Journal articles on the topic 'Ionic conductor'

To see the other types of publications on this topic, follow the link: Ionic conductor.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ionic conductor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

MATSUI, Noboru. "Ionic-Conductor and Electrode." Hyomen Kagaku 15, no. 7 (1994): 463–66. http://dx.doi.org/10.1380/jsssj.15.463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

NAN CE-WEN. "CONDUCTION THEORY OF IONIC CONDUCTOR CONTAINING DISPERSED SECOND PHASE." Acta Physica Sinica 36, no. 2 (1987): 191. http://dx.doi.org/10.7498/aps.36.191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ahmad, Mohamad M., Koji Yamada, and Tsutomu Okuda. "Ionic conduction and relaxation in KSn2F5 fluoride ion conductor." Physica B: Condensed Matter 339, no. 2-3 (December 2003): 94–100. http://dx.doi.org/10.1016/j.physb.2003.08.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nishio, Kazunori, Satoru Ichinokura, Akitaka Nakanishi, Koji Shimizu, Yasutaka Kobayashi, Naoto Nakamura, Daisuke Imazeki, et al. "Ionic Rectification across Ionic and Mixed Conductor Interfaces." Nano Letters 21, no. 23 (November 22, 2021): 10086–91. http://dx.doi.org/10.1021/acs.nanolett.1c03872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Breiter, M. W., W. J. Lorenz, and G. Saemann-Ischenko. "The superconductor/ionic conductor interface." Surface Science 230, no. 1-3 (May 1990): 213–21. http://dx.doi.org/10.1016/0039-6028(90)90029-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

LIN, Z., S. TIAN, H. YU, M. DENG, Z. MA, and R. XU. "A mineral ionic conductor - saponite." Solid State Ionics 47, no. 3-4 (September 1991): 223–25. http://dx.doi.org/10.1016/0167-2738(91)90242-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Matsushita, Y., A. Roushown, F. Izumi, H. Kitazawa, and M. Yashima. "Ionic path in oxygen-ionic conductor La9.70(Si5.8Mg0.2)O26.35." Acta Crystallographica Section A Foundations of Crystallography 63, a1 (August 22, 2007): s218. http://dx.doi.org/10.1107/s0108767307095025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Orsini, A., P. G. Medaglia, S. Sanna, E. Traversa, S. Licoccia, A. Tebano, and G. Balestrino. "Epitaxial superlattices of ionic conductor oxides." Superlattices and Microstructures 46, no. 1-2 (July 2009): 223–26. http://dx.doi.org/10.1016/j.spmi.2008.10.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dumélié, M., G. Nowogrocki, and J. C. Boivin. "Ionic conductor membrane for oxygen separation." Solid State Ionics 28-30 (September 1988): 524–28. http://dx.doi.org/10.1016/s0167-2738(88)80095-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tankeshwar, K., and M. P. Tosi. "Ionic diffusion in superionic-conductor melts." Journal of Physics: Condensed Matter 3, no. 38 (September 23, 1991): 7511–18. http://dx.doi.org/10.1088/0953-8984/3/38/022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Bazan, J. C., J. A. Harrison, G. Staikov, E. Schmidt, K. Jüttner, and W. J. Lorenz. "Non-standard behaviour of the electronic conductor-solid ionic conductor interface." Electrochimica Acta 34, no. 8 (August 1989): 1271–75. http://dx.doi.org/10.1016/0013-4686(89)87170-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Mari, C. M., R. Ruffo, G. Dotelli, I. Natali-Sora, and R. Pelosato. "IS α-Al2O3/ La0.8Sr0.2Ga0.8Mg0.2O3–δ really a new ionic conductor composite?really a new ionic conductor composite?" Ionics 11, no. 1-2 (January 2005): 29–35. http://dx.doi.org/10.1007/bf02430399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Riyanto, Agus, Simon Sembiring, and Junaidi. "KARAKTERISTIK FISIS ALUMINOSILIKAT GEOPOLIMER BERBASIS SILIKA SEKAM PADI UNTUK APLIKASI FAST IONIC CONDUCTOR." Reaktor 17, no. 2 (June 20, 2017): 96. http://dx.doi.org/10.14710/reaktor.17.2.96-103.

Full text
Abstract:
The study aims to investigate the effect of calcination temperatures on the phase formation and electrical properties of aluminosilicate geopolymer prepared from rice husk silica and sodium aluminate. The samples were calcined at temperature from 150 oC to 550 oC, the development of structures was characterized using x-ray difraction (XRD) and the electrical properties were measured by LCR meter. The result obtained indicated the significant role of calcining temperature on phase transformation of boehmite and quartz into aluminosilicate geopolymer, in which at calcining temperatures from 450 oC to 550 oC, and the samples were dominated by semicrystal to amorphous phase which indicated that the aluminosilicate geoplymer has been formed. The presence of aluminosilicate geopolymer resulted in increased ionic electrical conductivity and dielectric loss factor as well as decrease dielectric constant. Ionic electrical conductivity of the calcined sample at 450 oC is 4,49.10-5 S/cm at frequancy of 5.106 Hz, and XRD analysis demostrated that the main structure is phase of semicrystal aluminosilicate geopolymer. Based on these character, the sample was considered is very suitable used to the fast ionic conductor materials.Studi ini bertujuan untuk menginvestigasi efek suhu kalsinasi pada formasi fasa dan sifat listrik aluminosilikat geopolimer yang dipreparasi dari silika sekam padi dan sodium aluminat. Sampel dikalsinasi pada suhu 150 oC – 550 oC, perubahan struktur dikarakterisasi menggunakan x-ray difraction (XRD) dan sifat listrik diukur menggunakan LCR meter. Hasil yang diperoleh mengindikasikan pengaruh yang signifikan suhu kalsinasi pada transformasi boehmite dan quartz menjadi aluminosilikat geopolimer, dimana pada suhu kalsinasi 450 oC – 550 oC didominasi oleh fasa semikristal hingga amorf yang mencirikan terbetuknya aluminosilikat geopolimer. Terbentuknya struktur aluminosilikat geopolimer diikuti dengan peningkatan konduktivitas listrik ionik, penurunan konstanta dielektrik, serta peningkatan faktor rugi dielektrik. Nilai konduktivitas listrik ionik sampel kalsinasi 450 oC ialah 4,49.10-5 S/cm pada frekuensi 5.106 Hz, dan analisis XRD menunjukkan struktur utamanya berupa fasa semikristal aluminosilikat geopolimer. Berdasarkan karakteristik tersebut, sampel yang ditinjau merupakan material dengan konduktivitas ionik yang tinggi sehingga sampel tersebut sangat potensial untuk dimanfaatkan sebagai fast ionic conductor.
APA, Harvard, Vancouver, ISO, and other styles
14

ONO, Masao, Satoru OKAYASU, Yusuke IGUCHI, Fumitaka ESAKA, Rabaya BAGUM, Rie HARUKI, and Tsutomu MASHIMO. "Ultracentrifuge Experiment on AgI Super-Ionic Conductor." TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 12, ists29 (2014): Tq_1—Tq_3. http://dx.doi.org/10.2322/tastj.12.tq_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Michihiro, Y. "ac conductivity of the ionic conductor Ag3SI." Solid State Ionics 35, no. 3-4 (September 1989): 337–41. http://dx.doi.org/10.1016/0167-2738(89)90318-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Liu, Tao, Li Lin, and Jingkun Yu. "Ionic Conductivity of a Carbonate–Ion Conductor." Journal of Testing and Evaluation 43, no. 1 (October 6, 2014): 20130332. http://dx.doi.org/10.1520/jte20130332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Zhu, Xuefeng, and Weishen Yang. "Composite membrane based on ionic conductor and mixed conductor for oxygen permeation." AIChE Journal 54, no. 3 (2008): 665–72. http://dx.doi.org/10.1002/aic.11410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Fujie, Kazuyuki, Kazuya Otsubo, Ryuichi Ikeda, Teppei Yamada, and Hiroshi Kitagawa. "Low temperature ionic conductor: ionic liquid incorporated within a metal–organic framework." Chemical Science 6, no. 7 (2015): 4306–10. http://dx.doi.org/10.1039/c5sc01398d.

Full text
Abstract:
An ionic liquid incorporated into micropores of a metal–organic framework showed higher ionic conductivity than bulk ionic liquid at low temperature because of the absence of marked freezing transition.
APA, Harvard, Vancouver, ISO, and other styles
19

Jee, Youngseok, Xuan Zhao, Xueling Lei, and Kevin Huang. "Phase Relationship and Ionic Conductivity in Na–SrSiO 3 Ionic Conductor." Journal of the American Ceramic Society 99, no. 1 (September 24, 2015): 324–31. http://dx.doi.org/10.1111/jace.13925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

O'Reilly, Michael V., Hanqing Masser, Daniel R. King, Paul C. Painter, Ralph H. Colby, Karen I. Winey, and James Runt. "Ionic aggregate dissolution and conduction in a plasticized single-ion polymer conductor." Polymer 59 (February 2015): 133–43. http://dx.doi.org/10.1016/j.polymer.2014.12.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Shan, Ke, and Zhong-Zhou Yi. "Electrical conduction behavior of mixed ionic-electronic conductor Y0.08Sr0.92Ti1−Sc O3−δ." Scripta Materialia 114 (March 2016): 70–73. http://dx.doi.org/10.1016/j.scriptamat.2015.08.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

WANG YUN-YU, PAN XIAO-LIANG, LEI ZHEN-XI, and YANG JU-HUA. "STUDY OF FAST IONIC CONDUCTOR BY POSITRON ANNIHILATION." Acta Physica Sinica 36, no. 4 (1987): 514. http://dx.doi.org/10.7498/aps.36.514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Baikov, Yu M. "“Inorganic Proton Conductor-Hydrogenated Metal” new ionic heterostructures." Technical Physics 53, no. 2 (February 2008): 276–78. http://dx.doi.org/10.1134/s1063784208020229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kikkawa, Shinichi, Takeshi Miyai, and Mitsue Koizumi. "New lithium ionic conductor, Li−Ge−Se glasses." Solid State Ionics 28-30 (September 1988): 743–46. http://dx.doi.org/10.1016/s0167-2738(88)80138-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kaneko, K., T. Kamiyama, Y. Kiyanagi, T. Sakuma, and S. Ikeda. "Neutron resonance absorption spectroscopy on ionic conductor AgI." Journal of Physics and Chemistry of Solids 60, no. 8-9 (September 1999): 1499–502. http://dx.doi.org/10.1016/s0022-3697(99)00153-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Bredikhin, S., J. Liu, and W. Weppner. "Solid ionic conductor/semiconductor junctions for chemical sensors." Applied Physics A Solids and Surfaces 57, no. 1 (July 1993): 37–43. http://dx.doi.org/10.1007/bf00331214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Sorokin, N. I., D. N. Karimov, I. S. Volchkov, Yu V. Grigor’ev, and B. P. Sobolev. "Fluorine-Ionic Conductivity of Superionic Conductor Crystals Na0.37Tb0.63F2.26." Crystallography Reports 64, no. 4 (July 2019): 626–30. http://dx.doi.org/10.1134/s1063774519040229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Kanashiro, Tatsuo, Yoshitaka Michihiro, Junichi Ozaki, Takashi Ohno, and Akira Kojima. "Ultrasonic Measurements in the Ionic Conductor β-Ag3SI." Journal of the Physical Society of Japan 56, no. 2 (February 15, 1987): 560–64. http://dx.doi.org/10.1143/jpsj.56.560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

SASAKI, Gen, Yong Bum CHOI, Kazuhiro MATSUG, and Osamu YANAGISAWA. "Anodic Bonding of Ionic Conductor Ceramics to Metals." Proceedings of the Materials and processing conference 2004.12 (2004): 303–4. http://dx.doi.org/10.1299/jsmemp.2004.12.303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zhong, Guohua, Jianglong Wang, and Zhi Zeng. "The doping effects in δ-Bi2O3oxide ionic conductor." physica status solidi (b) 245, no. 12 (December 2008): 2737–42. http://dx.doi.org/10.1002/pssb.200844280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Sanz, F., C. Parada, J. M. Rojo, C. Ruiz-Valero, and R. Saez-Puche. "Studies on Tetragonal Na2CoP2O7, a Novel Ionic Conductor." Journal of Solid State Chemistry 145, no. 2 (July 1999): 604–11. http://dx.doi.org/10.1006/jssc.1999.8249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Dénès, G., G. Milova, M. C. Madamba, and M. Perfiliev. "Structure and ionic transport of PbSnF4 superionic conductor." Solid State Ionics 86-88 (July 1996): 77–82. http://dx.doi.org/10.1016/0167-2738(96)00094-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ikuhara, Yumi H., Yuji Iwamoto, Koichi Kikuta, and Shin-ichi Hirano. "Precursor derived LiMn2O4 thin films as ionic conductor." Ionics 6, no. 1-2 (January 2000): 156–60. http://dx.doi.org/10.1007/bf02375560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lorenz, W. J., G. Saemann-Ischenko, and M. W. Breiter. "The Superconductor/Ionic Conductor Interface at Low Temperatures." Berichte der Bunsengesellschaft für physikalische Chemie 95, no. 9 (September 1991): 1055–61. http://dx.doi.org/10.1002/bbpc.19910950921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Cao, Yue, Timothy G. Morrissey, Eric Acome, Sarah I. Allec, Bryan M. Wong, Christoph Keplinger, and Chao Wang. "A Transparent, Self-Healing, Highly Stretchable Ionic Conductor." Advanced Materials 29, no. 10 (December 23, 2016): 1605099. http://dx.doi.org/10.1002/adma.201605099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kasai, Hidetaka, Kenichi Kato, Akihiro Hori, Masaki Takata, Susumu Kitagawa, Hiroshi Tanaka, Hidekazu Arikawa, Tatsuya Takeguchi, Masaaki Sadakiyo, and Miho Yamauchi. "In situ synchrotron powder diffraction for an ionic conductor transition." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C1181. http://dx.doi.org/10.1107/s2053273314088184.

Full text
Abstract:
In situ synchrotron X-ray powder diffraction can be one of the most powerful probes to investigate the structure evolution by a chemical reaction thanks to simultaneity of data collection. It is not, however, with ease to produce a homogeneous chemical reaction in the limited spaces, which is essential to see an atomic-scale structure evolution. We have developed an in situ capillary cell for both high-temperature H2reduction and precise humidity control at the SPring-8 BL44B2. We successfully applied this in situ system to an electronic conductor LaSr3Fe3O10, which is transformed into an ionic conductor by the two-step chemical treatments [1]. LaSr3Fe3O10has a triple-layer structure with a FeO6octahedral unit. One triple layer is bonded with another layer through van der Waals interaction. Structure refinements with in situ synchrotron powder diffraction data revealed that the H2reduction at 613 K produced in-plane oxygen vacancies, which resulted in suppression of the interlayer interaction. We found from charge density studies and Raman spectroscopy measurements that the following humidification intercalated H2O and OH-into the interlayer and intralayer, respectively. That means that H2O plays a role for suppression of three-dimensional electronic conductivity, stabilizing the intercalation structure. On the other hand, the OH-ions behave as carriers for ionic conductivity, maintaining the charge neutrality in the intralayer. Finally we determined the composition of the ionic conductor to be LaSr3Fe3O8.0(OH)1.2·2H2O, which indicates a transformation of LaSr3Fe3O10into an OH-ionic conductor. In the presentation, I will discuss the OH-ionic conduction channel based on electrostatic potentials obtained from charge densities.
APA, Harvard, Vancouver, ISO, and other styles
37

kumar, T. Vijay. "Dielectric Relaxation, Ionic Conduction and Complex Impedance Studies on NaNo3 Fast Ion Conductor." International Journal of Materials Science and Applications 2, no. 6 (2013): 173. http://dx.doi.org/10.11648/j.ijmsa.20130206.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

YOSHIKADO, S. "Ion conduction in one-dimensional ionic conductor CsxGa8Ga8 + xTi16 $minus; xO56 single crystal." Solid State Ionics 86-88 (July 1996): 1325–29. http://dx.doi.org/10.1016/0167-2738(96)00309-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

LALIGANT, Y., G. FEREY, M. EL GHOZZI, and D. AVIGNANT. "ChemInform Abstract: Thermal Study of Li3ThF7 Ionic Conductor by Neutron Diffraction: Conduction Pathways." ChemInform 23, no. 41 (August 21, 2010): no. http://dx.doi.org/10.1002/chin.199241017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Lu, Yuzheng, Youquan Mi, Junjiao Li, Fenghua Qi, Senlin Yan, and Wenjing Dong. "Recent Progress in Semiconductor-Ionic Conductor Nanomaterial as a Membrane for Low-Temperature Solid Oxide Fuel Cells." Nanomaterials 11, no. 9 (September 3, 2021): 2290. http://dx.doi.org/10.3390/nano11092290.

Full text
Abstract:
Reducing the operating temperature of Solid Oxide Fuel Cells (SOFCs) to 300–600 °C is a great challenge for the development of SOFC. Among the extensive research and development (R&D) efforts that have been done on lowering the operating temperature of SOFCs, nanomaterials have played a critical role in improving ion transportation in electrolytes and facilitating electrochemical catalyzation of the electrodes. This work reviews recent progress in lowering the temperature of SOFCs by using semiconductor-ionic conductor nanomaterial, which is typically a composition of semiconductor and ionic conductor, as a membrane. The historical development, as well as the working mechanism of semiconductor-ionic membrane fuel cell (SIMFC), is discussed. Besides, the development in the application of nanostructured pure ionic conductors, semiconductors, and nanocomposites of semiconductors and ionic conductors as the membrane is highlighted. The method of using nano-structured semiconductor-ionic conductors as a membrane has been proved to successfully exhibit a significant enhancement in the ionic conductivity and power density of SOFCs at low temperatures and provides a new way to develop low-temperature SOFCs.
APA, Harvard, Vancouver, ISO, and other styles
41

Song, Yoodae, Alexander E. Khudozhitkov, Jihyun Lee, Hyosik Kang, Daniil I. Kolokolov, Alexander G. Stepanov, and Minyoung Yoon. "Transformation of a proton insulator to a conductor via reversible amorphous to crystalline structure transformation of MOFs." Chemical Communications 56, no. 32 (2020): 4468–71. http://dx.doi.org/10.1039/d0cc00755b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Zhao, Kai, Kaili Zhang, Ren'ai Li, Peisen Sang, Huawen Hu, and Minghui He. "A very mechanically strong and stretchable liquid-free double-network ionic conductor." Journal of Materials Chemistry A 9, no. 41 (2021): 23714–21. http://dx.doi.org/10.1039/d1ta06724a.

Full text
Abstract:
In this paper, we first report very mechanically strong and stretchable liquid-free double-network ionic conductors (LFDNICs), which solve the trade-off between high mechanical strength and stretchability in a liquid-free ionic conductor.
APA, Harvard, Vancouver, ISO, and other styles
43

Chen, Xiaoli, Haolin Tang, Tristan Putzeys, Jeroen Sniekers, Michael Wübbenhorst, Koen Binnemans, Jan Fransaer, Dirk E. De Vos, Qingfeng Li, and Jiangshui Luo. "Guanidinium nonaflate as a solid-state proton conductor." Journal of Materials Chemistry A 4, no. 31 (2016): 12241–52. http://dx.doi.org/10.1039/c6ta05472b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Wang, Jia, Yonghao Han, Hao Liu, Guozhao Zhang, Cailong Liu, and Chunxiao Gao. "Pressure-induced abnormal ionic–polaronic–ionic transition sequences in AgBr." Physical Chemistry Chemical Physics 20, no. 11 (2018): 7492–97. http://dx.doi.org/10.1039/c7cp07830g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Liu, Yang, Sheng Liu, Junhong Lin, Dong Wang, Vaibhav Jain, Reza Montazami, James R. Heflin, Jing Li, Louis Madsen, and Q. M. Zhang. "Ion transport and storage of ionic liquids in ionic polymer conductor network composites." Applied Physics Letters 96, no. 22 (May 31, 2010): 223503. http://dx.doi.org/10.1063/1.3432664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ishii, Tadao, and Junji Kawamura. "Defect-Induced Surface Sublattice Melting of Ionic Conductor Thin Film –Parallel Ionic Conductivity–." Journal of the Physical Society of Japan 67, no. 10 (October 15, 1998): 3517–23. http://dx.doi.org/10.1143/jpsj.67.3517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Gao, Y. X., X. P. Wang, W. G. Wang, Z. Zhuang, D. M. Zhang, and Q. F. Fang. "Synthesis, ionic conductivity, and chemical compatibility of garnet-like lithium ionic conductor Li5La3Bi2O12." Solid State Ionics 181, no. 31-32 (October 7, 2010): 1415–19. http://dx.doi.org/10.1016/j.ssi.2010.08.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Yoshikado, S. "Ion conduction in one-dimensional ionic conductor AxGa8Ga8+xTi16−xO56 (A=K, Rb, Cs)." Solid State Ionics 121, no. 1-4 (June 1999): 127–32. http://dx.doi.org/10.1016/s0167-2738(98)00539-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ohara, Koji, Yukinobu Kawakita, László Pusztai, László Temleitner, Shinji Kohara, Naoki Inoue, and Shin'ichi Takeda. "Lattice Distortion and Lithium Ionic Conduction Path in a Superionic Conductor with Perovskite Structure." Journal of the Physical Society of Japan 79, Suppl.A (January 2010): 94–97. http://dx.doi.org/10.1143/jpsjs.79sa.94.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ueno, Katsuhiro, Naoyuki Hatada, and Tetsuya Uda. "New ionic conductor: Ba-deficient Ba3Y4O9 with Zr substitution." Solid State Ionics 368 (October 2021): 115709. http://dx.doi.org/10.1016/j.ssi.2021.115709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography