Journal articles on the topic 'Ion-Selective Membranes Operated'

To see the other types of publications on this topic, follow the link: Ion-Selective Membranes Operated.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 35 journal articles for your research on the topic 'Ion-Selective Membranes Operated.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ghahraman Afshar, Majid, Gastón A. Crespo, and Eric Bakker. "Direct Ion Speciation Analysis with Ion-Selective Membranes Operated in a Sequential Potentiometric/Time Resolved Chronopotentiometric Sensing Mode." Analytical Chemistry 84, no. 20 (October 4, 2012): 8813–21. http://dx.doi.org/10.1021/ac302092m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Carrara, Guia, Maddy Parsons, Nuno Saraiva, and Geoffrey L. Smith. "Golgi anti-apoptotic protein: a tale of camels, calcium, channels and cancer." Open Biology 7, no. 5 (May 2017): 170045. http://dx.doi.org/10.1098/rsob.170045.

Full text
Abstract:
Golgi anti-apoptotic protein (GAAP), also known as transmembrane Bax inhibitor-1 motif-containing 4 (TMBIM4) or Lifeguard 4 (Lfg4), shares remarkable amino acid conservation with orthologues throughout eukaryotes, prokaryotes and some orthopoxviruses, suggesting a highly conserved function. GAAPs regulate Ca 2+ levels and fluxes from the Golgi and endoplasmic reticulum, confer resistance to a broad range of apoptotic stimuli, promote cell adhesion and migration via the activation of store-operated Ca 2+ entry, are essential for the viability of human cells, and affect orthopoxvirus virulence. GAAPs are oligomeric, multi-transmembrane proteins that are resident in Golgi membranes and form cation-selective ion channels that may explain the multiple functions of these proteins. Residues contributing to the ion-conducting pore have been defined and provide the first clues about the mechanistic link between these very different functions of GAAP. Although GAAPs are naturally oligomeric, they can also function as monomers, a feature that distinguishes them from other virus-encoded ion channels that must oligomerize for function. This review summarizes the known functions of GAAPs and discusses their potential importance in disease.
APA, Harvard, Vancouver, ISO, and other styles
3

Darestani-Farahani, Maryam, Ponnambalam Ravi Selvaganapathy, and Peter Kruse. "Development of Solid-State Chemiresistive Devices for Simultaneous Detection of Nitrate, Nitrite and Ammonium Ions in Aqueous Solutions." ECS Meeting Abstracts MA2022-01, no. 52 (July 7, 2022): 2139. http://dx.doi.org/10.1149/ma2022-01522139mtgabs.

Full text
Abstract:
The presence of various ions is an important factor in evaluating water quality. Nitrate, nitrite and ammonium in water can cause health issues and pose environmental concerns1,2. Some sources of the nitrogen species are from natural water and some of them arise from industrial and agricultural activities. Currently commercially available sensors for measuring nitrogen compounds in water are based on colorimetric techniques and potentiometric methods incorporating ion selective electrodes. Progress still needs to be made towards fabricating devices with less instrumentation costs, less complexity, less maintenance and without need for any reagents to facilitate measurement of species1. Chemiresistive sensors are solid-state devices which can be simply fabricated from two contacts and a conductive sensing material affixed on a suitable substrate. They operate by detecting modulations in resistance of the conducting film due to surface charge transfer as a result of interactions with the analyte(s)3. Here, we demonstrate chemiresistive devices capable of quantifying aqueous nitrate, nitrite and ammonium ions selectively. Due to challenges in the aqueous phase such as ionic strength effect, probability of side reactions, non-specific bonding on the surface, low interaction energy between analyte and surface, chemiresistive technology has not been developed extensively in water quality sensors4,5. In this study, we have overcome the issues in water by coating the chemiresistive devices with selective membranes. If the fabricated sensors are used as an array, the total nitrogen concentration in water can be measured online which is a significant advance since nitrate, nitrite and ammonium may interconvert and a single nitrate, nitrite or ammonium sensor by itself cannot give the total amount of nitrogen in a sample. For device fabrication, p-doped carbon nanotubes were selected as a sensitive conductive layer which were modified with selective membranes to improve the sensing performance. Nitrite sensors worked over a dynamic range of 67 ppb to 67 ppm with a 27.6% response at 67 ppm. Nitrate showed 13.2% response from 2.2 ppm to 220 ppm. Ammonium devices operated over a dynamic range of 10 ppb to 100 ppm with a 23.6% response at 100 ppm. The proposed response mechanism involves both an electrostatic gating effect and surface charge transfer. Compared with paper-based colorimetric sensors, the proposed devices perform better with a lower detection limit and the ability to perform continuous online measurements. Moreover, the chemiresistive responses of the devices were compared with their potentiometric responses and found to be equally sensitive but more selective. Unlike ion-selective electrodes, the resulting devices do not require the use of reference electrodes and are therefore potentially more robust for use in continuous water analyzers and in resource-poor settings. The chemiresistive devices showed low interferences and good reversibility. They were also tested in river water samples and showed satisfactory results. The fabricated devices are an advanced proof of concept and have the potential to replace the current technology. Nuñez, L., Cetó, X., Pividori, M. I., Zanoni, M. V. B. & del Valle, M. Development and application of an electronic tongue for detection and monitoring of nitrate, nitrite and ammonium levels in waters. Microchem. J. 110, 273–279 (2013). Li, D., Xu, X., Li, Z., Wang, T. & Wang, C. Detection methods of ammonia nitrogen in water: A review. TrAC - Trends Anal. Chem. 127, 115890 (2020). Choi, S. J. & Kim, I. D. Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors. Electronic Materials Letters vol. 14 (The Korean Institute of Metals and Materials, 2018). Kruse, P. Review on water quality sensors. J. Phys. D. Appl. Phys. 51, (2018). Dalmieda, J., Zubiarrain-Laserna, A., Saha, D., Selvaganapathy, P. R. & Kruse, P. Impact of Surface Adsorption on Metal-Ligand Binding of Phenanthrolines. J. Phys. Chem. C 125, 21112–21123 (2021). Figure 1
APA, Harvard, Vancouver, ISO, and other styles
4

Gmar, Soumaya, Alexandre Chagnes, Florence Lutin, and Laurence Muhr. "Application of Electrodialysis for the Selective Lithium Extraction Towards Cobalt, Nickel and Manganese from Leach Solutions Containing High Divalent Cations/Li Ratio." Recycling 7, no. 2 (March 2, 2022): 14. http://dx.doi.org/10.3390/recycling7020014.

Full text
Abstract:
The present work aims at investigating the potentialities of implementation of electrodialysis for the recycling of spent lithium-ion batteries. In this work, the use of highly-selective membrane toward lithium(I) in electrodialysis was investigated to recover selectively lithium(I) toward cobalt(II), nickel(II) and manganese(II) by means of monovalent ion-selective membranes. It was shown that the presence of divalent cations in the leach solution is responsible for a significant decrease of the limiting current despite an increase in ionic conductivity. Therefore, monitoring the ionic conductivity was not sufficient to operate electrodialysis under optimal conditions, especially when highly selective membranes were used. Furthermore, it was demonstrated that the current has to be lower than the limiting current to avoid metal hydroxide precipitation into the membrane porosity by monitoring the limiting current over time.
APA, Harvard, Vancouver, ISO, and other styles
5

Wu, Jintao, Imri Atlas, Amit N. Shocron, and Matthew Suss. "Spatial Variations of pH in Electrodialysis Stacks: Theory." ECS Meeting Abstracts MA2022-01, no. 46 (July 7, 2022): 1972. http://dx.doi.org/10.1149/ma2022-01461972mtgabs.

Full text
Abstract:
Electrodialysis (ED) is a well-known electrochemical water desalination technology investigated since the 1950s. In an ED stack, desalination is driven by an applied voltage, which results in selective salt ion electromigration through alternating cation and anion exchange membranes. Transport of hydronium and hydroxide ions during water treatment, together with water dissociation, can lead to unfavorable product acidity or alkalinity, compromise the membrane charge, or enhance scaling. Conversely, pH deviations can also be leveraged to tune the speciation of weak acid/base electrolytes to enhance chlorine disinfectant efficiency, or facilitate electrostatic removal of contaminants with pH-dependent properties. Thus, it is important to understand the effect of varying feedwater salinity and other system parameters on spatial pH deviations in the vicinity of the membrane, and on the pH of the product water. In this work, we extend ED theory to include pH effects in a repeating unit operated in the underlimiting current regime. Different from the single ion exchange membrane repeating unit considered by Sonin and Probstein [1], which is not applicable for systems including pH effects, we solve the concentration profiles of both the salt and water ions in a full repeating unit comprised of a cation exchange membrane and anion exchange membrane pair. To the first time to our knowledge, our model domain encompasses the entire ED repeating unit without assuming prescribed stagnant layer thickness in which the water dissociation reaction occurs. We solve the Nernst-Planck and electroneutrality set of equations in the channels and non-ideal IEMs, following the approach utilized for capturing pH effects in membrane capacitive deionization [2,3] and reverse osmosis [4,5]. We presented results showing fundamental features, including the concentration and pH distribution in the diluate channel, local flux density across the IEMs, and effluent salinity and pH. Our model predicts that including or excluding pH effects lead to essentially identical predictions for salt fluxes across the IEMs, and thus previous models neglecting pH effects are likely accurately predicting desalination. We also show that reducing salinity augments pH perturbations, but that the effluent pH, which consists of mixed acid and alkaline boundary layers at the diluate channel outlet, does not deviate from inlet neutral pH significantly. In the future, this model framework here can be extended to include multi-ionic solution and species with pH-dependent properties, and validated with a dedicated set of experimental results. References [1] A.A. Sonin, R.F. Probstein, A hydrodynamic theory of desalination by electrodialysis, Desalination. 5 (1968) 293–329. https://doi.org/10.1016/S0011-9164(00)80105-8. [2] J.E. Dykstra, K.J. Keesman, P.M. Biesheuvel, A. van der Wal, Theory of pH changes in water desalination by capacitive deionization, Water Res. 119 (2017) 178–186. https://doi.org/10.1016/j.watres.2017.04.039. [3] Y. Bian, X. Chen, Z.J. Ren, PH Dependence of Phosphorus Speciation and Transport in Flow-Electrode Capacitive Deionization, Environ. Sci. Technol. 54 (2020) 9116–9123. https://doi.org/10.1021/acs.est.0c01836. [4] L. Zhang, H.V.M. Hamelers, P.M. Biesheuvel, Modeling permeate pH in RO membranes by the extended Donnan steric partitioning pore model, J. Memb. Sci. 613 (2020) 118511. https://doi.org/10.1016/j.memsci.2020.118511. [5] O. Nir, N.F. Bishop, O. Lahav, V. Freger, Modeling pH variation in reverse osmosis, Water Res. 87 (2015) 328–335. https://doi.org/10.1016/j.watres.2015.09.038. Figure 1
APA, Harvard, Vancouver, ISO, and other styles
6

Meyerson, Melissa L., and Leo J. Small. "(Digital Presentation) Higher Surface Area Lithium Anode for Mediated Lithium-Sulfur Flow Batteries." ECS Meeting Abstracts MA2022-01, no. 3 (July 7, 2022): 510. http://dx.doi.org/10.1149/ma2022-013510mtgabs.

Full text
Abstract:
There is a need for safe, reliable, high capacity storage for long duration energy storage. The low cost and high capacity of sulfur make Li-S batteries ideal for this purpose. However, sulfur has poor electrical conductivity and Li-S batteries are prone to polysulfide shuttling that decreases the battery life. Additionally, lithium metal cannot be cycled at high rates or dendritic growth is produced. We have previously addressed the issues with the S by combining aspects of a static Li-S battery with aspects of a redox targeting system and flow battery. With this system we demonstrated that fundamental Li-S chemistry and novel SEI engineering strategies can be adapted to the hybrid redox flow battery architecture, obviating the need for ion-selective membranes or flowing carbon additives, and offering a potential pathway for inexpensive, scalable, safe MWh scale Li-S energy storage. However, with a planar Li anode the current density was limited to 0.5 mA cm-2, severely limiting the flow battery power output. In this study we present recent progress developing higher surface area anodes to enhance the rate performance of Li metal anodes in flow batteries. The high effective surface area of these structures decreases the local current density while maintaining a high device-level current and thus charge rate. The low local current density and seeded nucleation points on the scaffold promote uniform Li deposition during charging. Candidate electrode materials are evaluated in a mediated Li-S flow battery and cycling rate and capacity retention are compared against a traditional planar Li anode. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
APA, Harvard, Vancouver, ISO, and other styles
7

Schreiber, Rainer, Jiraporn Ousingsawat, and Karl Kunzelmann. "Targeting of Intracellular TMEM16 Proteins to the Plasma Membrane and Activation by Purinergic Signaling." International Journal of Molecular Sciences 21, no. 11 (June 5, 2020): 4065. http://dx.doi.org/10.3390/ijms21114065.

Full text
Abstract:
Anoctamins such as TMEM16A and TMEM16B are Ca2+-dependent Cl− channels activated through purinergic receptor signaling. TMEM16A (ANO1), TMEM16B (ANO2) and TMEM16F (ANO6) are predominantly expressed at the plasma membrane and are therefore well accessible for functional studies. While TMEM16A and TMEM16B form halide-selective ion channels, TMEM16F and probably TMEM16E operate as phospholipid scramblases and nonselective ion channels. Other TMEM16 paralogs are expressed mainly in intracellular compartments and are therefore difficult to study at the functional level. Here, we report that TMEM16E (ANO5), -H (ANO8), -J (ANO9) and K (ANO10) are targeted to the plasma membrane when fused to a C-terminal CAAX (cysteine, two aliphatic amino acids plus methionin, serine, alanin, cystein or glutamin) motif. These paralogs produce Ca2+-dependent ion channels. Surprisingly, expression of the TMEM16 paralogs in the plasma membrane did not produce additional scramblase activity. In contrast, endogenous scrambling induced by stimulation of purinergic P2X7 receptors was attenuated, in parallel with reduced plasma membrane blebbing. This could suggest that intracellular TMEM16 paralogs operate differently when compared to plasma membrane-localized TMEM16F, and may even stabilize intracellular membranes. Alternatively, CAAX tagging, which leads to expression in non-raft compartments of the plasma membrane, may antagonize phosphatidylserine exposure by endogenous raft-located TMEM16F. CAAX-containing constructs may be useful to further investigate the molecular properties of intracellular TMEM16 proteins.
APA, Harvard, Vancouver, ISO, and other styles
8

Khan, Asif Ali, Umme Habiba, and Anish Khan. "Synthesis and Characterization of Organic-Inorganic Nanocomposite Poly-o-anisidine Sn(IV) Arsenophosphate: Its Analytical Applications as Pb(II) Ion-Selective Membrane Electrode." International Journal of Analytical Chemistry 2009 (2009): 1–10. http://dx.doi.org/10.1155/2009/659215.

Full text
Abstract:
Poly-o-anisidine Sn(IV) arsenophosphate is a newly synthesized nanocomposite material and has been characterized on the basis of its chemical composition, ion exchange capacity, TGA-DTA, FTIR, X-RAY, SEM, and TEM studies. On the basis of distribution studies, the exchanger was found to be highly selective for lead that is an environmental pollutant. For the detection of lead in water a heterogeneous precipitate based ion-selective membrane electrode was developed by means of this composite cation exchanger as electroactive material. The membrane electrode is mechanically stable, with a quick response time, and can be operated over a wide pH range. The selectivity coefficients were determined by mixed solution method and revealed that the electrode is sensitive for Pb(II) in presence of interfering cations. The practical utility of this membrane electrode has been established by employing it as an indicator electrode in the potentiometric titration of Pb(II).
APA, Harvard, Vancouver, ISO, and other styles
9

Morris, A. P., D. V. Gallacher, C. M. Fuller, and J. Scott. "Cholinergic Receptor-regulation of Potassium Channels and Potassium Transport in Human Submandibular Acinar Cells." Journal of Dental Research 66, no. 2 (February 1987): 541–46. http://dx.doi.org/10.1177/00220345870660022601.

Full text
Abstract:
The cholinergic receptor-regulation of K+ transport was studied in human submandibular glands. Acetylcholine stimulation 10 μmol/L results in an increase in membrane permeability (86Rb+ efflux) for, and a net efflux of, K+ ions from the glandular tissue. In the post-stimulus period, there is a net re-uptake of K+ ions into the tissue. Patch-clamp electrophysiological techniques were employed to demonstrate the presence of a large conductance K+ selective ion channel in the basolateral membranes of isolated human submandibular acinar cells. The patch-clamp results indicate that this voltage- and calcium-activated K+ channel operates to regulate the K+ permeability in both the resting and acetylcholine-stimulated acinar cells. We discuss the role of the K+ channel, K+ efflux, and K+ re-uptake in relation to stimulus-secretion coupling.
APA, Harvard, Vancouver, ISO, and other styles
10

Bakker, Eric. "Membrane Response Model for Ion-Selective Electrodes Operated by Controlled-Potential Thin-Layer Coulometry." Analytical Chemistry 83, no. 2 (January 15, 2011): 486–93. http://dx.doi.org/10.1021/ac102016y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Meyerson, Melissa L., Adam M. Maraschky, and Leo J. Small. "Higher Energy Density Mediated Lithium-Sulfur Flow Batteries." ECS Meeting Abstracts MA2022-02, no. 2 (October 9, 2022): 109. http://dx.doi.org/10.1149/ma2022-022109mtgabs.

Full text
Abstract:
There is a need for safe, reliable, high-capacity storage for long duration energy storage. The low cost and high capacity of sulfur make Li-S batteries ideal for this purpose. However, sulfur has poor electrical conductivity and Li-S batteries are prone to polysulfide shuttling that decreases the battery life. Additionally, lithium metal cannot be cycled at high rates or dendritic growth is produced. We have previously addressed the issues with the S by combining aspects of a static Li-S battery with aspects of a redox targeting system and flow battery. With this system we demonstrated that fundamental Li-S chemistry and novel SEI engineering strategies can be adapted to the hybrid redox flow battery architecture, obviating the need for ion-selective membranes or flowing carbon additives, and offering a potential pathway for inexpensive, scalable, safe MWh scale Li-S energy storage. However, these tests were done at lab scale with low S loadings and limited charge rates, limiting both the energy and power density of the proof-of-concept system. In this study we present recent progress scaling up the system from 2.5 mgS cm-2 to over 50 mgS cm-2 and increasing the current density from 0.5 mA cm-2 to 10 mA cm-2 to decrease the charge/discharge time. The increase in S loading results in an increase in energy density and the increase in applied current increases the power density of the system. To scale up the flow cell we address limitations of the small-scale architecture including examining the flow field used with the catholyte and the structure of the Li metal anode. We first tested high surface area scaffolds in Swagelok cells to examine the effect of the increased effective surface area and seeding with lithiophilic materials, like ZnO, on Li metal deposition independent of the flow cell or S chemistry. Using a high effective surface area anode support enables us to increase the applied current density from 0.5 mA cm-2 to 10 mA cm-2 greatly increasing the charge/discharge speed. Furthermore, the addition of a lithiophilic seed layer decreases the nucleation overpotential and encourages uniform Li electrodeposition. A tailored flow field also improves the uniformity of Li deposition on the anode by improving the uniformity of the catholyte flow velocity. These improvements are first evaluated separately and then combined in a mediated Li-S flow battery where cycling rate and capacity retention are compared against a traditional planar Li anode and open flow field. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
APA, Harvard, Vancouver, ISO, and other styles
12

Hu, Shihui, Rong Zhang, and Yunfang Jia. "Porous Graphene Oxide Decorated Ion Selective Electrode for Observing Across-Cytomembrane Ion Transport." Sensors 20, no. 12 (June 21, 2020): 3500. http://dx.doi.org/10.3390/s20123500.

Full text
Abstract:
The technology for measuring cytomembrane ion transport is one of the necessities in modern biomedical research due to its significance in the cellular physiology, the requirements for the non-invasive and easy-to-operate devices have driven lots of efforts to explore the potential electrochemical sensors. Herein, we would like to evidence the exploitation of the porous graphene oxide (PGO) decorated ion selective electrode (ISE) as a detector to capture the signal of cytomembrane ion transport. The tumor cells (MDAMB231, A549 and HeLa) treated by iodide uptake operation, with and without the sodium-iodide-symporter (NIS) expression, are used as proofs of concept. It is found that under the same optimized experimental conditions, the changed output voltages of ISEs before and after the cells’ immobilization are in close relation with the NIS related ion’s across-membrane transportation, including I−, Na+ and Cl−. The explanation for the measured results is proposed by clarifying the function of the PGO scaffold interfacial micro-environment (IME), that is, in this spongy-like micro-space, the NIS related minor ionic fluctuations can be accumulated and amplified for ISE to probe. In conclusion, we believe the integration of the microporous graphene derivatives-based IME and ISE may pave a new way for observing the cytomembrane ionic activities.
APA, Harvard, Vancouver, ISO, and other styles
13

Tataeva, S. D., R. Z. Zeynalov, and K. E. Magomedov. "Potentiometric sensor for lead ions determination." Аналитика и контроль 25, no. 3 (2021): 205–11. http://dx.doi.org/10.15826/analitika.2021.25.3.002.

Full text
Abstract:
One of the sensitive and inexpensive methods used for the analysis of water bodies is the ionometry, the development of which is associated with the introduction of new ion-selective electrodes into the practice of potentiometric analysis. An optimized composition of the membrane for the manufacturing of a zinc-selective electrode based on polyvinyl chloride modified with 2-mercaptobenzthiazole (MPVC) is proposed with the following ratio of ingredients (in wt. %): Polyvinyl chloride - 31.7; dioctyl sebacate - 66.3; potassium tetra-p-chlorophenylborate - 0.5; MPVH - 1.5. The working range of pH was established with a minimum potential drift, which was 1.5 - 3. The slope of the electrode function was calculated as 30.1 ± 0.3 mV. According to the dependence of the electrode potential for the selected composition of the membrane on the logarithm of the zinc ion concentration, it was found that the proposed model of the electrode operates in the concentration range of 1∙10-5 - 1∙10-1 mol / L, with a detection limit of 0.65 mg / l. The stabilization time of the potential within 1 mV was 15 - 20 s. The potentiometric coefficients of the selectivity of the zinc selective electrode with respect to various ions have been determined. The conditions for the determination of zinc using the obtained sensor in alloys and wastewater were proposed. The electrode with the membrane based on polyvinyl chloride modified with 2-mercaptobenzthiazole can be used as an alternative to the industrial electrode XC-Zn-001 for the determination of zinc ions in various objects. The obtained experimental data was close in accuracy to the results obtained by the atomic absorption methods, as well as the ionometry using the industrial electrode. In conclusion, the electrode with the membrane based on polyvinyl chloride modified with 2-mercaptobenzthiazole can be used as an alternative to XC-Zn-001.
APA, Harvard, Vancouver, ISO, and other styles
14

Speziale, Chiara, Livia Salvati Manni, Cristina Manatschal, Ehud M. Landau, and Raffaele Mezzenga. "A macroscopic H+and Cl−ions pump via reconstitution of EcClC membrane proteins in lipidic cubic mesophases." Proceedings of the National Academy of Sciences 113, no. 27 (June 16, 2016): 7491–96. http://dx.doi.org/10.1073/pnas.1603965113.

Full text
Abstract:
Functional reconstitution of membrane proteins within lipid bilayers is crucial for understanding their biological function in living cells. While this strategy has been extensively used with liposomes, reconstitution of membrane proteins in lipidic cubic mesophases presents significant challenges related to the structural complexity of the lipid bilayer, organized on saddle-like minimal surfaces. Although reconstitution of membrane proteins in lipidic cubic mesophases plays a prominent role in membrane protein crystallization, nanotechnology, controlled drug delivery, and pathology of diseased cells, little is known about the molecular mechanism of protein reconstitution and about how transport properties of the doped mesophase mirror the original molecular gating features of the reconstituted membrane proteins. In this work we design a general strategy to demonstrate correct functional reconstitution of active and selective membrane protein transporters in lipidic mesophases, exemplified by the bacterial ClC exchanger fromEscherichia coli(EcClC) as a model ion transporter. We show that its correct reconstitution in the lipidic matrix can be used to generate macroscopic proton and chloride pumps capable of selectively transporting charges over the length scale of centimeters. By further exploiting the coupled chloride/proton exchange of this membrane protein and by combining parallel or antiparallel chloride and proton gradients, we show that the doped mesophase can operate as a charge separation device relying only on the reconstituted EcClC protein and an external bias potential. These results may thus also pave the way to possible applications in supercapacitors, ion batteries, and molecular pumps.
APA, Harvard, Vancouver, ISO, and other styles
15

Pickard, BG, and JP Ding. "The Mechanosensory Calcium-Selective Ion Channel: Key Component of a Plasmalemmal Control Centre?" Functional Plant Biology 20, no. 5 (1993): 439. http://dx.doi.org/10.1071/pp9930439.

Full text
Abstract:
Mechanosensory calcium-selective ion channels probably serve to detect not only mechanical stress but also electrical, thermal, and diverse chemical stimuli. Because all stimuli result in a common output, most notably a shift in second messenger calcium concentration, the channels are presumed to serve as signal integrators. Further, insofar as second messenger calcium in turn gives rise to mechanical, electrical, and diverse chemical changes, the channels are postulated to initiate regulatory feedbacks. It is proposed that the channels and the feedback loops play a wide range of roles in regulating normal plant function, as well as in mediating disturbance of normal function by environmental stressors and various pathogens. In developing evidence for the physiological performance of the channel, a model for a cluster of regulatory plasmalemmal proteins and cytoskeletal elements grouped around a set of wall-to-membrane and transmembrane linkers has proved useful. An illustration of how the model might operate is presented. It is founded on the demonstration that several xenobiotics interfere both with normal channel behaviour and with gravitropic reception. Accordingly, the first part of the illustration deals with how the channels and the control system within which they putatively operate might initiate gravitropism. Assuming that gravitropism is an asymmetric expression of growth, the activities of the channels and the plasmalemmal control system are extrapolated to account for regulation of both rate and allometry of cell expansion. Finally, it is discussed how light, hormones, redox agents and herbicides could in principle affect growth via the putative plasmalemmal control cluster or centre.
APA, Harvard, Vancouver, ISO, and other styles
16

Jury, J., L. P. Jager, and E. E. Daniel. "Unusual potassium channels mediate nonadrenergic noncholinergic nerve-mediated inhibition in opossum esophagus." Canadian Journal of Physiology and Pharmacology 63, no. 2 (February 1, 1985): 107–12. http://dx.doi.org/10.1139/y85-020.

Full text
Abstract:
Field stimulation of the circular muscle of the opossum esophagus produces a transient hyperpolarization (inhibitory junction potential, IJP) followed by an "off" depolarization. A similar nonadrenergic, noncholinergic (NANC) response in guinea pig taenia caecum has been shown to be due to an increase in the potassium ion permeability of the smooth muscle cell membrane. Double sucrose gap studies showed a decrease in resistance during the IJP, and a reversal at an estimated membrane potential of about −90 mV (4 mM K+). The reversal potential was dependent on the extracellular potassium concentration, shifting to −75 mV when the potassium in the superfusion medium was increased to 10 mM. The IJP in the opossum esophageal circular smooth muscle is therefore like the IJP of the guinea pig taenia caecum in that it is probably due to a selective increase in potassium ion permeability. Potassium conductance blocking agents, tetraethylammonium chloride (TEA, 20 mM) and 4-aminopyridine (4-AP, 5 mM) both caused a depolarization of the smooth muscle cell membrane, but TEA increased the membrane resistance, whereas 4-AP did not affect the membrane conductance in a consistent way. A decrease in IJP amplitude owing to these agents was not apparent. Apamin (10 μM) did not affect the membrane potential, the membrane resistance, or the IJP. Quinine (0.1 mM) produced effects quantitatively similar to those of TEA. Quinine (1 mM) did abolish the IJP, however, this was likely due to a blockade of impulse transmission of the intramural nerves. These results suggest that the receptor-operated channels opened by the NANC-nerve mediator in this tissue are unusual in that they are different from those functioning to maintain the resting membrane potential and they differ from those involved in the IJP in the guinea pig taenia caecum.
APA, Harvard, Vancouver, ISO, and other styles
17

Derler, Isabella, Isaac Jardin, and Christoph Romanin. "Molecular mechanisms of STIM/Orai communication." American Journal of Physiology-Cell Physiology 310, no. 8 (April 15, 2016): C643—C662. http://dx.doi.org/10.1152/ajpcell.00007.2016.

Full text
Abstract:
Ca2+entry into the cell via store-operated Ca2+release-activated Ca2+(CRAC) channels triggers diverse signaling cascades that affect cellular processes like cell growth, gene regulation, secretion, and cell death. These store-operated Ca2+channels open after depletion of intracellular Ca2+stores, and their main features are fully reconstituted by the two molecular key players: the stromal interaction molecule (STIM) and Orai. STIM represents an endoplasmic reticulum-located Ca2+sensor, while Orai forms a highly Ca2+-selective ion channel in the plasma membrane. Functional as well as mutagenesis studies together with structural insights about STIM and Orai proteins provide a molecular picture of the interplay of these two key players in the CRAC signaling cascade. This review focuses on the main experimental advances in the understanding of the STIM1-Orai choreography, thereby establishing a portrait of key mechanistic steps in the CRAC channel signaling cascade. The focus is on the activation of the STIM proteins, the subsequent coupling of STIM1 to Orai1, and the consequent structural rearrangements that gate the Orai channels into the open state to allow Ca2+permeation into the cell.
APA, Harvard, Vancouver, ISO, and other styles
18

BARRITT, Greg J. "Receptor-activated Ca2+ inflow in animal cells: a variety of pathways tailored to meet different intracellular Ca2+ signalling requirements." Biochemical Journal 337, no. 2 (January 8, 1999): 153–69. http://dx.doi.org/10.1042/bj3370153.

Full text
Abstract:
Receptor-activated Ca2+ channels (RACCs) play a central role in regulation of the functions of animal cells. Together with voltage-operated Ca2+ channels (VOCCs) and ligand-gated non-selective cation channels, RACCs provide a variety of pathways by which Ca2+ can be delivered to the cytoplasmic space and the endoplasmic reticulum (ER) in order to initiate or maintain specific types of intracellular Ca2+ signal. Store-operated Ca2+ channels (SOCs), which are activated by a decrease in Ca2+ in the ER, are a major subfamily of RACCs. A careful analysis of the available data is required in order to discern the different types of RACCs (differentiated chiefly on the basis of ion selectivity and mechanism of activation) and to properly develop hypotheses for structures and mechanisms of activation. Despite much intensive research, the structures and mechanisms of activation of RACCs are only now beginning to be understood. In considering the physiological functions of the different RACCs, it is useful to consider the specificity for Ca2+ of each type of cation channel and the rate at which Ca2+ flows through a single open channel; the locations of the channels on the plasma membrane (in relation to the ER, cytoskeleton and other intracellular units of structure and function); the Ca2+-responsive enzymes and proteins; and the intracellular buffers and proteins that control the distribution of Ca2+ in the cytoplasmic space. RACCs which are non-selective cation channels can deliver Ca2+ directly to specific regions of the cytoplasmic space, and can also admit Na+, which induces depolarization of the plasma membrane, the opening of VOCCs and the subsequent inflow of Ca2+. SOCs appear to deliver Ca2+ specifically to the ER, thereby maintaining oscillating Ca2+ signals.
APA, Harvard, Vancouver, ISO, and other styles
19

Hedrich, Rainer. "Ion Channels in Plants." Physiological Reviews 92, no. 4 (October 2012): 1777–811. http://dx.doi.org/10.1152/physrev.00038.2011.

Full text
Abstract:
Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K+-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K+ channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.
APA, Harvard, Vancouver, ISO, and other styles
20

Jain, Pritesh P., Susumu Hosokawa, Mingmei Xiong, Aleksandra Babicheva, Tengteng Zhao, Marisela Rodriguez, Shamin Rahimi, et al. "Revisiting the mechanism of hypoxic pulmonary vasoconstriction using isolated perfused/ventilated mouse lung." Pulmonary Circulation 10, no. 4 (October 2020): 204589402095659. http://dx.doi.org/10.1177/2045894020956592.

Full text
Abstract:
Hypoxic Pulmonary Vasoconstriction (HPV) is an important physiological mechanism of the lungs that matches perfusion to ventilation thus maximizing O2 saturation of the venous blood within the lungs. This study emphasizes on principal pathways in the initiation and modulation of hypoxic pulmonary vasoconstriction with a primary focus on the role of Ca2+ signaling and Ca2+ influx pathways in hypoxic pulmonary vasoconstriction. We used an ex vivo model, isolated perfused/ventilated mouse lung to evaluate hypoxic pulmonary vasoconstriction. Alveolar hypoxia (utilizing a mini ventilator) rapidly and reversibly increased pulmonary arterial pressure due to hypoxic pulmonary vasoconstriction in the isolated perfused/ventilated lung. By applying specific inhibitors for different membrane receptors and ion channels through intrapulmonary perfusion solution in isolated lung, we were able to define the targeted receptors and channels that regulate hypoxic pulmonary vasoconstriction. We show that extracellular Ca2+ or Ca2+ influx through various Ca2+-permeable channels in the plasma membrane is required for hypoxic pulmonary vasoconstriction. Removal of extracellular Ca2+ abolished hypoxic pulmonary vasoconstriction, while blockade of L-type voltage-dependent Ca2+ channels (with nifedipine), non-selective cation channels (with 30 µM SKF-96365), and TRPC6/TRPV1 channels (with 1 µM SAR-7334 and 30 µM capsazepine, respectively) significantly and reversibly inhibited hypoxic pulmonary vasoconstriction. Furthermore, blockers of Ca2+-sensing receptors (by 30 µM NPS2143, an allosteric Ca2+-sensing receptors inhibitor) and Notch (by 30 µM DAPT, a γ-secretase inhibitor) also attenuated hypoxic pulmonary vasoconstriction. These data indicate that Ca2+ influx in pulmonary arterial smooth muscle cells through voltage-dependent, receptor-operated, and store-operated Ca2+ entry pathways all contribute to initiation of hypoxic pulmonary vasoconstriction. The extracellular Ca2+-mediated activation of Ca2+-sensing receptors and the cell–cell interaction via Notch ligands and receptors contribute to the regulation of hypoxic pulmonary vasoconstriction.
APA, Harvard, Vancouver, ISO, and other styles
21

Souza Bomfim, Guilherme H., Barbara A. Niemeyer, Rodrigo S. Lacruz, and Annette Lis. "On the Connections between TRPM Channels and SOCE." Cells 11, no. 7 (April 1, 2022): 1190. http://dx.doi.org/10.3390/cells11071190.

Full text
Abstract:
Plasma membrane protein channels provide a passageway for ions to access the intracellular milieu. Rapid entry of calcium ions into cells is controlled mostly by ion channels, while Ca2+-ATPases and Ca2+ exchangers ensure that cytosolic Ca2+ levels ([Ca2+]cyt) are maintained at low (~100 nM) concentrations. Some channels, such as the Ca2+-release-activated Ca2+ (CRAC) channels and voltage-dependent Ca2+ channels (CACNAs), are highly Ca2+-selective, while others, including the Transient Receptor Potential Melastatin (TRPM) family, have broader selectivity and are mostly permeable to monovalent and divalent cations. Activation of CRAC channels involves the coupling between ORAI1-3 channels with the endoplasmic reticulum (ER) located Ca2+ store sensor, Stromal Interaction Molecules 1-2 (STIM1/2), a pathway also termed store-operated Ca2+ entry (SOCE). The TRPM family is formed by 8 members (TRPM1-8) permeable to Mg2+, Ca2+, Zn2+ and Na+ cations, and is activated by multiple stimuli. Recent studies indicated that SOCE and TRPM structure-function are interlinked in some instances, although the molecular details of this interaction are only emerging. Here we review the role of TRPM and SOCE in Ca2+ handling and highlight the available evidence for this interaction.
APA, Harvard, Vancouver, ISO, and other styles
22

Islam, MS, T. Akhter, and M. Matsumoto. "Asterosap, an Egg Jelly Peptide, Elevate Intracellular Ca2+ and Activate the Motility of Spermatozoa." Progressive Agriculture 19, no. 1 (December 18, 2013): 79–88. http://dx.doi.org/10.3329/pa.v19i1.17358.

Full text
Abstract:
Components from the outer envelopes of the egg that influence the flagellar beating and acrosome reaction of spermatozoa are regulated by ion flux across the plasma membrane. Asterosap, a sperm-activating peptide from the starfish egg jelly layer, causes a transient increase in intracellular cyclic GMP (cGMP) through the activation of the asterosap receptor, a guanylyl cyclase (GC), and causes an increase in intracellular Ca2+. Here we describe the pathway of asterosap-induced Ca2+ elevation using different Ca2+ channel antagonists. Fluo-4 AM, a cell permeable Ca2+ sensitive dye was used to determine the channel caused by the asterosap-induced Ca2+ elevation in spermatozoa. Different L-type Ca2+ channel antagonists, a non specific Ca2+ channel antagonist (nickel chloride), and a store-operated Ca2+ channel (SOC) antagonist do not show any significant response on asterosap-induced Ca2+ elevation, whereas KB-R7943, a selective inhibitor against Na+/Ca2+ exchanger (NCX) inhibited effectively. We also analyzed the flagellar movement of spermatozoa in artificial seawater (ASW) containing the asterosap at 100 nM ml?1. We found that spermatozoa swam vigorously with more symmetrical flagellar movement in asterosap than in ASW and KB-R7943 significantly inhibited the flagellar movement.DOI: http://dx.doi.org/10.3329/pa.v19i1.17358 Progress. Agric. 19(1): 79 - 88, 2008
APA, Harvard, Vancouver, ISO, and other styles
23

Lenz, Thomas, and Jochen W. Kleineke. "Hormone-induced rise in cytosolic Ca2+ in axolotl hepatocytes: properties of the Ca2+ influx channel." American Journal of Physiology-Cell Physiology 273, no. 5 (November 1, 1997): C1526—C1532. http://dx.doi.org/10.1152/ajpcell.1997.273.5.c1526.

Full text
Abstract:
Calcium entry in nonexcitable cells occurs through Ca2+-selective channels activated secondarily to store depletion and/or through receptor- or second messenger-operated channels. In amphibian liver, hormones that stimulate the production of adenosine 3′,5′-cyclic monophosphate (cAMP) also regulate the opening of an ion gate in the plasma membrane, which allows a noncapacitative inflow of Ca2+. To characterize this Ca2+ channel, we studied the effects of inhibitors of voltage-dependent Ca2+ channels and of nonselective cation channels on 8-bromoadenosine 3′,5′-cyclic monophosphate (8-BrcAMP)-dependent Ca2+ entry in single axolotl hepatocytes. Ca2+ entry provoked by 8-BrcAMP in the presence of physiological Ca2+ followed first-order kinetics (apparent Michaelis constant = 43 μM at the cell surface). Maximal values of cytosolic Ca2+ (increment ∼300%) were reached within 15 s, and the effect was transient (half time of 56 s). We report a strong inhibition of cAMP-dependent Ca2+ entry by nifedipine [half-maximal inhibitory concentration (IC50) = 0.8 μM], by verapamil (IC50 = 22 μM), and by SK&F-96365 (IC50 = 1.8 μM). Depolarizing concentrations of K+were without effect. Gadolinium and the anti-inflammatory compound niflumate, both inhibitors of nonselective cation channels, suppressed Ca2+ influx. This “profile” indicates a novel mechanism of Ca2+ entry in nonexcitable cells.
APA, Harvard, Vancouver, ISO, and other styles
24

Denk, Karel, Martin Paidar, Jaromir Hnat, and Karel Bouzek. "Potential of Membrane Alkaline Water Electrolysis in Connection with Renewable Power Sources." ECS Meeting Abstracts MA2022-01, no. 26 (July 7, 2022): 1225. http://dx.doi.org/10.1149/ma2022-01261225mtgabs.

Full text
Abstract:
Hydrogen is an efficient energy carrier with numerous applications in various areas as industry, energetics, and transport. Its potential depends also on the origin of the energy used to produce the hydrogen with respect to its environmental impact. Where the standard production of hydrogen from fossil fuels (methane steam reforming, etc.) doesn’t bring any benefit to decarbonisation of society. The most ecological approach involves water electrolysis using ‘green’ electricity, such as renewable power sources. Such hydrogen thus stores energy which can be used later. Hydrogen, used in the transport sector, can minimize its environmental impact together with preserving the driving range and decrease the recharge/refill time in comparison with a pure battery-powered vehicle. For transportation the hydrogen filling stations network is required. Local production of hydrogen is one of proposed scenarios. The combination of electrolyser and renewable power source is the most viable local source of hydrogen. It is important to know the possible amount of hydrogen produced with respect to local environmental and economic conditions. Hydrogen production by water electrolysis is an extensively studied topic. Among the three most prominent types, which are the alkaline water electrolysis (AWE), proton-exchange membrane (PEM) electrolysis and high-temperature solid-oxide electrolysis, AWE is the technology which is widely used in the industry for the longest time. In the recent development, AWE is being modified by incorporation of anion-selective membranes (ASMs) to replace the diaphragm used as the cell separator. In comparison with the diaphragm, ASMs perform acceptably in environment with lower temperatures and lower concentrations of the liquid electrolyte, thus, allowing for very flexible operation similarly to the PEM electrolysers. On the other hand, ASMs are not yet in a development level where they could outperform the diaphragm and PEM in long-term stability. Renewable sources of energy, predominantly photovoltaic (PV) plants and wind turbines, operate with non-stable output of electricity. Considering their proposed connection to the water electrolysis, flexibility of such electrolyser is of the essence for maximizing hydrogen production. The aim of this work is to consider a connection of a PV plant with an AWE. Power output data from a real PV plant are taken as a source of electricity for a model AWE. The input data for the electrolyser were taken from a laboratory AWE. The AWE data were measured using a single-cell electrolyser using Zirfon Perl® cell separator with nickel-foam electrodes. Operation including ion-selective membranes was also taken into consideration. Data from literature were used to set possible operation range and other electrolyser parameters. Small-scale operation was then upscaled to match dimensions of a real AWE operation. Using the before mentioned data, a hydrogen production model was made. The model takes the power output of the PV plant in time and decides whether to use the power for preheating of the electrolyser or for electrolytic hydrogen production. Temperature of the electrolyser is influenced by the preheating, thermal-energy loss of the electrolytic reactions, or cooling to maintain optimal conditions. The advantage of the created model is its variability for both energy output of the power plant or other instable power source and the properties of the electrolyser. It can be used to predict hydrogen production in time with respect to the electrolyser and PV power plant size. The difference between standard AWE and AWE with ion exchange membrane is mainly shown during start-up time where membrane based electrolyser shows better efficiency. Frequency of start-stop operation modes thus influences the choice of suitable electrolyser type. Another output is to optimize design of an electrolyser to fit the scale of an existing plant from economical point of view. This knowledge is an important input into the plan which is set to introduce hydrogen-powered transport options where fossil-fuel powered vehicles is often the only option, such as unelectrified low-traffic railroad networks. Acknowledgment: This project is financed by the Technology Agency of the Czech Republic under grant TO01000324, in the frame of the KAPPA programme, with funding from EEA Grants and Norway Grants.
APA, Harvard, Vancouver, ISO, and other styles
25

McKAY, Richard R., Caroline L. SZYMECZEK-SEAY, Jean-Philippe LIEVREMONT, Gary St J. BIRD, Christof ZITT, Eberhard JÜNGLING, Andreas LÜCKHOFF, and James W. PUTNEY. "Cloning and expression of the human transient receptor potential 4 (TRP4) gene: localization and functional expression of human TRP4 and TRP3." Biochemical Journal 351, no. 3 (October 24, 2000): 735–46. http://dx.doi.org/10.1042/bj3510735.

Full text
Abstract:
Mammalian homologues of the Drosophila transient receptor potential (TRP) protein have been proposed to function as ion channels, and in some cases as store-operated or capacitative calcium entry channels. However, for each of the mammalian TRP proteins, different laboratories have reported distinct modes of cellular regulation. In the present study we describe the cloning and functional expression of the human form of TRP4 (hTRP4), and compare its activity with another well studied protein, hTRP3. When hTRP4 was transiently expressed in human embryonic kidney (HEK)-293 cells, basal bivalent cation permeability (barium) was increased. Whole-cell patch-clamp studies of hTRP4 expressed in Chinese hamster ovary cells revealed a constitutively active non-selective cation current which probably underlies the increased bivalent cation entry. Barium entry into hTRP4-transfected HEK-293 cells was not further increased by phospholipase C (PLC)-linked receptor activation, by intracellular calcium store depletion with thapsigargin, or by a synthetic diacylglycerol, 1-oleoyl-2-acetyl-sn-glycerol (OAG). In contrast, transient expression of hTRP3 resulted in a bivalent cation influx that was markedly increased by PLC-linked receptor activation and by OAG, but not by thapsigargin. Despite the apparent differences in regulation of these two putative channel proteins, green fluorescent protein fusions of both molecules localized similarly to the plasma-membrane, notably in discrete punctate regions suggestive of specialized signalling complexes. Our findings indicate that while both hTRP4 and hTRP3 can apparently function as cation channels, their putative roles as components of capacitative calcium entry channels are not readily demonstrable by examining their behaviour when exogenously expressed in cells.
APA, Harvard, Vancouver, ISO, and other styles
26

Moreau, Adrien, Pascal Gosselin-Badaroudine, and Mohamed Chahine. "Molecular biology and biophysical properties of ion channel gating pores." Quarterly Reviews of Biophysics 47, no. 4 (November 2014): 364–88. http://dx.doi.org/10.1017/s0033583514000109.

Full text
Abstract:
AbstractThe voltage sensitive domain (VSD) is a pivotal structure of voltage-gated ion channels (VGICs) and plays an essential role in the generation of electrochemical signals by neurons, striated muscle cells, and endocrine cells. The VSD is not unique to VGICs. Recent studies have shown that a VSD regulates a phosphatase. Similarly, Hv1, a voltage-sensitive protein that lacks an apparent pore domain, is a self-contained voltage sensor that operates as an H+ channel.VSDs are formed by four transmembrane helices (S1–S4). The S4 helix is positively charged due to the presence of arginine and lysine residues. It is surrounded by two water crevices that extend into the membrane from both the extracellular and intracellular milieus. A hydrophobic septum disrupts communication between these water crevices thus preventing the permeation of ions. The septum is maintained by interactions between the charged residues of the S4 segment and the gating charge transfer center. Mutating the charged residue of the S4 segment allows the water crevices to communicate and generate gating pore or omega pore. Gating pore currents have been reported to underlie several neuronal and striated muscle channelopathies. Depending on which charged residue on the S4 segment is mutated, gating pores are permeant either at depolarized or hyperpolarized voltages. Gating pores are cation selective and seem to converge toward Eisenmann's first or second selectivity sequences. Most gating pores are blocked by guanidine derivatives as well as trivalent and quadrivalent cations. Gating pores can be used to study the movement of the voltage sensor and could serve as targets for novel small therapeutic molecules.
APA, Harvard, Vancouver, ISO, and other styles
27

Balderas-Angeles, Enrique, Thirupura Shankar, Anthony Balynas, Xue Yin, and Dipayan Chaudhuri. "Abstract P334: Biophysical Properties Of A Novel Mitochondrial Large Ubiquitous Non-selective Amiloride Sensitive (luna) Current." Circulation Research 129, Suppl_1 (September 3, 2021). http://dx.doi.org/10.1161/res.129.suppl_1.p334.

Full text
Abstract:
Inner mitochondrial membrane (IMM) ion channels and transporters account for communication of the matrix with the intermembrane space (IMS) and the cytosol. Transport of solutes and ions is keep under strict regulation mainly because small changes in solute concentrations could generate changes in mitochondrial volume or membrane potential (ΔΨ m ), interrupting ATP synthesis and leading to mitochondrial damage. The list of recently discovered mitochondrial ion channels has been growing in the past decades. In this work, using the patch-clamp technique we observed the activity of a novel mitochondrial current, named here LUNA current, in mitoplasts (IMM striped of outer membrane) from mouse liver, spleen, brain and heart, as well as established cell lines. LUNA is a novel non-selective cation current (K + >Na + >NMDG + >H + ) active at depolarized membrane potentials. The basal activity of whole-mitoplast LUNA currents from wild type mice hearts changed from 445±106 pA/pF to 1232±287 pA/pF upon chelation of external divalent cations (Ca 2+ and Mg 2+ ). Moreover, the activity of LUNA is independent of the mitochondrial Ca 2+ uniporter and of the non-selective reactive oxygen species modulator channel (ROMO1). In the heart, the activity of LUNA was enhanced in both the Tfam -KO mice, which have impaired electron transport chain (ETC) activity and are a model for mitochondrial cardiomyopathies, and mice with cardiac pressure overload due to transverse aortic constriction (TAC) compared to sham-operated hearts (729±197; n=7 vs 283±137 pA/pF). LUNA current is reversibly inhibited by amiloride with no sensitivity to the vast majority of common K + , Na + and Ca 2+ channels and ETC inhibitors. The molecular identity of mitochondrial LUNA current remains to be determined.
APA, Harvard, Vancouver, ISO, and other styles
28

"Coupling between transmembrane calcium transport and membrane potential in retinal rod discs." Proceedings of the Royal Society of London. Series B. Biological Sciences 228, no. 1250 (June 23, 1986): 97–108. http://dx.doi.org/10.1098/rspb.1986.0043.

Full text
Abstract:
Changes in the transmembrane potential of bovine rod discs were studied by use of the potential-sensitive fluorescence probes diS-C 3 -(5) and diBA-C 4 -(5). The disc membrane was shown to be impermeable to potassium ions. Their concentration in the disc is as high as 2.1 ±0.3 mM. The permeability of the disc membrane to Ca 2+ was shown to be selective. The accumulation and release of Ca 2+ were found to be accompanied by the generation of inside positive and inside negative transmembrane potentials, respectively. The uptake of Ca 2+ in the discs may operate against the concentration gradient of the ion. The value of the potential developed is directly proportional to the logarithm of free Ca 2+ concentration in the medium (Δφ m =11.2 ± 1.6 mV at 4.85 μM Ca 2+ fr ). The accumulation of Ca 2+ is decreased by sodium ions and totally inhibited by monensin. This indicates that a Na-Ca exchange process participates in Ca 2+ uptake of photoreceptor discs.
APA, Harvard, Vancouver, ISO, and other styles
29

Kireev, Dmitry, Samuel Liu, Harrison Jin, T. Patrick Xiao, Christopher H. Bennett, Deji Akinwande, and Jean Anne C. Incorvia. "Metaplastic and energy-efficient biocompatible graphene artificial synaptic transistors for enhanced accuracy neuromorphic computing." Nature Communications 13, no. 1 (July 28, 2022). http://dx.doi.org/10.1038/s41467-022-32078-6.

Full text
Abstract:
AbstractCMOS-based computing systems that employ the von Neumann architecture are relatively limited when it comes to parallel data storage and processing. In contrast, the human brain is a living computational signal processing unit that operates with extreme parallelism and energy efficiency. Although numerous neuromorphic electronic devices have emerged in the last decade, most of them are rigid or contain materials that are toxic to biological systems. In this work, we report on biocompatible bilayer graphene-based artificial synaptic transistors (BLAST) capable of mimicking synaptic behavior. The BLAST devices leverage a dry ion-selective membrane, enabling long-term potentiation, with ~50 aJ/µm2 switching energy efficiency, at least an order of magnitude lower than previous reports on two-dimensional material-based artificial synapses. The devices show unique metaplasticity, a useful feature for generalizable deep neural networks, and we demonstrate that metaplastic BLASTs outperform ideal linear synapses in classic image classification tasks. With switching energy well below the 1 fJ energy estimated per biological synapse, the proposed devices are powerful candidates for bio-interfaced online learning, bridging the gap between artificial and biological neural networks.
APA, Harvard, Vancouver, ISO, and other styles
30

Ali, Tamer Awad, Samy B. El-Henawy, and Gehad G. Mohamed. "Electroanalytical determination of Al(III) ion in petroleum water samples using symmetric 1,3-diamine-based Schiff base as a carrier." Journal of the Iranian Chemical Society, April 18, 2022. http://dx.doi.org/10.1007/s13738-022-02549-0.

Full text
Abstract:
AbstractThe capacity of a synthetic (N1E, N3E)-N1,N3-bis(quinolin-2-ylmethylene)benzene-1,3-diamine Schiff base ligand to operate as a cation carrier in a poly(vinylchloride) (PVC) membrane (electrode I) and screen-printed ion-selective electrode (SPE) (electrode II) was investigated. The screen-printed and the fabricated poly(vinylchloride) membrane (PVC) electrodes displayed outstanding response properties for Al(III) ions. The electrodes had linear potential response with a slope of 17.95 ± 0.14 and 19.80 ± 0.46 mV decade−1 in the concentration range of 1.0 × 10−5–1.0 × 10−1 and 1.0 × 10−7–1.0 × 10−1 mol L−1 for electrode I and electrode II, respectively. The detection limit of the proposed sensors is 2.1 × 10−6 and 6.3 × 10−8 mol L−1, and it can be used over a period of 35 and 190 days for electrode I and electrode II, respectively. The suggested sensors showed strong selectivity against a wide range of other cations, including alkali, alkaline earth, heavy, and transition metals, and could be employed in pH ranges of 3.0–6.0 and 2.5–6.5 for electrode I and electrode II, respectively. The effect of several plasticizers has been studied. These electrodes had been successfully used to determine Al(III) in aqueous solution and various real water samples. They used as an indicator electrodes in aluminum ion potentiometric titration against standard EDTA solution. The devised approach was used to determine the concentration of Al(III) in several real water samples with high percentage recoveries and low standard and relative standard deviation values. The results were in good agreement with those obtained using atomic absorption spectrometry as indicated from the calculated t- and F-test values.
APA, Harvard, Vancouver, ISO, and other styles
31

Wang, Qiyue, Fangyuan Li, Zeyu Liang, Hongwei Liao, Bo Zhang, Peihua Lin, Xun Liu, Shen Hu, Jiyoung Lee, and Daishun Ling. "A K+-sensitive AND-gate dual-mode probe for simultaneous tumor imaging and malignancy identification." National Science Review, April 28, 2022. http://dx.doi.org/10.1093/nsr/nwac080.

Full text
Abstract:
Abstract Although molecular imaging probes have the potential to non-invasively diagnose tumor, imaging probes that can detect tumor and simultaneously identify tumor malignancy remain elusive. Here, we demonstrate a potassium ion (K+) sensitive dual-mode nanoprobe (KDMN) for non-invasive tumor imaging and malignancy identification, which operates via a cascaded ‘AND’ logic gate controlled by inputs of magnetic resonance imaging (MRI) and fluorescence imaging (FI) signals. We encapsulate commercial K+ indicators into hollow cavities of magnetic mesoporous silica nanoparticles, which are subsequently coated with a K+-selective membrane that exclusively permits the passage of K+ while excluding other cations. The KDMN can readily accumulate in tumors and enhance the MRI contrast after systemic administration. Spatial information of the tumor lesion is thus accessible via MRI and forms the first layer of the ‘AND’ gate. Meanwhile, the KDMN selectively captures K+ and prevents interference from other cations, triggering a K+ activated FI signal as the second layer of the ‘AND’ gate in the case of a malignant tumor with a high extracellular K+ level. This dual-mode imaging approach effectively eliminates false positive or negative diagnostic results and allows for non-invasive imaging of tumor malignancy with high sensitivity and accuracy.
APA, Harvard, Vancouver, ISO, and other styles
32

Chu, Fenglan, Hanxing Wan, Weidong Xiao, Hui Dong, and Muhan Lü. "Ca2+-Permeable Channels/Ca2+ Signaling in the Regulation of Ileal Na+/Gln Co-Transport in Mice." Frontiers in Pharmacology 13 (February 23, 2022). http://dx.doi.org/10.3389/fphar.2022.816133.

Full text
Abstract:
Oral glutamine (Gln) has been widely used in gastrointestinal (GI) clinical practice, but it is unclear if Ca2+ regulates intestinal Gln transport, although both of them are essential nutrients for mammals. Chambers were used to determine Gln (25 mM)-induced Isc through Na+/Gln co-transporters in the small intestine in the absence or the presence of selective activators or blockers of ion channels and transporters. Luminal but not serosal application of Gln induced marked intestinal Isc, especially in the distal ileum. Lowering luminal Na+ almost abolished the Gln-induced ileal Isc, in which the calcium-sensitive receptor (CaSR) activation were not involved. Ca2+ removal from both luminal and serosal sides of the ileum significantly reduced Gln- Isc. Blocking either luminal Ca2+ entry via the voltage-gated calcium channels (VGCC) or endoplasmic reticulum (ER) release via inositol 1,4,5-triphosphate receptor (IP3R) and ryanodine receptor (RyR) attenuated the Gln-induced ileal Isc, Likewise, blocking serosal Ca2+ entry via the store-operated Ca2+ entry (SOCE), TRPV1/2 channels, and Na+/Ca2+ exchangers (NCX) attenuated the Gln-induced ileal Isc. In contrast, activating TRPV1/2 channels enhanced the Gln-induced ileal Isc. We concluded that Ca2+ signaling is critical for intestinal Gln transport, and multiple plasma membrane Ca2+-permeable channels and transporters play roles in this process. The Ca2+ regulation of ileal Na+/Gln transport expands our understanding of intestinal nutrient uptake and may be significant in GI health and disease.
APA, Harvard, Vancouver, ISO, and other styles
33

Blair, Nathaniel T., Ingrid Carvacho, Dipayan Chaudhuri, David E. Clapham, Paul DeCaen, Markus Delling, Julia F. Doerner, et al. "Transient Receptor Potential channels (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database." IUPHAR/BPS Guide to Pharmacology CITE 2019, no. 4 (September 16, 2019). http://dx.doi.org/10.2218/gtopdb/f78/2019.4.

Full text
Abstract:
The TRP superfamily of channels (nomenclature as agreed by NC-IUPHAR [145, 915]), whose founder member is the Drosophila Trp channel, exists in mammals as six families; TRPC, TRPM, TRPV, TRPA, TRPP and TRPML based on amino acid homologies. TRP subunits contain six putative transmembrane domains and assemble as homo- or hetero-tetramers to form cation selective channels with diverse modes of activation and varied permeation properties (reviewed by [630]). Established, or potential, physiological functions of the individual members of the TRP families are discussed in detail in the recommended reviews and in a number of books [344, 589, 979, 216]. The established, or potential, involvement of TRP channels in disease is reviewed in [384, 588] and [591], together with a special edition of Biochemica et Biophysica Acta on the subject [588]. Additional disease related reviews, for pain [542], stroke [967], sensation and inflammation [843], itch [109], and airway disease [261, 896], are available. The pharmacology of most TRP channels has been advanced in recent years. Broad spectrum agents are listed in the tables along with more selective, or recently recognised, ligands that are flagged by the inclusion of a primary reference. See Rubaiy (2019) for a review of pharmacological tools for TRPC1/C4/C5 channels [692]. Most TRP channels are regulated by phosphoinostides such as PtIns(4,5)P2 although the effects reported are often complex, occasionally contradictory, and likely to be dependent upon experimental conditions, such as intracellular ATP levels (reviewed by [862, 592, 689]). Such regulation is generally not included in the tables.When thermosensitivity is mentioned, it refers specifically to a high Q10 of gating, often in the range of 10-30, but does not necessarily imply that the channel's function is to act as a 'hot' or 'cold' sensor. In general, the search for TRP activators has led to many claims for temperature sensing, mechanosensation, and lipid sensing. All proteins are of course sensitive to energies of binding, mechanical force, and temperature, but the issue is whether the proposed input is within a physiologically relevant range resulting in a response. TRPA (ankyrin) familyTRPA1 is the sole mammalian member of this group (reviewed by [246]). TRPA1 activation of sensory neurons contribute to nociception [356, 763, 516]. Pungent chemicals such as mustard oil (AITC), allicin, and cinnamaldehyde activate TRPA1 by modification of free thiol groups of cysteine side chains, especially those located in its amino terminus [491, 47, 311, 493]. Alkenals with α, β-unsaturated bonds, such as propenal (acrolein), butenal (crotylaldehyde), and 2-pentenal can react with free thiols via Michael addition and can activate TRPA1. However, potency appears to weaken as carbon chain length increases [21, 47]. Covalent modification leads to sustained activation of TRPA1. Chemicals including carvacrol, menthol, and local anesthetics reversibly activate TRPA1 by non-covalent binding [364, 438, 923, 922]. TRPA1 is not mechanosensitive under physiological conditions, but can be activated by cold temperatures [365, 175]. The electron cryo-EM structure of TRPA1 [639] indicates that it is a 6-TM homotetramer. Each subunit of the channel contains two short ‘pore helices’ pointing into the ion selectivity filter, which is big enough to allow permeation of partially hydrated Ca2+ ions. TRPC (canonical) familyMembers of the TRPC subfamily (reviewed by [239, 673, 14, 4, 79, 382, 638, 55]) fall into the subgroups outlined below. TRPC2 is a pseudogene in humans. It is generally accepted that all TRPC channels are activated downstream of Gq/11-coupled receptors, or receptor tyrosine kinases (reviewed by [661, 814, 915]). A comprehensive listing of G-protein coupled receptors that activate TRPC channels is given in [4]. Hetero-oligomeric complexes of TRPC channels and their association with proteins to form signalling complexes are detailed in [14] and [383]. TRPC channels have frequently been proposed to act as store-operated channels (SOCs) (or compenents of mulimeric complexes that form SOCs), activated by depletion of intracellular calcium stores (reviewed by [640, 14, 665, 703, 954, 132, 626, 51, 133]). However, the weight of the evidence is that they are not directly gated by conventional store-operated mechanisms, as established for Stim-gated Orai channels. TRPC channels are not mechanically gated in physiologically relevant ranges of force. All members of the TRPC family are blocked by 2-APB and SKF96365 [295, 294]. Activation of TRPC channels by lipids is discussed by [55]. Important progress has been recently made in TRPC pharmacology [692, 529, 372, 87]. TRPC channels regulate a variety of physiological functions and are implicated in many human diseases [248, 56, 759, 879]. TRPC1/C4/C5 subgroup TRPC1 alone may not form a functional ion channel [191]. TRPC4/C5 may be distinguished from other TRP channels by their potentiation by micromolar concentrations of La3+. TRPC2 is a pseudogene in humans, but in other mammals appears to be an ion channel localized to microvilli of the vomeronasal organ. It is required for normal sexual behavior in response to pheromones in mice. It may also function in the main olfactory epithelia in mice [951, 625, 624, 952, 462, 988, 947].TRPC3/C6/C7 subgroup All members are activated by diacylglycerol independent of protein kinase C stimulation [295].TRPM (melastatin) familyMembers of the TRPM subfamily (reviewed by [230, 294, 640, 978]) fall into the five subgroups outlined below. TRPM1/M3 subgroupIn darkness, glutamate released by the photoreceptors and ON-bipolar cells binds to the metabotropic glutamate receptor 6 , leading to activation of Go . This results in the closure of TRPM1. When the photoreceptors are stimulated by light, glutamate release is reduced, and TRPM1 channels are more active, resulting in cell membrane depolarization. Human TRPM1 mutations are associated with congenital stationary night blindness (CSNB), whose patients lack rod function. TRPM1 is also found melanocytes. Isoforms of TRPM1 may present in melanocytes, melanoma, brain, and retina. In melanoma cells, TRPM1 is prevalent in highly dynamic intracellular vesicular structures [341, 609]. TRPM3 (reviewed by [615]) exists as multiple splice variants which differ significantly in their biophysical properties. TRPM3 is expressed in somatosensory neurons and may be important in development of heat hyperalgesia during inflammation (see review [803]). TRPM3 is frequently coexpressed with TRPA1 and TRPV1 in these neurons. TRPM3 is expressed in pancreatic beta cells as well as brain, pituitary gland, eye, kidney, and adipose tissue [614, 802]. TRPM3 may contribute to the detection of noxious heat [870].TRPM2TRPM2 is activated under conditions of oxidative stress (respiratory burst of phagocytic cells) and ischemic conditions. However, the direct activators are ADPR(P) and calcium. As for many ion channels, PIP2 must also be present (reviewed by [935]). Numerous splice variants of TRPM2 exist which differ in their activation mechanisms [200]. The C-terminal domain contains a TRP motif, a coiled-coil region, and an enzymatic NUDT9 homologous domain. TRPM2 appears not to be activated by NAD, NAAD, or NAADP, but is directly activated by ADPRP (adenosine-5'-O-disphosphoribose phosphate) [827]. TRPM2 is involved in warmth sensation [724], and contributes to neurological diseases [61]. Recent study shows that 2'-deoxy-ADPR is an endogenous TRPM2 superagonist [231]. TRPM4/5 subgroupTRPM4 and TRPM5 have the distinction within all TRP channels of being impermeable to Ca2+ [915]. A splice variant of TRPM4 (i.e.TRPM4b) and TRPM5 are molecular candidates for endogenous calcium-activated cation (CAN) channels [278]. TRPM4 is active in the late phase of repolarization of the cardiac ventricular action potential. TRPM4 deletion or knockout enhances beta adrenergic-mediated inotropy [507]. Mutations are associated with conduction defects [347, 507, 753]. TRPM4 has been shown to be an important regulator of Ca2+ entry in to mast cells [847] and dendritic cell migration [39]. TRPM5 in taste receptor cells of the tongue appears essential for the transduction of sweet, amino acid and bitter stimuli [460] TRPM5 contributes to the slow afterdepolarization of layer 5 neurons in mouse prefrontal cortex [439]. Both TRPM4 and TRPM5 are required transduction of taste stimuli [206].TRPM6/7 subgroupTRPM6 and 7 combine channel and enzymatic activities (‘chanzymes’). These channels have the unusual property of permeation by divalent (Ca2+, Mg2+, Zn2+) and monovalent cations, high single channel conductances, but overall extremely small inward conductance when expressed to the plasma membrane. They are inhibited by internal Mg2+ at ~0.6 mM, around the free level of Mg2+ in cells. Whether they contribute to Mg2+ homeostasis is a contentious issue. When either gene is deleted in mice, the result is embryonic lethality. The C-terminal kinase region is cleaved under unknown stimuli, and the kinase phosphorylates nuclear histones. TRPM7 is responsible for oxidant- induced Zn2+ release from intracellular vesicles [3] and contributes to intestinal mineral absorption essential for postnatal survival [532]. TRPM8Is a channel activated by cooling and pharmacological agents evoking a ‘cool’ sensation and participates in the thermosensation of cold temperatures [50, 147, 186] reviewed by [864, 481, 391, 556]. TRPML (mucolipin) familyThe TRPML family [676, 964, 670, 926, 156] consists of three mammalian members (TRPML1-3). TRPML channels are probably restricted to intracellular vesicles and mutations in the gene (MCOLN1) encoding TRPML1 (mucolipin-1) cause the neurodegenerative disorder mucolipidosis type IV (MLIV) in man. TRPML1 is a cation selective ion channel that is important for sorting/transport of endosomes in the late endocytotic pathway and specifically, fission from late endosome-lysosome hybrid vesicles and lysosomal exocytosis [704]. TRPML2 and TRPML3 show increased channel activity in low extracellular sodium and are activated by similar small molecules [270]. A naturally occurring gain of function mutation in TRPML3 (i.e. A419P) results in the varitint waddler (Va) mouse phenotype (reviewed by [676, 593]). TRPP (polycystin) familyThe TRPP family (reviewed by [179, 177, 252, 905, 320]) or PKD2 family is comprised of PKD2 (PC2), PKD2L1 (PC2L1), PKD2L2 (PC2L2), which have been renamed TRPP1, TRPP2 and TRPP3, respectively [915]. It should also be noted that the nomenclature of PC2 was TRPP2 in old literature. However, PC2 has been uniformed to be called TRPP2 [293]. PKD2 family channels are clearly distinct from the PKD1 family, whose function is unknown. PKD1 and PKD2 form a hetero-oligomeric complex with a 1:3 ratio. [775]. Although still being sorted out, TRPP family members appear to be 6TM spanning nonselective cation channels. TRPV (vanilloid) familyMembers of the TRPV family (reviewed by [849]) can broadly be divided into the non-selective cation channels, TRPV1-4 and the more calcium selective channels TRPV5 and TRPV6.TRPV1-V4 subfamilyTRPV1 is involved in the development of thermal hyperalgesia following inflammation and may contribute to the detection of noxius heat (reviewed by [660, 756, 786]). Numerous splice variants of TRPV1 have been described, some of which modulate the activity of TRPV1, or act in a dominant negative manner when co-expressed with TRPV1 [722]. The pharmacology of TRPV1 channels is discussed in detail in [280] and [868]. TRPV2 is probably not a thermosensor in man [635], but has recently been implicated in innate immunity [469]. TRPV3 and TRPV4 are both thermosensitive. There are claims that TRPV4 is also mechanosensitive, but this has not been established to be within a physiological range in a native environment [106, 454].TRPV5/V6 subfamily TRPV5 and TRPV6 are highly expressed in placenta, bone, and kidney. Under physiological conditions, TRPV5 and TRPV6 are calcium selective channels involved in the absorption and reabsorption of calcium across intestinal and kidney tubule epithelia (reviewed by [901, 168, 558, 227]).
APA, Harvard, Vancouver, ISO, and other styles
34

Blair, Nathaniel T., Ingrid Carvacho, Dipayan Chaudhuri, David E. Clapham, Paul DeCaen, Markus Delling, Julia F. Doerner, et al. "Transient Receptor Potential channels (TRP) in GtoPdb v.2022.1." IUPHAR/BPS Guide to Pharmacology CITE 2022, no. 1 (March 31, 2022). http://dx.doi.org/10.2218/gtopdb/f78/2022.1.

Full text
Abstract:
The TRP superfamily of channels (nomenclature as agreed by NC-IUPHAR [159, 999]), whose founder member is the Drosophila Trp channel, exists in mammals as six families; TRPC, TRPM, TRPV, TRPA, TRPP and TRPML based on amino acid homologies. TRP subunits contain six putative TM domains and assemble as homo- or hetero-tetramers to form cation selective channels with diverse modes of activation and varied permeation properties (reviewed by [679]). Established, or potential, physiological functions of the individual members of the TRP families are discussed in detail in the recommended reviews and in a number of books [371, 635, 1066, 236]. The established, or potential, involvement of TRP channels in disease is reviewed in [412, 634] and [637], together with a special edition of Biochemica et Biophysica Acta on the subject [634]. Additional disease related reviews, for pain [585], stroke [1052], sensation and inflammation [921], itch [117], and airway disease [284, 979], are available. The pharmacology of most TRP channels has been advanced in recent years. Broad spectrum agents are listed in the tables along with more selective, or recently recognised, ligands that are flagged by the inclusion of a primary reference. See Rubaiy (2019) for a review of pharmacological tools for TRPC1/C4/C5 channels [751]. Most TRP channels are regulated by phosphoinostides such as PtIns(4,5)P2 although the effects reported are often complex, occasionally contradictory, and likely to be dependent upon experimental conditions, such as intracellular ATP levels (reviewed by [941, 638, 747]). Such regulation is generally not included in the tables.When thermosensitivity is mentioned, it refers specifically to a high Q10 of gating, often in the range of 10-30, but does not necessarily imply that the channel's function is to act as a 'hot' or 'cold' sensor. In general, the search for TRP activators has led to many claims for temperature sensing, mechanosensation, and lipid sensing. All proteins are of course sensitive to energies of binding, mechanical force, and temperature, but the issue is whether the proposed input is within a physiologically relevant range resulting in a response. TRPA (ankyrin) familyTRPA1 is the sole mammalian member of this group (reviewed by [268]). TRPA1 activation of sensory neurons contribute to nociception [382, 831, 555]. Pungent chemicals such as mustard oil (AITC), allicin, and cinnamaldehyde activate TRPA1 by modification of free thiol groups of cysteine side chains, especially those located in its amino terminus [529, 51, 336, 531]. Alkenals with α, β-unsaturated bonds, such as propenal (acrolein), butenal (crotylaldehyde), and 2-pentenal can react with free thiols via Michael addition and can activate TRPA1. However, potency appears to weaken as carbon chain length increases [23, 51]. Covalent modification leads to sustained activation of TRPA1. Chemicals including carvacrol, menthol, and local anesthetics reversibly activate TRPA1 by non-covalent binding [391, 470, 1007, 1006]. TRPA1 is not mechanosensitive under physiological conditions, but can be activated by cold temperatures [392, 193]. The electron cryo-EM structure of TRPA1 [688] indicates that it is a 6-TM homotetramer. Each subunit of the channel contains two short ‘pore helices’ pointing into the ion selectivity filter, which is big enough to allow permeation of partially hydrated Ca2+ ions. TRPC (canonical) familyMembers of the TRPC subfamily (reviewed by [261, 726, 15, 4, 84, 410, 687, 60]) fall into the subgroups outlined below. TRPC2 is a pseudogene in humans. It is generally accepted that all TRPC channels are activated downstream of Gq/11-coupled receptors, or receptor tyrosine kinases (reviewed by [713, 889, 999]). A comprehensive listing of G-protein coupled receptors that activate TRPC channels is given in [4]. Hetero-oligomeric complexes of TRPC channels and their association with proteins to form signalling complexes are detailed in [15] and [411]. TRPC channels have frequently been proposed to act as store-operated channels (SOCs) (or compenents of mulimeric complexes that form SOCs), activated by depletion of intracellular calcium stores (reviewed by [689, 15, 718, 765, 1039, 141, 675, 55, 142]). However, the weight of the evidence is that they are not directly gated by conventional store-operated mechanisms, as established for Stim-gated Orai channels. TRPC channels are not mechanically gated in physiologically relevant ranges of force. All members of the TRPC family are blocked by 2-APB and SKF96365 [319, 318]. Activation of TRPC channels by lipids is discussed by [60]. Important progress has been recently made in TRPC pharmacology [751, 571, 400, 92]. TRPC channels regulate a variety of physiological functions and are implicated in many human diseases [270, 61, 827, 960]. TRPC1/C4/C5 subgroup TRPC1 alone may not form a functional ion channel [210]. TRPC4/C5 may be distinguished from other TRP channels by their potentiation by micromolar concentrations of La3+. TRPC2 is a pseudogene in humans, but in other mammals appears to be an ion channel localized to microvilli of the vomeronasal organ. It is required for normal sexual behavior in response to pheromones in mice. It may also function in the main olfactory epithelia in mice [1036, 672, 673, 1037, 496, 1077, 1032].TRPC3/C6/C7 subgroup All members are activated by diacylglycerol independent of protein kinase C stimulation [319].TRPM (melastatin) familyMembers of the TRPM subfamily (reviewed by [252, 318, 689, 1064]) fall into the five subgroups outlined below. TRPM1/M3 subgroupIn darkness, glutamate released by the photoreceptors and ON-bipolar cells binds to the metabotropic glutamate receptor 6 , leading to activation of Go . This results in the closure of TRPM1. When the photoreceptors are stimulated by light, glutamate release is reduced, and TRPM1 channels are more active, resulting in cell membrane depolarization. Human TRPM1 mutations are associated with congenital stationary night blindness (CSNB), whose patients lack rod function. TRPM1 is also found melanocytes. Isoforms of TRPM1 may present in melanocytes, melanoma, brain, and retina. In melanoma cells, TRPM1 is prevalent in highly dynamic intracellular vesicular structures [368, 657]. TRPM3 (reviewed by [663]) exists as multiple splice variants which differ significantly in their biophysical properties. TRPM3 is expressed in somatosensory neurons and may be important in development of heat hyperalgesia during inflammation (see review [878]). TRPM3 is frequently coexpressed with TRPA1 and TRPV1 in these neurons. TRPM3 is expressed in pancreatic beta cells as well as brain, pituitary gland, eye, kidney, and adipose tissue [662, 877]. TRPM3 may contribute to the detection of noxious heat [949].TRPM2TRPM2 is activated under conditions of oxidative stress (respiratory burst of phagocytic cells) and ischemic conditions. However, the direct activators are ADPR(P) and calcium. As for many ion channels, PIP2 must also be present (reviewed by [1020]). Numerous splice variants of TRPM2 exist which differ in their activation mechanisms [219]. The C-terminal domain contains a TRP motif, a coiled-coil region, and an enzymatic NUDT9 homologous domain. TRPM2 appears not to be activated by NAD, NAAD, or NAADP, but is directly activated by ADPRP (adenosine-5'-O-disphosphoribose phosphate) [902]. TRPM2 is involved in warmth sensation [789], and contributes to neurological diseases [66]. Recent study shows that 2'-deoxy-ADPR is an endogenous TRPM2 superagonist [253]. TRPM4/5 subgroupTRPM4 and TRPM5 have the distinction within all TRP channels of being impermeable to Ca2+ [999]. A splice variant of TRPM4 (i.e.TRPM4b) and TRPM5 are molecular candidates for endogenous calcium-activated cation (CAN) channels [301]. TRPM4 is active in the late phase of repolarization of the cardiac ventricular action potential. TRPM4 deletion or knockout enhances beta adrenergic-mediated inotropy [546]. Mutations are associated with conduction defects [374, 546, 821]. TRPM4 has been shown to be an important regulator of Ca2+ entry in to mast cells [926] and dendritic cell migration [43]. TRPM5 in taste receptor cells of the tongue appears essential for the transduction of sweet, amino acid and bitter stimuli [494] TRPM5 contributes to the slow afterdepolarization of layer 5 neurons in mouse prefrontal cortex [471]. Both TRPM4 and TRPM5 are required transduction of taste stimuli [226].TRPM6/7 subgroupTRPM6 and 7 combine channel and enzymatic activities (‘chanzymes’). These channels have the unusual property of permeation by divalent (Ca2+, Mg2+, Zn2+) and monovalent cations, high single channel conductances, but overall extremely small inward conductance when expressed to the plasma membrane. They are inhibited by internal Mg2+ at ~0.6 mM, around the free level of Mg2+ in cells. Whether they contribute to Mg2+ homeostasis is a contentious issue. When either gene is deleted in mice, the result is embryonic lethality. The C-terminal kinase region is cleaved under unknown stimuli, and the kinase phosphorylates nuclear histones. TRPM7 is responsible for oxidant- induced Zn2+ release from intracellular vesicles [3] and contributes to intestinal mineral absorption essential for postnatal survival [574]. TRPM8Is a channel activated by cooling and pharmacological agents evoking a ‘cool’ sensation and participates in the thermosensation of cold temperatures [54, 161, 205] reviewed by [943, 516, 420, 599]. TRPML (mucolipin) familyThe TRPML family [729, 1049, 723, 1010, 173] consists of three mammalian members (TRPML1-3). TRPML channels are probably restricted to intracellular vesicles and mutations in the gene (MCOLN1) encoding TRPML1 (mucolipin-1) cause the neurodegenerative disorder mucolipidosis type IV (MLIV) in man. TRPML1 is a cation selective ion channel that is important for sorting/transport of endosomes in the late endocytotic pathway and specifically, fission from late endosome-lysosome hybrid vesicles and lysosomal exocytosis [766]. TRPML2 and TRPML3 show increased channel activity in low extracellular sodium and are activated by similar small molecules [293]. A naturally occurring gain of function mutation in TRPML3 (i.e. A419P) results in the varitint waddler (Va) mouse phenotype (reviewed by [729, 639]). TRPP (polycystin) familyThe TRPP family (reviewed by [197, 195, 275, 988, 345]) or PKD2 family is comprised of PKD2 (PC2), PKD2L1 (PC2L1), PKD2L2 (PC2L2), which have been renamed TRPP1, TRPP2 and TRPP3, respectively [999]. It should also be noted that the nomenclature of PC2 was TRPP2 in old literature. However, PC2 has been uniformed to be called TRPP2 [317]. PKD2 family channels are clearly distinct from the PKD1 family, whose function is unknown. PKD1 and PKD2 form a hetero-oligomeric complex with a 1:3 ratio. [845]. Although still being sorted out, TRPP family members appear to be 6TM spanning nonselective cation channels. TRPV (vanilloid) familyMembers of the TRPV family (reviewed by [928]) can broadly be divided into the non-selective cation channels, TRPV1-4 and the more calcium selective channels TRPV5 and TRPV6.TRPV1-V4 subfamilyTRPV1 is involved in the development of thermal hyperalgesia following inflammation and may contribute to the detection of noxius heat (reviewed by [710, 824, 860]). Numerous splice variants of TRPV1 have been described, some of which modulate the activity of TRPV1, or act in a dominant negative manner when co-expressed with TRPV1 [787]. The pharmacology of TRPV1 channels is discussed in detail in [303] and [947]. TRPV2 is probably not a thermosensor in man [684], but has recently been implicated in innate immunity [503]. TRPV3 and TRPV4 are both thermosensitive. There are claims that TRPV4 is also mechanosensitive, but this has not been established to be within a physiological range in a native environment [114, 488].TRPV5/V6 subfamily TRPV5 and TRPV6 are highly expressed in placenta, bone, and kidney. Under physiological conditions, TRPV5 and TRPV6 are calcium selective channels involved in the absorption and reabsorption of calcium across intestinal and kidney tubule epithelia (reviewed by [984, 185, 601, 248]).
APA, Harvard, Vancouver, ISO, and other styles
35

Blair, Nathaniel T., Ingrid Carvacho, Dipayan Chaudhuri, David E. Clapham, Paul DeCaen, Markus Delling, Julia F. Doerner, et al. "Transient Receptor Potential channels (TRP) in GtoPdb v.2021.3." IUPHAR/BPS Guide to Pharmacology CITE 2021, no. 3 (September 2, 2021). http://dx.doi.org/10.2218/gtopdb/f78/2021.3.

Full text
Abstract:
The TRP superfamily of channels (nomenclature as agreed by NC-IUPHAR [159, 997]), whose founder member is the Drosophila Trp channel, exists in mammals as six families; TRPC, TRPM, TRPV, TRPA, TRPP and TRPML based on amino acid homologies. TRP subunits contain six putative TM domains and assemble as homo- or hetero-tetramers to form cation selective channels with diverse modes of activation and varied permeation properties (reviewed by [679]). Established, or potential, physiological functions of the individual members of the TRP families are discussed in detail in the recommended reviews and in a number of books [371, 635, 1064, 236]. The established, or potential, involvement of TRP channels in disease is reviewed in [412, 634] and [637], together with a special edition of Biochemica et Biophysica Acta on the subject [634]. Additional disease related reviews, for pain [585], stroke [1050], sensation and inflammation [919], itch [117], and airway disease [284, 977], are available. The pharmacology of most TRP channels has been advanced in recent years. Broad spectrum agents are listed in the tables along with more selective, or recently recognised, ligands that are flagged by the inclusion of a primary reference. See Rubaiy (2019) for a review of pharmacological tools for TRPC1/C4/C5 channels [751]. Most TRP channels are regulated by phosphoinostides such as PtIns(4,5)P2 although the effects reported are often complex, occasionally contradictory, and likely to be dependent upon experimental conditions, such as intracellular ATP levels (reviewed by [939, 638, 747]). Such regulation is generally not included in the tables.When thermosensitivity is mentioned, it refers specifically to a high Q10 of gating, often in the range of 10-30, but does not necessarily imply that the channel's function is to act as a 'hot' or 'cold' sensor. In general, the search for TRP activators has led to many claims for temperature sensing, mechanosensation, and lipid sensing. All proteins are of course sensitive to energies of binding, mechanical force, and temperature, but the issue is whether the proposed input is within a physiologically relevant range resulting in a response. TRPA (ankyrin) familyTRPA1 is the sole mammalian member of this group (reviewed by [268]). TRPA1 activation of sensory neurons contribute to nociception [382, 829, 555]. Pungent chemicals such as mustard oil (AITC), allicin, and cinnamaldehyde activate TRPA1 by modification of free thiol groups of cysteine side chains, especially those located in its amino terminus [529, 51, 336, 531]. Alkenals with α, β-unsaturated bonds, such as propenal (acrolein), butenal (crotylaldehyde), and 2-pentenal can react with free thiols via Michael addition and can activate TRPA1. However, potency appears to weaken as carbon chain length increases [23, 51]. Covalent modification leads to sustained activation of TRPA1. Chemicals including carvacrol, menthol, and local anesthetics reversibly activate TRPA1 by non-covalent binding [391, 470, 1005, 1004]. TRPA1 is not mechanosensitive under physiological conditions, but can be activated by cold temperatures [392, 193]. The electron cryo-EM structure of TRPA1 [688] indicates that it is a 6-TM homotetramer. Each subunit of the channel contains two short ‘pore helices’ pointing into the ion selectivity filter, which is big enough to allow permeation of partially hydrated Ca2+ ions. TRPC (canonical) familyMembers of the TRPC subfamily (reviewed by [261, 726, 15, 4, 84, 410, 687, 60]) fall into the subgroups outlined below. TRPC2 is a pseudogene in humans. It is generally accepted that all TRPC channels are activated downstream of Gq/11-coupled receptors, or receptor tyrosine kinases (reviewed by [713, 887, 997]). A comprehensive listing of G-protein coupled receptors that activate TRPC channels is given in [4]. Hetero-oligomeric complexes of TRPC channels and their association with proteins to form signalling complexes are detailed in [15] and [411]. TRPC channels have frequently been proposed to act as store-operated channels (SOCs) (or compenents of mulimeric complexes that form SOCs), activated by depletion of intracellular calcium stores (reviewed by [689, 15, 718, 764, 1037, 141, 675, 55, 142]). However, the weight of the evidence is that they are not directly gated by conventional store-operated mechanisms, as established for Stim-gated Orai channels. TRPC channels are not mechanically gated in physiologically relevant ranges of force. All members of the TRPC family are blocked by 2-APB and SKF96365 [319, 318]. Activation of TRPC channels by lipids is discussed by [60]. Important progress has been recently made in TRPC pharmacology [751, 571, 400, 92]. TRPC channels regulate a variety of physiological functions and are implicated in many human diseases [270, 61, 825, 958]. TRPC1/C4/C5 subgroup TRPC1 alone may not form a functional ion channel [210]. TRPC4/C5 may be distinguished from other TRP channels by their potentiation by micromolar concentrations of La3+. TRPC2 is a pseudogene in humans, but in other mammals appears to be an ion channel localized to microvilli of the vomeronasal organ. It is required for normal sexual behavior in response to pheromones in mice. It may also function in the main olfactory epithelia in mice [1034, 672, 673, 1035, 496, 1075, 1030].TRPC3/C6/C7 subgroup All members are activated by diacylglycerol independent of protein kinase C stimulation [319].TRPM (melastatin) familyMembers of the TRPM subfamily (reviewed by [252, 318, 689, 1062]) fall into the five subgroups outlined below. TRPM1/M3 subgroupIn darkness, glutamate released by the photoreceptors and ON-bipolar cells binds to the metabotropic glutamate receptor 6 , leading to activation of Go . This results in the closure of TRPM1. When the photoreceptors are stimulated by light, glutamate release is reduced, and TRPM1 channels are more active, resulting in cell membrane depolarization. Human TRPM1 mutations are associated with congenital stationary night blindness (CSNB), whose patients lack rod function. TRPM1 is also found melanocytes. Isoforms of TRPM1 may present in melanocytes, melanoma, brain, and retina. In melanoma cells, TRPM1 is prevalent in highly dynamic intracellular vesicular structures [368, 657]. TRPM3 (reviewed by [663]) exists as multiple splice variants which differ significantly in their biophysical properties. TRPM3 is expressed in somatosensory neurons and may be important in development of heat hyperalgesia during inflammation (see review [876]). TRPM3 is frequently coexpressed with TRPA1 and TRPV1 in these neurons. TRPM3 is expressed in pancreatic beta cells as well as brain, pituitary gland, eye, kidney, and adipose tissue [662, 875]. TRPM3 may contribute to the detection of noxious heat [947].TRPM2TRPM2 is activated under conditions of oxidative stress (respiratory burst of phagocytic cells) and ischemic conditions. However, the direct activators are ADPR(P) and calcium. As for many ion channels, PIP2 must also be present (reviewed by [1018]). Numerous splice variants of TRPM2 exist which differ in their activation mechanisms [219]. The C-terminal domain contains a TRP motif, a coiled-coil region, and an enzymatic NUDT9 homologous domain. TRPM2 appears not to be activated by NAD, NAAD, or NAADP, but is directly activated by ADPRP (adenosine-5'-O-disphosphoribose phosphate) [900]. TRPM2 is involved in warmth sensation [788], and contributes to neurological diseases [66]. Recent study shows that 2'-deoxy-ADPR is an endogenous TRPM2 superagonist [253]. TRPM4/5 subgroupTRPM4 and TRPM5 have the distinction within all TRP channels of being impermeable to Ca2+ [997]. A splice variant of TRPM4 (i.e.TRPM4b) and TRPM5 are molecular candidates for endogenous calcium-activated cation (CAN) channels [301]. TRPM4 is active in the late phase of repolarization of the cardiac ventricular action potential. TRPM4 deletion or knockout enhances beta adrenergic-mediated inotropy [546]. Mutations are associated with conduction defects [374, 546, 819]. TRPM4 has been shown to be an important regulator of Ca2+ entry in to mast cells [924] and dendritic cell migration [43]. TRPM5 in taste receptor cells of the tongue appears essential for the transduction of sweet, amino acid and bitter stimuli [494] TRPM5 contributes to the slow afterdepolarization of layer 5 neurons in mouse prefrontal cortex [471]. Both TRPM4 and TRPM5 are required transduction of taste stimuli [226].TRPM6/7 subgroupTRPM6 and 7 combine channel and enzymatic activities (‘chanzymes’). These channels have the unusual property of permeation by divalent (Ca2+, Mg2+, Zn2+) and monovalent cations, high single channel conductances, but overall extremely small inward conductance when expressed to the plasma membrane. They are inhibited by internal Mg2+ at ~0.6 mM, around the free level of Mg2+ in cells. Whether they contribute to Mg2+ homeostasis is a contentious issue. When either gene is deleted in mice, the result is embryonic lethality. The C-terminal kinase region is cleaved under unknown stimuli, and the kinase phosphorylates nuclear histones. TRPM7 is responsible for oxidant- induced Zn2+ release from intracellular vesicles [3] and contributes to intestinal mineral absorption essential for postnatal survival [574]. TRPM8Is a channel activated by cooling and pharmacological agents evoking a ‘cool’ sensation and participates in the thermosensation of cold temperatures [54, 161, 205] reviewed by [941, 516, 420, 599]. TRPML (mucolipin) familyThe TRPML family [729, 1047, 723, 1008, 173] consists of three mammalian members (TRPML1-3). TRPML channels are probably restricted to intracellular vesicles and mutations in the gene (MCOLN1) encoding TRPML1 (mucolipin-1) cause the neurodegenerative disorder mucolipidosis type IV (MLIV) in man. TRPML1 is a cation selective ion channel that is important for sorting/transport of endosomes in the late endocytotic pathway and specifically, fission from late endosome-lysosome hybrid vesicles and lysosomal exocytosis [765]. TRPML2 and TRPML3 show increased channel activity in low extracellular sodium and are activated by similar small molecules [293]. A naturally occurring gain of function mutation in TRPML3 (i.e. A419P) results in the varitint waddler (Va) mouse phenotype (reviewed by [729, 639]). TRPP (polycystin) familyThe TRPP family (reviewed by [197, 195, 275, 986, 345]) or PKD2 family is comprised of PKD2 (PC2), PKD2L1 (PC2L1), PKD2L2 (PC2L2), which have been renamed TRPP1, TRPP2 and TRPP3, respectively [997]. It should also be noted that the nomenclature of PC2 was TRPP2 in old literature. However, PC2 has been uniformed to be called TRPP2 [317]. PKD2 family channels are clearly distinct from the PKD1 family, whose function is unknown. PKD1 and PKD2 form a hetero-oligomeric complex with a 1:3 ratio. [843]. Although still being sorted out, TRPP family members appear to be 6TM spanning nonselective cation channels. TRPV (vanilloid) familyMembers of the TRPV family (reviewed by [926]) can broadly be divided into the non-selective cation channels, TRPV1-4 and the more calcium selective channels TRPV5 and TRPV6.TRPV1-V4 subfamilyTRPV1 is involved in the development of thermal hyperalgesia following inflammation and may contribute to the detection of noxius heat (reviewed by [710, 822, 858]). Numerous splice variants of TRPV1 have been described, some of which modulate the activity of TRPV1, or act in a dominant negative manner when co-expressed with TRPV1 [786]. The pharmacology of TRPV1 channels is discussed in detail in [303] and [945]. TRPV2 is probably not a thermosensor in man [684], but has recently been implicated in innate immunity [503]. TRPV3 and TRPV4 are both thermosensitive. There are claims that TRPV4 is also mechanosensitive, but this has not been established to be within a physiological range in a native environment [114, 488].TRPV5/V6 subfamily TRPV5 and TRPV6 are highly expressed in placenta, bone, and kidney. Under physiological conditions, TRPV5 and TRPV6 are calcium selective channels involved in the absorption and reabsorption of calcium across intestinal and kidney tubule epithelia (reviewed by [982, 185, 601, 248]).
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography