Academic literature on the topic 'Ionic conductor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ionic conductor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ionic conductor"

1

MATSUI, Noboru. "Ionic-Conductor and Electrode." Hyomen Kagaku 15, no. 7 (1994): 463–66. http://dx.doi.org/10.1380/jsssj.15.463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

NAN CE-WEN. "CONDUCTION THEORY OF IONIC CONDUCTOR CONTAINING DISPERSED SECOND PHASE." Acta Physica Sinica 36, no. 2 (1987): 191. http://dx.doi.org/10.7498/aps.36.191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ahmad, Mohamad M., Koji Yamada, and Tsutomu Okuda. "Ionic conduction and relaxation in KSn2F5 fluoride ion conductor." Physica B: Condensed Matter 339, no. 2-3 (December 2003): 94–100. http://dx.doi.org/10.1016/j.physb.2003.08.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nishio, Kazunori, Satoru Ichinokura, Akitaka Nakanishi, Koji Shimizu, Yasutaka Kobayashi, Naoto Nakamura, Daisuke Imazeki, et al. "Ionic Rectification across Ionic and Mixed Conductor Interfaces." Nano Letters 21, no. 23 (November 22, 2021): 10086–91. http://dx.doi.org/10.1021/acs.nanolett.1c03872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Breiter, M. W., W. J. Lorenz, and G. Saemann-Ischenko. "The superconductor/ionic conductor interface." Surface Science 230, no. 1-3 (May 1990): 213–21. http://dx.doi.org/10.1016/0039-6028(90)90029-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

LIN, Z., S. TIAN, H. YU, M. DENG, Z. MA, and R. XU. "A mineral ionic conductor - saponite." Solid State Ionics 47, no. 3-4 (September 1991): 223–25. http://dx.doi.org/10.1016/0167-2738(91)90242-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Matsushita, Y., A. Roushown, F. Izumi, H. Kitazawa, and M. Yashima. "Ionic path in oxygen-ionic conductor La9.70(Si5.8Mg0.2)O26.35." Acta Crystallographica Section A Foundations of Crystallography 63, a1 (August 22, 2007): s218. http://dx.doi.org/10.1107/s0108767307095025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Orsini, A., P. G. Medaglia, S. Sanna, E. Traversa, S. Licoccia, A. Tebano, and G. Balestrino. "Epitaxial superlattices of ionic conductor oxides." Superlattices and Microstructures 46, no. 1-2 (July 2009): 223–26. http://dx.doi.org/10.1016/j.spmi.2008.10.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dumélié, M., G. Nowogrocki, and J. C. Boivin. "Ionic conductor membrane for oxygen separation." Solid State Ionics 28-30 (September 1988): 524–28. http://dx.doi.org/10.1016/s0167-2738(88)80095-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tankeshwar, K., and M. P. Tosi. "Ionic diffusion in superionic-conductor melts." Journal of Physics: Condensed Matter 3, no. 38 (September 23, 1991): 7511–18. http://dx.doi.org/10.1088/0953-8984/3/38/022.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Ionic conductor"

1

Taksande, Kiran. "Exploration of the Ionic Conduction Properties of Porous MOF Materials." Thesis, Montpellier, 2022. https://ged.scdi-montpellier.fr/florabium/jsp/nnt.jsp?nnt=2022UMONS010.

Full text
Abstract:
Ce travail a pour objectif l’étude de matériaux hybrides poreux de type Metal-Organic Frameworks (MOFs) et d’un cristal moléculaire en tant que conducteurs ioniques solides pour des applications dans le domaine de l’énergie et de l’environnement. Dans le premier cas, nous avons développé diverses stratégies pour optimiser et contrôler la teneur en sites acides de Lewis et en porteurs de charges de deux séries de MOFs afin de concevoir des matériaux aux propriétés de conduction protonique très prometteuses. A partir d’une approche basée sur la substitution progressive des ligands par des entités fonctionnalisées présentant des sources de protons acides, nous avons créé une série de MOFs, MIP-207-(SO3H-IPA)x-(BTC)1–x, dont la teneur en groupements sulfoniques, par l’intermédiaire du ligand SO3H-IPA, est contrôlée à façon. Le meilleur matériau qui combine stabilité structurale et conduction protonique élevée présente des performances sous humidité parmi les plus intéressantes au sein de la famille des MOFs conducteurs protoniques (e.g., σ = 2.6 × 10–2 S cm–1 à 363 K/95% d’humidité relative (RH)). Selon une autre approche, nous avons étudié un MOF mésoporeux connu (MIL-101(Cr)-SO3H) dont les parois des pores sont tapissées de sites protoniques et qui contient dans ses pores un liquide ionique, le chlorure chlorure de 1-Ethyl-3-methylimidazolium (EMIMCl) capable d’assurer le transfert de proton. L’encapsulation du liquide ionique, caractérisée par une série d’outils expérimentaux (sorption de diazote, DRX sur poudre, TGA/MS, DSC et analyse élémentaire), s’avère particulièrement efficace pour exalter les propriétés de conduction protonique des composites à la fois à l’état anhydre (σ473 K = 1.5 × 10-3 S cm-1) mais également à l’état hydraté (σ(343 K/60%-80%RH) ≥ 0.10 S cm-1). Enfin, ce travail a été étendu à une autre famille de solides poreux, à travers l’étude des propriétés de conduction ionique d’un cristal moléculaire à base de zirconium (Zr-3) qui contient des paires ioniques KCl. Nous avons démontré que ZF-3 transite d’un comportement isolant à l’état anhydre (σ = 5.1 x 10-10 S cm-1 à 363 K/0% RH) vers un comportement super-conducteur ionique en présence d’eau (σ = 5.2 x 10-2 S cm-1 à 363 K/95 % RH), suite à l’augmentation de la dynamique de ions Cl- sous hydratation. Par ailleurs, des simulations moléculaires ont permis de décrire les mécanismes microscopiques à l’origine des propriétés de conduction des matériaux étudiés. Ces avancées devraient permettre de développer dans le futur de nouveaux matériaux performants dans le domaine de la conduction protonique et ionique
The conductivity performance of a new series of chemically stable proton conducting Metal Organic Frameworks (MOFs) as well as a superionic molecular crystal was explored. The contribution of this PhD was to (i) select a variety of architectures and functionalities of robust MOFs/superionic molecular solids and (ii) characterize and rationalize their conducting performance over various temperature/humidity conditions. We designed two series of MOFs to achieve promising proton-conducting performance, using distinct approaches to modulate the concentration of Brønsted acidic sites and charge carriers and further boost the conductivity properties. First, a multicomponent ligand replacement strategy was successfully employed to elaborate a series of multivariate sulfonic-based solids MIP-207-(SO3H-IPA)x-(BTC)1–x which combine structural integrity with high proton conductivity values (e.g., σ = 2.6 × 10–2 S cm–1 at 363 K/95% Relative Humidity -RH-). Secondly, a proton conducting composite was prepared through the impregnation of an ionic liquid (1-Ethyl-3-methylimidazolium chloride, EMIMCl) in the mesoporous MIL-101(Cr)-SO3H. The resulting composite displaying high thermal and chemical stability, exhibits outstanding proton conductivity not only at the anhydrous state (σ473 K = 1.5 × 10-3 S cm-1) but also under humidity (σ(343 K/60%-80%RH) ≥ 0.10 S cm-1) conditions. Finally, the ionic conducting properties of another class of porous solids, considering a zirconium-formate molecular solid containing KCl ion pairs (ZF-3) were explored. ZF-3 switches from an insulator (σ = 5.1 x 10-10 S cm-1 at 363 K/0% RH) to a superionic conductor upon hydration (σ = 5.2 x 10-2 S cm-1 at 363 K/95 % RH), in relation with the boost of Cl- dynamics upon water adsorption. Noteworthy, quantum- and force-field based simulations were combined with the experimental approach to elucidate the microscopic mechanisms at the origin of the ionic conducting properties of the studied materials. This fundamental knowledge will serve to create novel robust superionic conductors with outstanding performances that will pave the way towards appealing societal applications for clean energy production
APA, Harvard, Vancouver, ISO, and other styles
2

Taksande, Kiran. "Exploration of the Ionic Conduction Properties of Porous MOF Materials." Thesis, Université de Montpellier (2022-….), 2022. http://www.theses.fr/2022UMONS010.

Full text
Abstract:
Ce travail a pour objectif l’étude de matériaux hybrides poreux de type Metal-Organic Frameworks (MOFs) et d’un cristal moléculaire en tant que conducteurs ioniques solides pour des applications dans le domaine de l’énergie et de l’environnement. Dans le premier cas, nous avons développé diverses stratégies pour optimiser et contrôler la teneur en sites acides de Lewis et en porteurs de charges de deux séries de MOFs afin de concevoir des matériaux aux propriétés de conduction protonique très prometteuses. A partir d’une approche basée sur la substitution progressive des ligands par des entités fonctionnalisées présentant des sources de protons acides, nous avons créé une série de MOFs, MIP-207-(SO3H-IPA)x-(BTC)1–x, dont la teneur en groupements sulfoniques, par l’intermédiaire du ligand SO3H-IPA, est contrôlée à façon. Le meilleur matériau qui combine stabilité structurale et conduction protonique élevée présente des performances sous humidité parmi les plus intéressantes au sein de la famille des MOFs conducteurs protoniques (e.g., σ = 2.6 × 10–2 S cm–1 à 363 K/95% d’humidité relative (RH)). Selon une autre approche, nous avons étudié un MOF mésoporeux connu (MIL-101(Cr)-SO3H) dont les parois des pores sont tapissées de sites protoniques et qui contient dans ses pores un liquide ionique, le chlorure chlorure de 1-Ethyl-3-methylimidazolium (EMIMCl) capable d’assurer le transfert de proton. L’encapsulation du liquide ionique, caractérisée par une série d’outils expérimentaux (sorption de diazote, DRX sur poudre, TGA/MS, DSC et analyse élémentaire), s’avère particulièrement efficace pour exalter les propriétés de conduction protonique des composites à la fois à l’état anhydre (σ473 K = 1.5 × 10-3 S cm-1) mais également à l’état hydraté (σ(343 K/60%-80%RH) ≥ 0.10 S cm-1). Enfin, ce travail a été étendu à une autre famille de solides poreux, à travers l’étude des propriétés de conduction ionique d’un cristal moléculaire à base de zirconium (Zr-3) qui contient des paires ioniques KCl. Nous avons démontré que ZF-3 transite d’un comportement isolant à l’état anhydre (σ = 5.1 x 10-10 S cm-1 à 363 K/0% RH) vers un comportement super-conducteur ionique en présence d’eau (σ = 5.2 x 10-2 S cm-1 à 363 K/95 % RH), suite à l’augmentation de la dynamique de ions Cl- sous hydratation. Par ailleurs, des simulations moléculaires ont permis de décrire les mécanismes microscopiques à l’origine des propriétés de conduction des matériaux étudiés. Ces avancées devraient permettre de développer dans le futur de nouveaux matériaux performants dans le domaine de la conduction protonique et ionique
The conductivity performance of a new series of chemically stable proton conducting Metal Organic Frameworks (MOFs) as well as a superionic molecular crystal was explored. The contribution of this PhD was to (i) select a variety of architectures and functionalities of robust MOFs/superionic molecular solids and (ii) characterize and rationalize their conducting performance over various temperature/humidity conditions. We designed two series of MOFs to achieve promising proton-conducting performance, using distinct approaches to modulate the concentration of Brønsted acidic sites and charge carriers and further boost the conductivity properties. First, a multicomponent ligand replacement strategy was successfully employed to elaborate a series of multivariate sulfonic-based solids MIP-207-(SO3H-IPA)x-(BTC)1–x which combine structural integrity with high proton conductivity values (e.g., σ = 2.6 × 10–2 S cm–1 at 363 K/95% Relative Humidity -RH-). Secondly, a proton conducting composite was prepared through the impregnation of an ionic liquid (1-Ethyl-3-methylimidazolium chloride, EMIMCl) in the mesoporous MIL-101(Cr)-SO3H. The resulting composite displaying high thermal and chemical stability, exhibits outstanding proton conductivity not only at the anhydrous state (σ473 K = 1.5 × 10-3 S cm-1) but also under humidity (σ(343 K/60%-80%RH) ≥ 0.10 S cm-1) conditions. Finally, the ionic conducting properties of another class of porous solids, considering a zirconium-formate molecular solid containing KCl ion pairs (ZF-3) were explored. ZF-3 switches from an insulator (σ = 5.1 x 10-10 S cm-1 at 363 K/0% RH) to a superionic conductor upon hydration (σ = 5.2 x 10-2 S cm-1 at 363 K/95 % RH), in relation with the boost of Cl- dynamics upon water adsorption. Noteworthy, quantum- and force-field based simulations were combined with the experimental approach to elucidate the microscopic mechanisms at the origin of the ionic conducting properties of the studied materials. This fundamental knowledge will serve to create novel robust superionic conductors with outstanding performances that will pave the way towards appealing societal applications for clean energy production
APA, Harvard, Vancouver, ISO, and other styles
3

Osment, P. A. "Multipole NMR studies : Dynamics of some spin-3/2 systems." Thesis, University of York, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Gong. "Modeling and characterization of mixed ionic-electronic conductor membranes for hydrogen separation." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/19018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Akle, Barbar Jawad. "Characterization and Modeling of the Ionomer-Conductor Interface in Ionic Polymer Transducers." Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/28682.

Full text
Abstract:
Ionomeric polymer transducers consist of an ion-exchange membrane plated with conductive metal layers on its outer surfaces. Such materials are known to exhibit electromechanical coupling under the application of electric fields and imposed deformation (Oguro et al., 1992; Shahinpoor et al., 1998). Compared to other types of electromechanical transducers, such as piezoelectric materials, ionomeric transducers have the advantage of high-strain output (> 9% is possible), low-voltage operation (typically less than 5 V), and high sensitivity in the charge-sensing mode. A series of experiments on actuators with various ionic polymers such as Nafion and novel poly(Arylene ether disulphonate) systems (BPS and PATS) and electrode composition demonstrated the existence of a linear correlation between the strain response and the capacitance of the material. This correlation was shown to be independent of the polymer composition and the plating parameters. Due to the fact that the low-frequency capacitance of an ionomer is strongly related to charge accumulation at the electrodes, this correlation suggests a strong relationship between the surface charge accumulation and the mechanical deformation in ionomeric actuators. The strain response of water-hydrated transducers varies from 50 μstrain/V to 750 μstrain/V at 1Hz while the strain-to-charge response is between 9 μstraincm2 and 15 μstraincm2. This contribution suggests a strong correlation between cationic motion and the strain in the polymer at the ionomer-conductor interface. A novel fabrication technique for ionic polymer transducers was developed for this dissertation for the purpose of quantifying the relationship between electrode composition and transducer performance. It consists of mixing an ionic polymer dispersion (or solution) with a fine conducting powder and attaching it to the membrane as an electrode. The Direct Assembly Process (DAP) allows the use of any type of ionomer, diluent, conducting powder, and counter ion in the transducer, and permits the exploration of any novel polymeric design. Several conducting powders have been incorporated in the electrode including single-walled carbon nanotubes (SWNT), polyaniline (PANI) powders, high surface area RuO2, and carbon black electrodes. The DAP provided the tool which enabled us to study the effect of electrode architecture on performance of ionic polymer transducers. The DAP allows the variation in the electrode architecture which enabled us to fabricate dry transducers with 50x better performance compared to transducers made using the state of the art impregnation-reduction technique. DAP fabricated transducers achieved a strain of 9.4% at a strain rate of 1%/s. Each electrode material had an optimal concentration in the electrode. For RuO2, the optimal loading was approximately 45% by volume. This study also demonstrated that carbon nanotubes electrodes have an optimal performance at loadings around 30 vol%, while PANI electrodes are optimized at 95 vol%. Extensional actuation in ionic polymer transducers was first reported and characterized in this dissertation. An electromechanical coupling model presented by Leo et al. (2005) defined the strain in the active areas as a function of the charge. This model assumed a linear and a quadratic term that produces a nonlinear response for a sine wave actuation input. The quadratic term in the strain generates a zero net bending moment for ionic polymer transducers with symmetric electrodes, while the linear term is canceled in extensional actuation for symmetric electrodes. Experimental results demonstrated strains on the order of 110 μstrain in the thickness direction compared to 1700 μstrain peak to peak on the external fibers for the same transducer, could be achieved when it is allowed to bend under +/-2V potential at 0.5 Hz. Extensional and bending actuation in ionic polymer transducers were explained using a bimorph active area model. Several experiments were performed to compare the bending actuation with the extensional actuation capability. The active area in the model was assumed to be the high surface area electrode. Electric double layer theory states that ions accumulate in a thin boundary layer close to the metal-polymer interface. Since the metal powders are evenly dispersed in the electrode area of the transducer, this area is expected to actuate evenly upon voltage application. This active area model emphasizes the importance the boundary layer on the conductor-ionomer interfacial area. Computing model parameters based on experimental results demonstrated that the active areas model collapses the bending data from a maximum variation of 200% for the strain per charge, to less than 68% for the model linear term. Furthermore, the model successfully predicted bending response from parameters computed using thickness experimental results. The prediction was particularly precise in estimating the trends of non-linearity as a function of the amount of asymmetry between the two electrodes.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Jingjing. "Mass transport and electrochemical properties of La2Mo2O9 as a fast ionic conductor." Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/5566.

Full text
Abstract:
La2Mo2O9, as a new fast ionic conductor, has been investigated widely due to its high ionic conductivity which is comparable to those of the commercialized materials. However, little work has been reported on the oxygen transport and diffusion in this candidate electrolyte material. The main purpose of this project was to investigate oxide ion diffusion in La2Mo2O9 and also the factors which could affect oxygen transport properties. Oxygen isotope exchange followed by Secondary Ion Mass Spectrometry (SIMS) measurements were employed to obtain oxygen diffusion profiles. A correlation between oxygen ion transport and the electrochemical properties such as ionic conductivity was built upon the Nernst Einstein equation relating the diffusivity to electrical conductivity. In-situ neutron diffraction and AC impedance measurements were designed and conducted to investigate the correlation between crystal structure and oxygen transport in the bulk materials. Other techniques, such as synthesis, microstructure studies, and thermal analysis were also adopted to study the electrochemical properties of La2Mo2O9. The results of the study on the effects of microstructure on oxygen diffusion in La2Mo2O9 revealed that the grain boundary component played a significant role in electrochemical performance, although the grain size seemed to have little influence on oxygen transport. The oxygen isotope exchange in 18O2 was successfully carried out by introducing a silver coating on the sample surface, which solved the main difficulty in applying oxygen isotope exchange on pure ionic conductors. The ionic conductivity obtained from the diffusion coefficients was consistent with the result from AC impedance spectroscopy. The number of mobile oxygen ions was estimated to be 5 per unit cell. There was a difference of oxygen self diffusion coefficient when the isotope exchange was conducted in 18O2 and H2 18O. The activation energy of oxygen diffusion in humidified atmosphere was higher than that measured in dry atmosphere. It indicated that the humidified atmosphere had affected oxygen transport in the material. The studies on hydroxyl incorporation and transport explained the decreased oxygen diffusion coefficients in wet atmosphere and also suggested proton conductivity in La2Mo2O9, which leads to further investigation on applications of La2Mo2O9 as a proton conductor. In-situ neutron diffraction and AC impedance measurement revealed a close relationship between crystal structure and ionic conductivity. The successful application of this technique provides a new method to simultaneously investigate crystal structure and electrical properties in electro-ceramics in the future.
APA, Harvard, Vancouver, ISO, and other styles
7

Chiabrera, Francesco Maria. "Interface Engineering in Mixed Ionic Electronic Conductor Thin Films for Solid State Devices." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/667601.

Full text
Abstract:
Interface-dominated materials such as nanocrystalline thin films have emerged as an enthralling class of materials able to engineer functional properties of transition metal oxides widely used in energy and information technologies. In this direction, it has been recently proved that grain boundaries (GBs) in the perovskite La1-xSrxMnO3±δ (manganite) deeply impact its functional properties, boosting the oxygen mass transport while abating the electronic and magnetic order. The impact of grain boundary in nanocrystalline thin films is so relevant to radically change the behaviour of the material, transforming an electronic conductor into a mixed ionic-electronic conductor functional for redox-based solid state devices. Based on these preliminary studies, it became crucial to understand the origin of this enhancement, in order to gain engineering capabilities and potentially extend it to other functional perovskite materials. Following this approach, this thesis focuses in analysing the remarkable properties of GBs in manganites and, ultimately, investigating the possibility of engineering these interfaces. First, the structural and chemical characterization of the LSM thin films deposited by pulsed laser deposition (PLD) is presented. The compositional analysis of the layers revealed a severe Mn deficiency, ascribed to the plasma-background interactions during the deposition. The analysis of the GBs of these Mn-deficient thin films revealed a remarkable local modification of ionic composition, consisting in a Mn and O depletion along with a La and Sr enrichment (viz. GBdef). Then, through a PLD combinatorial approach, Mn was progressively inserted in the perovskite structure, altering the overall cationic ratio of the thin films (Mn/(La+Sr)). The variation of cationic chemical potential of the thin films was observed to significantly affect the GB composition, which passed from Mn depletion (La-enrichment) to Mn enrichment (La-depletion), while maintaining an O deficiency character (viz. GBrich). This behaviour suggests that through the tuning of the overall cationic concentration in the thin films the GB composition can be altered, offering an innovative way for engineering chemical defects in strained interfaces. The effect of these different GBs on the electrical conductivity and the oxygen mass transport properties of LSM thin films with different Mn content was then measured. It was found that in the layers characterized by GBdef, the lack of Mn hinders the low temperature metal insulator transition and, in its place, a variable range hopping mechanism occurs, where electrons tunnels across the GBs for reaching distant Mn atoms. Moreover, a simultaneous decrease of activation energies of both GB oxygen diffusivity and GB oxygen surface exchange coefficient was observed further decreasing the Mn concentration in these thin films, indicating a strong interdependence between the two phenomena. The results suggest that the GB accumulation of oxygen vacancies is at the origin of the large improvement of both oxygen mass transport parameters observed in LSM polycrystalline thin films. In LSM thin films characterized by GBrich, the low temperature metallic behaviour is progressively restored and an increase of electronic conductivity is observed in the entire temperature range. Additionally, in these layers relative changes of Mn do not give rise to a variation of the oxygen diffusivity, meaning that the GBs oxygen vacancy concentration is not altered anymore. Overall, the results demonstrate the possibility of engineering the functional properties of LSM polycrystalline thin films by modifying the GB cationic composition. In the third part of the thesis, the effect of Co substitution on LSMC functional properties was investigated. The LSMC thin films were produced by combinatorial PLD, which allow a direct measure of real-continuous spread LSMC system. The oxygen mass transport properties of bulk and GB were evaluated by finite element model fitting of 18O exchange profiles. The results revealed that GBs enhance the transport properties of the whole material in the range of composition under study, although for high Co concentration the GB effect is concealed by the high bulk diffusion.
APA, Harvard, Vancouver, ISO, and other styles
8

Toghan, Ahmed Arafat Ahmed [Verfasser]. "Electrochemical promotion of catalytic ethylene oxidation on a solid ionic conductor / Arafat Ahmed Toghan Ahmed." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2012. http://d-nb.info/103149815X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Akin, Figen Tulin. "Ionic Conducting Ceramic Membrane Reactor for Partial Oxidation of Light Hydrocarbons." University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1021991903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tomita, Atsuko, Mitsuru Sano, Takashi Hibino, Yousuke Namekata, and Masahiro Nagao. "Intermediate-Temperature NOx Sensor Based on an In^3+ -Doped SnP2O7 Proton Conductor." The Electrochemical Society, 2006. http://hdl.handle.net/2237/18457.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Ionic conductor"

1

Habasaki, Junko, Carlos Leon, and K. L. Ngai. Dynamics of Glassy, Crystalline and Liquid Ionic Conductors. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-42391-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Takehiko, Takahashi, and International Conference on Solid State Ionics (6th : 1987 : Garmisch-Partenkirchen, Germany), eds. High conductivity solid ionic conductors: Recent trends and applications. Singapore: World Scientific, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nina, Orlovskaya, and Browning Nigel D, eds. Mixed ionic electronic conducting perovskites for advanced energy systems. Dordrecht: Kluwer Academic Publishers, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schmickler, Wolfgang. Interfacial Electrochemistry. Oxford University Press, 1996. http://dx.doi.org/10.1093/oso/9780195089325.001.0001.

Full text
Abstract:
Electrochemistry is the study of a special class of interfaces--those between an ionic and an electronic conductor--that can conduct current. This makes it especially important to research and for industrial applications such as semiconductors. This book examines different topics within interfacial electrochemistry, including the theory of structures and processes at metal- solution and semiconductor-solution interfaces, the principles of classical and modern experimental methods, and some of the applications of electrochemistry. Students and nonspecialists in materials science, surface science, and chemistry will find this a valuable source of information.
APA, Harvard, Vancouver, ISO, and other styles
5

Takahashi, Takehiko. High Conductivity Solid Ionic Conductors. WORLD SCIENTIFIC, 1989. http://dx.doi.org/10.1142/0729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fisher, David. Diffusion and Ionic Conduction in Oxides. Trans Tech Publications, Limited, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Diffusion and Ionic Conduction in Oxides. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908451-52-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

International Conference on Solid State Ionics 1987 Garmisch-partenki (Corporate Author) and Takehiko Takahashi (Editor), eds. High Conductivity Solid Ionic Conductors: Recent Trends and Applications. World Scientific Publishing Company, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

J, Fisher D., ed. Diffusion and ionic conduction in oxides: Data compilation. Switzerland: Trans Tech Publications, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Leon, Carlos, Junko Habasaki, and K. L. Ngai. Dynamics of Glassy, Crystalline and Liquid Ionic Conductors: Experiments, Theories, Simulations. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Ionic conductor"

1

Theveneau, Hélène. "Nuclear Magnetic Relaxation in Ionic Conductor Materials." In Structure and Dynamics of Molecular Systems, 231–54. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4662-0_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Weil, K. Scott, and John S. Hardy. "Brazing a Mixed Ionic/Electronic Conductor to an Oxidation Resistant Metal." In Advances in Joining of Ceramics, 185–200. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118405802.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Meredith, Paul, Kristen Tandy, and Albertus B. Mostert. "A Hybrid Ionic-Electronic Conductor: Melanin, the First Organic Amorphous Semiconductor?" In Organic Electronics, 91–111. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527650965.ch04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lorenz, Wolfgang J., Georg Saemann-Ischenko, and Manfred W. Breiter. "Low-Temperature Electrochemistry at High-T c Superconductor/Ionic Conductor Interfaces." In Modern Aspects of Electrochemistry, 107–66. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-1718-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shahinpoor, Mohsen. "Ionic Polymeric Conductor Nano Composites (IPCNCs) as Distributed Nanosensors and Nanoactuators." In Advances in Science and Technology, 70–81. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908158-11-7.70.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bandarenka, Aliaksandr S. "Ionic Conductors." In Energy Materials, 57–80. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003025498-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tuller, Harry. "Ionic Conduction and Applications." In Springer Handbook of Electronic and Photonic Materials, 1. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48933-9_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lunden, Arnold. "Ionic Conduction in Sulphates." In Fast Ion Transport in Solids, 181–201. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1916-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Magistris, A. "Ionic Conduction in Glasses." In Fast Ion Transport in Solids, 213–30. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1916-0_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tuller, Harry. "Ionic Conduction and Applications." In Springer Handbook of Electronic and Photonic Materials, 213–28. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-29185-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ionic conductor"

1

Liu, Yang, Sheng Liu, Junhong Lin, Dong Wang, Vaibhav Jain, Reza Montazami, James R. Heflin, Jing Li, Louis Madsen, and Q. M. Zhang. "Transports of ionic liquids in ionic polymer conductor network composite actuators." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Yoseph Bar-Cohen. SPIE, 2010. http://dx.doi.org/10.1117/12.847618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhou, Yueming, Peifu Gu, and Jinfa Tang. "Electrochromic device with a polymer ionic conductor." In SPIE's 1993 International Symposium on Optics, Imaging, and Instrumentation, edited by Carl M. Lampert. SPIE, 1993. http://dx.doi.org/10.1117/12.161955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, S. L., C. K. Lee, D. C. Sinclair, F. K. Chong, and A. H. Shaari. "PREPARATION AND CHARACTERIZATION OF IONIC CONDUCTOR Bi23V4O44.5." In Proceedings of the 8th Asian Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776259_0065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Osman, Nahed, Nodar Osman, Alwaleed Adllan, Gamar Alanbia Bilal, and Karlo Ayuel. "Ab initio method study of ionic conductor CaF2." In 2013 International Conference on Computing, Electrical and Electronics Engineering (ICCEEE). IEEE, 2013. http://dx.doi.org/10.1109/icceee.2013.6633978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Thakur, Deep Kumar, and A. L. Sharma. "Optimization of salt concentration in polymer based ionic conductor." In RECENT ADVANCES IN FUNDAMENTAL AND APPLIED SCIENCES: RAFAS2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4990319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Sheng, Minren Lin, and Qiming Zhang. "Extensional ionomeric polymer conductor composite actuators with ionic liquids." In The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, edited by Yoseph Bar-Cohen. SPIE, 2008. http://dx.doi.org/10.1117/12.787597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Idrus, L. H., A. K. Yahya, Swee-Ping Chia, Kurunathan Ratnavelu, and Muhamad Rasat Muhamad. "Resistance-Based Ceramic Ho123 Ionic Conductor for Oxygen Gas Sensing." In FRONTIERS IN PHYSICS: 3rd International Meeting. AIP, 2009. http://dx.doi.org/10.1063/1.3192242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

PHAM, Q. N., O. BOHNKE, A. BOULANT, J. EMERY, and M. VIJAYAKUMAR. "SYNTHESIS AND PROPERTIES OF THE NANOSTRUCTURED FAST IONIC CONDUCTOR Li0.3La0.56TiO3." In Proceedings of the 10th Asian Conference. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773104_0009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dergachov, M. P., V. N. Moiseyenko, and Ya V. Burak. "The Temperature Anomalies of Light scattering in Ionic Conductor Li2B4O7 Crystals." In Proceedings of the Symposium R. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701718_0038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kumar, Asheesh, Siddanathi N. Rao, Malay K. Das, and Kamal K. Kar. "LiPO3 based fast ionic conductor for solid state lithium secondary batteries." In Proceedings of the International Conference on Nanotechnology for Better Living. Singapore: Research Publishing Services, 2016. http://dx.doi.org/10.3850/978-981-09-7519-7nbl16-rps-99.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Ionic conductor"

1

Redko, Mikhail. Synthesis of a potential fast ionic conductor for Mg 2+ ions. Office of Scientific and Technical Information (OSTI), November 2013. http://dx.doi.org/10.2172/1166790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Haridoss, P., E. Hellstrom, F. H. Garzon, D. R. Brown, and M. Hawley. Thin film ionic conductors based on cerium oxide. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/10103830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jacobson, Allan J., Dane Morgan, and Clare Grey. Enhanced Mixed Electronic-Ionic Conductors through Cation Ordering. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1233610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dincă, Mircea. Electronic and Ionic Conductors from Ordered Microporous Materials. Office of Scientific and Technical Information (OSTI), October 2017. http://dx.doi.org/10.2172/1406065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Balachandran, U., J. T. Dusek, P. S. Maiya, R. L. Mieville, B. Ma, M. S. Kleefisch, and C. A. Udovich. Separation of gases with solid electrolyte ionic conductors. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/459338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Matsuzaki, Y., and M. Hishinuma. Improvement of SOFC electrodes using mixed ionic-electronic conductors. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/460179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhou, Xiaowang, F. Patrick Doty, Michael E. Foster, Pin Yang, and Hongyou Fan. High Fidelity Modeling of Ionic Conduction in Solids. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1562645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Franklin H. Cocks, W. Neal Simmons, and Paul A. Klenk. Carbon Ionic Conductors for use in Novel Carbon-Ion Fuel Cells. Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/875826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kim, Kyung Han. Connection between NMR and electrical conductivity in glassy chalcogenide fast ionic conductors. Office of Scientific and Technical Information (OSTI), July 1995. http://dx.doi.org/10.2172/130656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Srikanth Gopalan. Mixed Ionic and Electonic Conductors for Hydrogen Generation and Separation: A New Approach. Office of Scientific and Technical Information (OSTI), December 2006. http://dx.doi.org/10.2172/949960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography