Academic literature on the topic 'Ion Conducting Glasses'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ion Conducting Glasses.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ion Conducting Glasses"
Mehrer, Helmut. "Diffusion and Ion Conduction in Cation-Conducting Oxide Glasses." Diffusion Foundations 6 (February 2016): 59–106. http://dx.doi.org/10.4028/www.scientific.net/df.6.59.
Full textJacob, Sarah, John Javornizky, George H. Wolf, and C. Austen Angell. "Oxide ion conducting glasses." International Journal of Inorganic Materials 3, no. 3 (June 2001): 241–51. http://dx.doi.org/10.1016/s1466-6049(01)00024-1.
Full textMinami, Tsutomu. "Fast ion conducting glasses." Journal of Non-Crystalline Solids 73, no. 1-3 (August 1985): 273–84. http://dx.doi.org/10.1016/0022-3093(85)90353-9.
Full textBurckhardt, W., B. Rudolph, and U. Schütze. "New Li+-ion conducting glasses." Solid State Ionics 28-30 (September 1988): 739–42. http://dx.doi.org/10.1016/s0167-2738(88)80137-1.
Full textBurckhardt, W. "New Li+-ion conducting glasses." Solid State Ionics 36, no. 3-4 (November 1989): 153–54. http://dx.doi.org/10.1016/0167-2738(89)90160-4.
Full textKADONO, K., K. MITANI, M. YAMASHITA, and H. TANAKA. "New lithium ion-conducting glasses." Solid State Ionics 47, no. 3-4 (September 1991): 227–30. http://dx.doi.org/10.1016/0167-2738(91)90243-5.
Full textPradel, A., and M. Ribes. "Ion transport in superionic conducting glasses." Journal of Non-Crystalline Solids 172-174 (September 1994): 1315–23. http://dx.doi.org/10.1016/0022-3093(94)90658-0.
Full textWeitzel, Karl Michael. "Bombardment Induced Ion Transport through Ion Conducting Glasses." Diffusion Foundations 6 (February 2016): 107–43. http://dx.doi.org/10.4028/www.scientific.net/df.6.107.
Full textPietrzak, Tomasz K., Marek Wasiucionek, and Jerzy E. Garbarczyk. "Towards Higher Electric Conductivity and Wider Phase Stability Range via Nanostructured Glass-Ceramics Processing." Nanomaterials 11, no. 5 (May 17, 2021): 1321. http://dx.doi.org/10.3390/nano11051321.
Full textBhattacharya, S., and A. Ghosh. "Electrical properties of ion conducting molybdate glasses." Journal of Applied Physics 100, no. 11 (2006): 114119. http://dx.doi.org/10.1063/1.2400116.
Full textDissertations / Theses on the topic "Ion Conducting Glasses"
Hadzifejzovic, Emina. "Electrical and structural aspects of Li-ion conducting phosphate based glasses and glass ceramics." Thesis, Queen Mary, University of London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.408396.
Full textTrott, Christian Robert [Verfasser], Philipp [Akademischer Betreuer] Maaß, Erich [Akademischer Betreuer] Runge, and Hans [Akademischer Betreuer] Babovsky. "LAMMPScuda - a new GPU accelerated Molecular Dynamics Simulations Package and its Application to Ion-Conducting Glasses / Christian Robert Trott. Gutachter: Erich Runge ; Hans Babovsky. Betreuer: Philipp Maaß." Ilmenau : Universitätsbibliothek Ilmenau, 2012. http://d-nb.info/1020401990/34.
Full textTrott, Christian [Verfasser], Philipp [Akademischer Betreuer] Maaß, Erich [Akademischer Betreuer] Runge, and Hans [Akademischer Betreuer] Babovsky. "LAMMPScuda - a new GPU accelerated Molecular Dynamics Simulations Package and its Application to Ion-Conducting Glasses / Christian Robert Trott. Gutachter: Erich Runge ; Hans Babovsky. Betreuer: Philipp Maaß." Ilmenau : Universitätsbibliothek Ilmenau, 2012. http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2011000472.
Full textNiyompan, Anuson. "Fast-ion conducting glass and glass-ceramics for the pH sensor." Thesis, University of Warwick, 2002. http://wrap.warwick.ac.uk/98497/.
Full textCampbell, A. G. "Electrical processes at metallic contacts to sodium ion conducting glass." Thesis, University of Edinburgh, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378729.
Full textKingdom, Rachel Michele. "Conducting Polymer Matrix Poly(2,2’-Bithiophene) Mercuric Metal Ion Incorporation." Wright State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=wright1259889438.
Full textSalami, Taiye James. "Novel Conductive Glass-Perovskites as Solid Electrolytes in Lithium – ion Batteries." University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1533220964477566.
Full textBenmore, Christopher James. "A neutron diffraction study on the structure of fast-ion conducting and semiconducting glassy chalcogenide alloys." Thesis, University of East Anglia, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334267.
Full textNuernberg, Rafael. "Lithium ion conducting glass-ceramics with NASICON-type structure based on the Li1+x Crx (Gey Ti1-y)2-x (PO4)3 system." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS141/document.
Full textThe primary goal of this work is to develop a new NASICON-structured glass-ceramic with high Li-ion conductivity. Therefore, this work introduces a new series of NASICON-type compositions based on the Li1+xCrx(GeyTi1-y)2-x(PO4)3 system. At first, a specific composition of this system is synthesized by the melt-quenching method, followed by crystallization. The crystallization behavior of the precursor glass is examined by differential scanning calorimetry and infrared spectroscopy. The main results indicate that the precursor glass presents homogeneous nucleation, has considerable glass stability and crystallizes a NASICON-like phase, which allows solid electrolytes to be obtained by the glass-ceramic route. As a second step, we examine the effect of substituting Ti by Cr and Ge on the glass stability of the precursor glass, on the structural parameters of NASICON-like phase and the electrical properties of the glass-ceramics. Hence, a set of sixteen compositions of this system is synthesized. The main results indicate that the glass stability increases when Ti is replaced by Ge and Cr. After crystallization, all the glass-ceramics present NASICON-like phase, and their lattice parameters decrease with Ge and increase with Cr content, making it possible to adjust the unit cell volume of the NASICON-type structure. Furthermore, the ionic conductivity and activation energy for lithium conduction in the glass-ceramics are notably dependent on the unit cell volume of the NASICON-type structure. Finally, the electrochemical stability window of the NASICON-structured glass-ceramics of highest ionic conductivity is investigated. Cyclic voltammetry measurements are followed by in situ electrochemical impedance spectroscopy, enabling the effect of oxidation and reduction reactions on the electrical properties of the glass-ceramics in question to be determined. X-ray photoelectron spectroscopy, in turn, is applied to determine which chemical species undergo reduction/oxidation. Our findings reveal that the electrochemical stability of this material is limited by the reduction of Ti+4 cations in low potentials and by the oxidation of O-2 anions in high potentials. At high potentials, similar behavior is also encountered for other well-known NASICON-like Li-ion conducting suggesting that the electrochemical behavior in oxidative potentials could be generalized for NASICON-structured phosphates
Paraskiva, Alla. "Développement de membranes pour les capteurs chimiques potentiométriques spécifiques aux ions Thallium et Sodium." Thesis, Littoral, 2017. http://www.theses.fr/2017DUNK0466/document.
Full textThe aim of this thesis was to study the physicochemical properties of the chalcogenide glasses for possibility to use them as the chemical sensor membranes for the quantitative analysis of TI⁺ and NA⁺ ions. Firstly, the measurements of the macroscopic properties such as the densities and the characteristic temperatures (Tg, Tc, Tf) and their analysis according to the glass compositions were carried out. After that, the transport properties were studied through complex impedance conductivity measurements and from dc conductivity measurements. These experiments have shown the mixed cation effect in three chalcogenide glassy systems with TI/Ag ions and the percolation regime in the NaCl-Ga₂S₃-GeS₂ system. Then the silver ¹⁰⁸mAg and thallium ²⁰⁴TI tracer diffusion measurements were carried out for (TI₂S)ₓ(Ag₂S)₅₀₋ₓ(GeS)₂₅(GeS₂)₂₅ system. The result permit to explain the mixed cation effect. In order to better understand the transport phenomena of the studied systems, the various structural studies have been deployed using Raman spectroscopy, neutron diffraction and high energy X-ray diffraction. Finally, the last part of this work is entirely devoted to the characterization of new chemical sensors for detection of TI⁺ and NA⁺ ions in solution. In the first case, the sensors with different membrane compositions were tested for defining the sensitivity, the detection limit, the selectivity coefficients in the presence of interfering ions, the reproductibility, the pH influence. In addition, the ionic exchange with radioactive isotopes ²⁰⁴TI between the solution and the GeS₂ or Ge₂S₃ based glasses was performed for understanding and explaining the significant differences in the sensitivity and the detection limit presented by the sensors whose membranes have the similar glass compositions. In the second case, the studies shows the existence of sensitivity for NA⁺ ions so the development of sensors for the determination of sodium ions is possible
Books on the topic "Ion Conducting Glasses"
Mehrer, Helmut. Progress in Ion Transport and Structure of Ion Conducting Compounds and Glasses. Trans Tech Publications, Limited, 2016.
Find full textHelmut, Mehrer. Progress in Ion Transport and Structure of Ion Conducting Compounds and Glasses. Trans Tech Publications, Limited, 2016.
Find full textCameron, Allan. Visceral Screens. Edinburgh University Press, 2020. http://dx.doi.org/10.3366/edinburgh/9781474419192.001.0001.
Full textBook chapters on the topic "Ion Conducting Glasses"
Gordon, R. S. "Sodium Ion Conducting Glasses." In Inorganic Reactions and Methods, 211–12. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145333.ch144.
Full textJulien, Christian, and Gholam-Abbas Nazri. "Materials for electrolyte: Fast-ion-conducting glasses." In The Kluwer International Series in Engineering and Computer Science, 183–283. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2704-6_3.
Full textBalkanski, M., R. F. Wallis, J. Deppe, and M. Massot. "Dynamical Properties of Fast Ion Conducting Borate Glasses." In Solid State Materials, 53–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-09935-3_4.
Full textNogami, M. "Ion Conducting Coatings." In Sol-Gel Technologies for Glass Producers and Users, 175–78. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-0-387-88953-5_24.
Full textMagistris, A. "Ionic Conduction in Glasses." In Fast Ion Transport in Solids, 213–30. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1916-0_12.
Full textHiki, Y., H. Takahashi, and Y. Kogure. "Thermal Transport in Superionic Conducting Glasses." In Springer Series in Solid-State Sciences, 295–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84888-9_117.
Full textBalkanski, M., R. F. Wallis, and I. Darianian. "Free Lithium Ion Conduction in Lithium Borate Glasses Doped with Li2SO4." In NATO ASI Series, 317–18. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0509-5_16.
Full textElliott, S. R. "A. C. Conduction in Chalcogenide Glasses." In Structure and Bonding in Noncrystalline Solids, 251–84. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4615-9477-2_14.
Full textElliott, S. R. "Non-Debye-Like Dielectric Relaxation in Ionically and Electronically Conducting Glasses." In Relaxation in Complex Systems and Related Topics, 251–60. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-2136-9_34.
Full textTakayanagi, M. "Microcomposite Formation of p-Aramid with Inorganic Glass and Conductive Polymers." In Progress in Pacific Polymer Science 2, 1–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77636-6_1.
Full textConference papers on the topic "Ion Conducting Glasses"
HAYASHI, Akitoshi, Ryoichi KOMIYA, Masahiro TATSUMISAGO, and Tsutomu MINAMI. "DEVELOPMENT OF LITHIUM ION CONDUCTING OXYSULFIDE GLASSES." In Proceedings of the 7th Asian Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812791979_0025.
Full textAgrawal, R. C., M. L. Verma, and A. Bhatt. "POLARIZATION/SELF-DEPOLARIZATION STUDIES ON SOME FAST Ag+ ION CONDUCTING GLASSES." In Proceedings of the 8th Asian Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776259_0087.
Full textKonidakis, Ioannis, and Stavros Pissadakis. "All-glass photonic bandgap fibers and fiber-tapers infiltrated with silver fast-ion-conducting glasses." In 2015 17th International Conference on Transparent Optical Networks (ICTON). IEEE, 2015. http://dx.doi.org/10.1109/icton.2015.7193545.
Full textAgrawal, R. C., M. L. Verma, R. Kumar, and C. K. Sinha. "SOLID STATE BATTERY DISCHARGE CHARACTERISTIC STUDIES ON SOME NEW Ag+ ION CONDUCTING GLASSES." In Proceedings of the 8th Asian Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776259_0020.
Full textMatsuo, S., H. Yugami, M. Ishigame, and S. Shin. "Hole-burning in proton conducting oxide SrZrO3: Pr3+." In Spectral Hole-Burning and Related Spectroscopies: Science and Applications. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/shbs.1994.wd52.
Full textBalkanski, Minko. "Invited Paper Fast Ion Conducting Glasses And Intercalation Compounds, Constituents Of Solid State Micro-Batteries, Characterized By Light Scattering, Luminescence And Optical Absorption." In 31st Annual Technical Symposium, edited by Fran Adar and James E. Griffiths. SPIE, 1988. http://dx.doi.org/10.1117/12.941939.
Full textRathan, S. Vinoth, Aashaq Hussain Shah, G. Govindaraj, Alka B. Garg, R. Mittal, and R. Mukhopadhyay. "Ac Conductivity and Electrical Relaxation in ion conducting Li[sub 4]Nb[sub 1−x] Zn[sub 2.5x]P[sub 3]O[sub 12] glasses." In SOLID STATE PHYSICS, PROCEEDINGS OF THE 55TH DAE SOLID STATE PHYSICS SYMPOSIUM 2010. AIP, 2011. http://dx.doi.org/10.1063/1.3606213.
Full textMenezes, P. V., J. Martin, M. Schafer, and K. M. Weitzel. "Bombardment induced ion transport through an ion-conducting Ca30 glass." In 2011 IEEE 14th International Symposium on Electrets ISE 14. IEEE, 2011. http://dx.doi.org/10.1109/ise.2011.6084970.
Full textTakaoka, Gikan, H. Ryuto, and M. Takeuchi. "Surface Interaction and Processing Using Polyatomic Cluster Ions." In 13th International Conference on Plasma Surface Engineering September 10 - 14, 2012, in Garmisch-Partenkirchen, Germany. Linköping University Electronic Press, 2013. http://dx.doi.org/10.3384/wcc2.18-21.
Full textSidebottom, David L. "SCALING PROPERTIES OF ION CONDUCTION AND WHAT THEY REVEAL ABOUT ION MOTION IN GLASSES." In Proceedings of the 1st International Discussion Meeting. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812706904_0020.
Full textReports on the topic "Ion Conducting Glasses"
Tuller, H. Electrical conduction and corrosion processes in fast ion conducting glasses. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/7158324.
Full textMeyer, Benjamin Michael. Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/815760.
Full textYao, Wenlong. Structure, ionic conductivity and mobile carrier density in fast ionic conducting chalcogenide glasses. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/897364.
Full text