state identificate in cloroplasti/mitocondri e la maggior parte di loro non è stata pienamente caratterizzata. Inoltre, il meccanismo molecolare attraverso cui cloroplasti e mitocondri accumulano e rilasciano Ca2+ è ancora lontano dall’essere chiarito. Lo scopo del presente lavoro è stato quello di caratterizzare possibili attori coinvolti nel nella mediazione dei flussi di Ca2+ organellari, in particolare i recettori ionotropici del glutammato (GLRs) e gli uniporti mitocondriali del calcio (MCU), combinando tecniche di genetica inversa, biochimica e studi di localizzazione in vivo. La ricerca qui presentata ha permesso di approfondire lo studio sui GLR vegetali, di caratterizzare due nuovi canali organellari di A. thaliana, AtGLR3.5 e AtMCU, e di gettare le fondamenta per la caratterizzazione dei GLR di Physcomitrella patens, PpGLR, da diversi punti di vista. I risultati del lavoro hanno rivelato ulteriore variabilità dei GLR fra gli organismi fotosintetici e hanno mostrato come i GLR siano coinvolti nella regolazione di diversi processi organellari come i meccanismi di fotoprotezione, la senescenza e il mantenimento dell’integrità strutturale mitocondriale. La caratterizzazione di AtGLR3.5 ha permesso l’identificazione molecolare del primo canale cationico mitocondriale vegetale e la caratterizzazione di AtMCU1 ha permesso per la prima volta di proporre un modello che preveda l’esistenza e la regolazione dei flussi di Ca2+ nei mitocondri vegetali per mezzo del complesso MCU. Il lavoro qui presentato ha pertanto contribuito ad aggiungere nuova conoscenza al campo della regolazione dell’omeostasi ionica, specialmente l’omeostasi del Ca2+, nei mitocondri e nei cloroplasti.
Sostaric, Simon. "Alkalosis and digoxin effects on plasma potassium, ionic homeostasis and exercise performance in healthy humans." Thesis, 2012. https://vuir.vu.edu.au/19414/.
Full textTanveer, M. "Tissue-specific reactive oxygen species signalling and ionic homeostasis in Chenopodium quinoa and Spinacia oleracea in the context of salinity stress tolerance." Thesis, 2020. https://eprints.utas.edu.au/35306/1/Tanveer_whole_thesis.pdf.
Full textGill, MB. "Developing molecular and physiological markers for barley breeding for waterlogging tolerance by targeting root ionic homeostasis." Thesis, 2019. https://eprints.utas.edu.au/31706/1/Gill_whole_thesis.pdf.
Full textUrenjak, Jutta A., Tihomir P. Obrenovitch, and M. Wang. "Nitric oxide formation during cortical spreading depression is critical for rapid subsequent recovery of ionic homeostasis." 2009. http://hdl.handle.net/10454/3117.
Full textCortical spreading depression (CSD) is a temporary disruption of local ionic homeostasis that propagates slowly across the cerebral cortex. Cortical spreading depression promotes lesion progression in experimental stroke, and may contribute to the initiation of migraine attacks. The purpose of this study was to investigate the roles of the marked increase of nitric oxide (NO) formation that occurs with CSD. Microdialysis electrodes were implanted in the cortex of anesthetized rats to perform the following operations within the same region: (1) elicitation of CSD by perfusion of high K+ medium; (2) recording of CSD elicitation; (3) application of the NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME); and (4) recording of dialysate pH changes. The primary effect of L-NAME (0.3 to 3.0 mmol/L in the perfusion medium) was a marked widening of individual CSD wave, resulting essentially from a delayed initiation of the repolarization phase. This change was due to NO synthase inhibition because it was not observed with the inactive isomer D-NAME, and was reversed by L-arginine. This effect did not appear to be linked to the suppression of a sustained, NO-mediated vascular change associated with the superposition of NO synthase inhibition on high levels of extracellular K+. The delayed initiation of repolarization with local NO synthase inhibition may reflect the suppression of NO-mediated negative feedback mechanisms acting on neuronal or glial processes involved in CSD genesis. However, the possible abrogation of a very brief, NO-mediated vascular change associated with the early phase of CSD cannot be ruled out.
Books on the topic "Ionic homeostasi"
Jankowski, Andrzej. Ionic and pH homeostasis in metabolically active compartments. 2003.
Find full textBook chapters on the topic "Ionic homeostasi"
Hardie, D. G. "Ionic Homeostasis and Nervous Conduction." In Biochemical Messengers, 71–92. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3108-7_4.
Full textKristián, Tibor, Ken-ichiro Katsura, and Bo K. Siesjö. "Ionic Metabolism in Cerebral Ischemia." In Pharmacological Control of Calcium and Potassium Homeostasis, 199–208. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0117-2_23.
Full textDoyon, Nicolas, Annie Castonguay, and Yves De Koninck. "Neuropharmacological Modeling Alterations in Ionic Homeostasis." In Encyclopedia of Computational Neuroscience, 2077–81. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_750.
Full textDoyon, Nicolas, Annie Castonguay, and Yves De Koninck. "Neuropharmacological Modelling: Alterations in Ionic Homeostasis." In Encyclopedia of Computational Neuroscience, 1–5. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7320-6_750-1.
Full textKabakov, Alexander E., and Vladimir L. Gabai. "ATP Homeostasis, Ionic Balance and Cell Viability." In Heat Shock Proteins and Cytoprotection, 21–47. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6007-4_2.
Full textSaha, Bedabrata, Bhaben Chowardhara, Umakanta Chowra, and Chetan Kumar Panda. "Aluminum Toxicity and Ionic Homeostasis in Plants." In Response of Field Crops to Abiotic Stress, 79–90. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003258063-7.
Full textSykové, Eva. "K+ Homeostasis in the ECS." In Ionic and Volume Changes in the Microenvironment of Nerve and Receptor Cells, 7–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76937-5_3.
Full textYamamoto, Kei, Sophie Fischer-Holzhausen, Maria P. Fjeldstad, and Mary M. Maleckar. "Ordinary Differential Equation-based Modeling of Cells in Human Cartilage." In Computational Physiology, 25–39. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05164-7_3.
Full textHopton, Claire, Luigi Venetucci, and Miriam Lettieri. "Dysregulation of Ionic Homeostasis: Relevance for Cardiac Arrhythmias." In Channelopathies in Heart Disease, 127–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77812-9_6.
Full textVelarde-Buendía, Ana María, René Alberto Enríquez-Figueroa, and Igor Pottosin. "Patch-Clamp Protocols to Study Cell Ionic Homeostasis Under Saline Conditions." In Plant Salt Tolerance, 3–18. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-986-0_1.
Full textConference papers on the topic "Ionic homeostasi"
Pavillon, Nicolas, Jonas Kühn, Pascal Jourdain, Christian Depeursinge, Pierre J. Magistretti, and Pierre Marquet. "Cell Death Detection and Ionic Homeostasis monitoring with Digital Holographic Microscopy." In European Conference on Biomedical Optics. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/ecbo.2011.809004.
Full textPavillon, Nicolas, Jonas Kühn, Pascal Jourdain, Christian Depeursinge, Pierre J. Magistretti, and Pierre Marquet. "Cell death detection and ionic homeostasis monitoring with digital holographic microscopy." In European Conferences on Biomedical Optics, edited by Henricus J. C. M. Sterenborg and I. Alex Vitkin. SPIE, 2011. http://dx.doi.org/10.1117/12.889246.
Full textKrasilnikova, Irina, Zanda Bakaeva, Oksana Lysina, Shakir Suleimanov, Vsevolod Pinelis, and Alexander Surin. "CHANGES IN INTRACELLULAR IONIC HOMEOSTASIS AND MORPHOLOGY OF MECHANICALY INJURIED RAT BRAIN NEURONAL CULTURE." In XVI International interdisciplinary congress "Neuroscience for Medicine and Psychology". LLC MAKS Press, 2020. http://dx.doi.org/10.29003/m1110.sudak.ns2020-16/278-279.
Full textChriste, G., L. Restier, M. Chahine, P. Chevalier, and M. Pasek. "Effects of a persistent sodium current through mutated hnav1.5 sodium channels on intracellular ionic homeostasis in a ventricular cell model." In Computers in Cardiology, 2005. IEEE, 2005. http://dx.doi.org/10.1109/cic.2005.1588278.
Full text