Academic literature on the topic 'Ion Conduction - Glass'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ion Conduction - Glass.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ion Conduction - Glass"
Mehrer, Helmut. "Diffusion and Ion Conduction in Cation-Conducting Oxide Glasses." Diffusion Foundations 6 (February 2016): 59–106. http://dx.doi.org/10.4028/www.scientific.net/df.6.59.
Full textBhatt, Alok, Angesh Chandra, Archana Chandra, Subhashis Basak, and M. Z. Khan. "Synthesis and ion conduction of Ag+ ion conducting glass-polymer composites." Materials Today: Proceedings 33 (2020): 5085–87. http://dx.doi.org/10.1016/j.matpr.2020.02.849.
Full textPietrzak, Tomasz K., Marek Wasiucionek, and Jerzy E. Garbarczyk. "Towards Higher Electric Conductivity and Wider Phase Stability Range via Nanostructured Glass-Ceramics Processing." Nanomaterials 11, no. 5 (May 17, 2021): 1321. http://dx.doi.org/10.3390/nano11051321.
Full textHeenen, Hendrik H., Johannes Voss, Christoph Scheurer, Karsten Reuter, and Alan C. Luntz. "Multi-ion Conduction in Li3OCl Glass Electrolytes." Journal of Physical Chemistry Letters 10, no. 9 (April 15, 2019): 2264–69. http://dx.doi.org/10.1021/acs.jpclett.9b00500.
Full textPan, Ji Yong, and Xue Qiang Cao. "Comparison of the DC and AC Conductivities of Li2O-P2O5 Glass." Key Engineering Materials 368-372 (February 2008): 1449–50. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.1449.
Full textKumar, N. S. Krishna, S. Vinoth Rathan, and G. Govindaraj. "Analysis of ion conduction and relaxation in Na2NbCdP3O12 glass." IOP Conference Series: Materials Science and Engineering 73 (February 17, 2015): 012066. http://dx.doi.org/10.1088/1757-899x/73/1/012066.
Full textChoi, Seung Ho, Seung Jong Lee, Hye Jin Kim, Seung Bin Park, and Jang Wook Choi. "Li2O–B2O3–GeO2 glass as a high performance anode material for rechargeable lithium-ion batteries." Journal of Materials Chemistry A 6, no. 16 (2018): 6860–66. http://dx.doi.org/10.1039/c8ta00934a.
Full textYamashita, K. "New fast sodium-ion conducting glass-ceramics of silicophosphates: Crystallization, microstructure and conduction properties." Solid State Ionics 35, no. 3-4 (September 1989): 299–306. http://dx.doi.org/10.1016/0167-2738(89)90312-3.
Full textShrivastava, A., and D. Chakravorty. "Electrical conduction in ion-exchanged glass fibres containing aluminium dispersoids." Journal of Physics D: Applied Physics 20, no. 3 (March 14, 1987): 380–85. http://dx.doi.org/10.1088/0022-3727/20/3/021.
Full textMachida, Nobuya, Toshihiko Shigematsu, Norihiko Nakanishi, Sinji Tsuchida, and Tsutomu Minami. "Glass formation and ion conduction in the CuCl–Cu2MoO4–Cu3PO4system." J. Chem. Soc., Faraday Trans. 88, no. 20 (1992): 3059–62. http://dx.doi.org/10.1039/ft9928803059.
Full textDissertations / Theses on the topic "Ion Conduction - Glass"
Nuernberg, Rafael. "Lithium ion conducting glass-ceramics with NASICON-type structure based on the Li1+x Crx (Gey Ti1-y)2-x (PO4)3 system." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS141/document.
Full textThe primary goal of this work is to develop a new NASICON-structured glass-ceramic with high Li-ion conductivity. Therefore, this work introduces a new series of NASICON-type compositions based on the Li1+xCrx(GeyTi1-y)2-x(PO4)3 system. At first, a specific composition of this system is synthesized by the melt-quenching method, followed by crystallization. The crystallization behavior of the precursor glass is examined by differential scanning calorimetry and infrared spectroscopy. The main results indicate that the precursor glass presents homogeneous nucleation, has considerable glass stability and crystallizes a NASICON-like phase, which allows solid electrolytes to be obtained by the glass-ceramic route. As a second step, we examine the effect of substituting Ti by Cr and Ge on the glass stability of the precursor glass, on the structural parameters of NASICON-like phase and the electrical properties of the glass-ceramics. Hence, a set of sixteen compositions of this system is synthesized. The main results indicate that the glass stability increases when Ti is replaced by Ge and Cr. After crystallization, all the glass-ceramics present NASICON-like phase, and their lattice parameters decrease with Ge and increase with Cr content, making it possible to adjust the unit cell volume of the NASICON-type structure. Furthermore, the ionic conductivity and activation energy for lithium conduction in the glass-ceramics are notably dependent on the unit cell volume of the NASICON-type structure. Finally, the electrochemical stability window of the NASICON-structured glass-ceramics of highest ionic conductivity is investigated. Cyclic voltammetry measurements are followed by in situ electrochemical impedance spectroscopy, enabling the effect of oxidation and reduction reactions on the electrical properties of the glass-ceramics in question to be determined. X-ray photoelectron spectroscopy, in turn, is applied to determine which chemical species undergo reduction/oxidation. Our findings reveal that the electrochemical stability of this material is limited by the reduction of Ti+4 cations in low potentials and by the oxidation of O-2 anions in high potentials. At high potentials, similar behavior is also encountered for other well-known NASICON-like Li-ion conducting suggesting that the electrochemical behavior in oxidative potentials could be generalized for NASICON-structured phosphates
Niyompan, Anuson. "Fast-ion conducting glass and glass-ceramics for the pH sensor." Thesis, University of Warwick, 2002. http://wrap.warwick.ac.uk/98497/.
Full textMartins, Rodrigues Ana Candida. "Synthèse et propriétés électriques de verres oxydes conducteurs par ion lithium." Grenoble INPG, 1988. http://www.theses.fr/1988INPG0010.
Full textCampbell, A. G. "Electrical processes at metallic contacts to sodium ion conducting glass." Thesis, University of Edinburgh, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378729.
Full textSalami, Taiye James. "Novel Conductive Glass-Perovskites as Solid Electrolytes in Lithium – ion Batteries." University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1533220964477566.
Full textKingdom, Rachel Michele. "Conducting Polymer Matrix Poly(2,2’-Bithiophene) Mercuric Metal Ion Incorporation." Wright State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=wright1259889438.
Full textHadzifejzovic, Emina. "Electrical and structural aspects of Li-ion conducting phosphate based glasses and glass ceramics." Thesis, Queen Mary, University of London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.408396.
Full textBenmore, Christopher James. "A neutron diffraction study on the structure of fast-ion conducting and semiconducting glassy chalcogenide alloys." Thesis, University of East Anglia, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334267.
Full textParaskiva, Alla. "Développement de membranes pour les capteurs chimiques potentiométriques spécifiques aux ions Thallium et Sodium." Thesis, Littoral, 2017. http://www.theses.fr/2017DUNK0466/document.
Full textThe aim of this thesis was to study the physicochemical properties of the chalcogenide glasses for possibility to use them as the chemical sensor membranes for the quantitative analysis of TI⁺ and NA⁺ ions. Firstly, the measurements of the macroscopic properties such as the densities and the characteristic temperatures (Tg, Tc, Tf) and their analysis according to the glass compositions were carried out. After that, the transport properties were studied through complex impedance conductivity measurements and from dc conductivity measurements. These experiments have shown the mixed cation effect in three chalcogenide glassy systems with TI/Ag ions and the percolation regime in the NaCl-Ga₂S₃-GeS₂ system. Then the silver ¹⁰⁸mAg and thallium ²⁰⁴TI tracer diffusion measurements were carried out for (TI₂S)ₓ(Ag₂S)₅₀₋ₓ(GeS)₂₅(GeS₂)₂₅ system. The result permit to explain the mixed cation effect. In order to better understand the transport phenomena of the studied systems, the various structural studies have been deployed using Raman spectroscopy, neutron diffraction and high energy X-ray diffraction. Finally, the last part of this work is entirely devoted to the characterization of new chemical sensors for detection of TI⁺ and NA⁺ ions in solution. In the first case, the sensors with different membrane compositions were tested for defining the sensitivity, the detection limit, the selectivity coefficients in the presence of interfering ions, the reproductibility, the pH influence. In addition, the ionic exchange with radioactive isotopes ²⁰⁴TI between the solution and the GeS₂ or Ge₂S₃ based glasses was performed for understanding and explaining the significant differences in the sensitivity and the detection limit presented by the sensors whose membranes have the similar glass compositions. In the second case, the studies shows the existence of sensitivity for NA⁺ ions so the development of sensors for the determination of sodium ions is possible
Khaoulani, Sohayb. "Traitement d'eaux usées par adsorption sur des polymères de cyclodextrine et développement de capteurs chimiques à base de membranes de verres de chalcogénures destinées à la détection des ions Hg²⁺." Thesis, Littoral, 2015. http://www.theses.fr/2015DUNK0386/document.
Full textThe aim of this work was to identify the emerging pollutants in the effluents of wastewater treatment plants as well as in the natural environment, and to propose a method of remediation and monitoring of these pollutants. In the first part of the thesis, we have identified the organic pollutants contained in the wastewater samples using (i) gas and/or liquid chromatography coupled with a mass spectrometry, (ii) static-headspace gas chromatography, and (iii) inductively coupled plasma atomic emission spectroscopy. Different pollutants were found such as phthalates, drugs, cholesterol, and heavy metal traces. In order to trap these pollutants, various water soluble/insoluble cyclodextrin β-CD polymers have been synthesized and their adsorption capacities were evaluated. After the analysis of the effluent samples, we observed a decrease of the Total Organic Carbon (TOC). This decrease was attributed to the adsorption of pollutant by CD polymers which have proven to be effective adsorbents. The second part of the thesis included two main sub-parts : (i) a synthesis and characterization part and (ii) an application part. In the first sub-part, chalcogenide glasses in the pseudo-ternary Agl-HgS-As₂S₃ system have been synthesized by adding silver iodide "Agl" to the quasi-binary HgS-As₂S₃ system. The vitreous domain and the macroscopic properties of glass samples were determined. Electrical conductivity of glasses was studied using both the complex impedance spectroscopy and resistivity measurements ; it was found that adding Agl to the quasi-binary HgS-As₂S₃ alloy causes an increase in the ionic conductivity. Structural studies, using various techniques as Raman spectroscopy, neutron scattering and high-energy X-ray diffraction, have been performed in order to decipher the relation between both structural and transport properties in these glasses. In the second sub-part, the obtained glasses in the ternary system were used as membranes in chemical sensors dedicated to mercury detection in aqueous solution. As a result, various sensors with different compositions were tested to determine their corresponding sensitivity, detection limit and selectivity coefficients in the presence of interfering ions
Books on the topic "Ion Conduction - Glass"
Benmore, Christopher James. A neutron diffraction study on the structure of fast-ion conducting and semiconducting glassy chalcogenide alloys. Norwich: University of East Anglia, 1993.
Find full textCameron, Allan. Visceral Screens. Edinburgh University Press, 2020. http://dx.doi.org/10.3366/edinburgh/9781474419192.001.0001.
Full textBook chapters on the topic "Ion Conduction - Glass"
Nogami, M. "Ion Conducting Coatings." In Sol-Gel Technologies for Glass Producers and Users, 175–78. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-0-387-88953-5_24.
Full textTakayanagi, M. "Microcomposite Formation of p-Aramid with Inorganic Glass and Conductive Polymers." In Progress in Pacific Polymer Science 2, 1–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77636-6_1.
Full textJang, Byung-Koog, and Hideaki Matsubara. "Electrical Resistance Measurements of Conductive Oxide Dispersed Glass Composites for Self Diagnosis." In Advances in Ceramic Matrix Composites X, 39–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118408353.ch5.
Full textPark, Jin Hyoung, Chang Kyu Chung, Kyoung Wook Paik, and Soon Bok Lee. "Effect of High Glass Transition Temperature on Reliability of Non-Conductive Film (NCF)." In Experimental Mechanics in Nano and Biotechnology, 517–20. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-415-4.517.
Full text"Transport Properties." In Introduction to Glass Science and Technology, 169–94. 3rd ed. The Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/bk9781839161414-00169.
Full textGanvir, V. Y., H. V. Ganvir, and R. S. Gedam. "Physical, Electrical and Dielectric Investigation of Neodymium Doped Lithium Borosilicate Glasses." In Advanced Materials and Nano Systems: Theory and Experiment - Part 2, 237–51. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815049961122020015.
Full textBhattacharya, S. "Electrical Transport Properties of Ion-Conducting Glass Nanocomposites." In Glass Nanocomposites, 181–214. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-323-39309-6.00008-0.
Full text"Amorphous/Glass and Glass-Ceramics Li-ion Conductive Ceramics." In Ceramic Electrolytes for All-Solid-State Li Batteries, 147–75. WORLD SCIENTIFIC, 2018. http://dx.doi.org/10.1142/9789813233898_0006.
Full textAcharya, Amartya. "DC and AC conductivity of some lithium ion conducting glassy nanocomposites." In Metal Oxide Glass Nanocomposites, 223–32. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-817458-6.00011-1.
Full textMatsubra, Ichiro, Ryoji Funahashi, Hiroshi Yamashita, and Tomoji Kawai. "GROWTH OF Bi-BASED SUPER CONDUCTING WHISKERS FROM GLASS PRECURSORS." In Superconducting Glass-Ceramics In Bisrcacuo, 149–91. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789812819413_0008.
Full textConference papers on the topic "Ion Conduction - Glass"
Pan, Hailong, Jiangshui Luo, and Michael Wubbenhorst. "Ion Conduction in a Protic Glass-Forming Ionic Liquid with Long Carbon Chains." In 2022 IEEE 21st International Conference on Dielectric Liquids (ICDL). IEEE, 2022. http://dx.doi.org/10.1109/icdl49583.2022.9830914.
Full textTrue, Emily M., and Leon Mccaughan. "Optical nonlinearity in thin films of amorphous arsenic sulfide." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.tuii3.
Full textLiu, Xu, Xong-bin Chen, Pei-fu Gu, Yong-hong Ye, and Jing-fa Tang. "A study of Electrochromic thin films and Devices by Photothermal Deflection Technique." In Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/oic.1995.wb4.
Full textMenezes, P. V., J. Martin, M. Schafer, and K. M. Weitzel. "Bombardment induced ion transport through an ion-conducting Ca30 glass." In 2011 IEEE 14th International Symposium on Electrets ISE 14. IEEE, 2011. http://dx.doi.org/10.1109/ise.2011.6084970.
Full textTakaoka, Gikan, H. Ryuto, and M. Takeuchi. "Surface Interaction and Processing Using Polyatomic Cluster Ions." In 13th International Conference on Plasma Surface Engineering September 10 - 14, 2012, in Garmisch-Partenkirchen, Germany. Linköping University Electronic Press, 2013. http://dx.doi.org/10.3384/wcc2.18-21.
Full textCornelius, L. K., P. A. Tick, and N. F. Borelli. "Photochromic/photoconductive effects in cadmium-alumino fluorosilicates." In Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/bgppf.1997.jsue.24.
Full textKulkarni, Shrikant, Girish Phatak, and Siddhartha Duttagupta. "Oxygen ion conducting glass ceramic composites for high temperature sensor applications." In 2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS). IEEE, 2015. http://dx.doi.org/10.1109/ispts.2015.7220105.
Full textRao, B. Appa, E. Ramesh Kumar, K. Rajani Kumari, and G. Bhikshamaiah. "Electrical studies on silver based fast ion conducting glassy materials." In SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4872772.
Full textFuruta, Kozo, Kazuhiro Mori, Yohei Onodera, and Toshiharu Fukunaga. "Local Structure of Lithium Ion Conducting Germanium Sulfide Glass: (Li2S)40(GeS2)60." In Proceedings of the 2nd International Symposium on Science at J-PARC — Unlocking the Mysteries of Life, Matter and the Universe —. Journal of the Physical Society of Japan, 2015. http://dx.doi.org/10.7566/jpscp.8.031004.
Full textMatsuda, Koken, Shiro Kubuki, and Tetsuaki Nishida. "Mössbauer study of conductive oxide glass." In MOSSBAUER SPECTROSCOPY IN MATERIALS SCIENCE - 2014. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4900744.
Full text