Dissertations / Theses on the topic 'Ion Beam Lithography'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 47 dissertations / theses for your research on the topic 'Ion Beam Lithography.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Heard, P. J. "Applications of scanning ion beam lithography." Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372653.
Full textAlves, Andrew David Charles, and aalves@unimelb edu au. "Characterisation of Single Ion Tracks for use in Ion Beam Lithography." RMIT University. Applied Sciences, 2008. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080414.135656.
Full textPuretz, Joseph. "A theoretical and experimental study of liquid metal ion sources and their application to focused ion beam technology /." Full text open access at:, 1988. http://content.ohsu.edu/u?/etd,182.
Full textYasaka, Anto. "Feasibility study of spatial-phase-locked focused-ion-beam lithography." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/32663.
Full textO'Neill, Robin W. "Characterisation of micron sized ferromagnetic structures fabricated by focussed ion beam and electron beam lithography." Thesis, University of Glasgow, 2007. http://theses.gla.ac.uk/6256/.
Full textTucker, Thomas Marshall. "Three dimensional measurement data analysis in stereolithography rapid prototyping." Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/17082.
Full textSager, Benay. "A method for understanding and predicting stereolithography resolution." Thesis, Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/17832.
Full textVaseashta, Ashok K. "Photonic studies of defects and amorphization in ion beam damaged GaAs surfaces." Diss., This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-08082007-170507/.
Full textCybart, Shane A. "Planar Josephson junctions and arrays by electron beam lithography and ion damage." Diss., Connected to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2005. http://wwwlib.umi.com/cr/ucsd/fullcit?p3190007.
Full textTitle from first page of PDF file (viewed March 8, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 108-111).
Brown, Karl. "Coupled electron gases fabricated by in situ ion beam lithography and MBE growth." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319460.
Full textLópez, Josué Jacob. "Characterization of nanostructured hexagonal boron nitride patterned via high-resolution ion beam lithography." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111919.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 51-57).
The forefront of polariton research in two-dimensional (2D) materials focuses on pushing the limits of patterning 2D materials into nanoresonators and other nanophotonic structures that manipulate highly confined polaritons for technologically relevant near-IR and mid-IR applications. Furthermore, tuning the properties of hexagonal boron nitride, graphene, and other 2D materials in-plane and stacking them into heterostructures has the potential to create hybrid optical, electronic, thermal, and mechanical properties with a wealth of new functions. To fully tailor these novel properties, controlled nanoscale patterning of these and other van der Waals materials is essential. Moreover, it becomes imperative to understand how patterning and geometries modify the properties within each layer or introduce defects that affect the interfaces of layered 2D heterostructures. Herein, we demonstrate high-resolution patterning of h-BN via both helium and neon ion beams and pattern a h-BN grating with a 35 nm pitch and 20 nm feature size. We study varying degrees of nanostructuring and defects via Raman spectroscopy, photo-thermal microscopy, and scattering-type scanning near-field optical microscopy and observe complimentary information about the phonon modes and the absorption and scattering of light from such nanostructures. Specifically, we observe geometry and layer dependent photo-thermal expansion of h-BN nanostructures that are mediated by phonons. This work demonstrates a thorough understanding of directly patterned 2D materials with ion beams and demonstrates that far-field and near-field measurements are essential in understanding how the nanostructuring of 2D materials can tune their properties.
by Josué Jacob López.
S.M.
West, Aaron P. "A decision support system for fabrication process planning in stereolithography." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/16896.
Full textFranich, Rick, and rick franich@rmit edu au. "Monte Carlo Simulation of Large Angle Scattering Effects in Heavy Ion Elastic Recoil Detection Analysis and Ion Transmission Through Nanoapertures." RMIT University. Applied Sciences, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080212.121837.
Full textPerng, John Kangchun. "High Aspect-Ratio Nanoscale Etching in Silicon using Electron Beam Lithography and Deep Reactive Ion Etching (DRIE) Technique." Thesis, Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/11543.
Full textOverbuschmann, Johannes [Verfasser]. "Fabrication of Fresnel Zone Plates for Soft X-Ray and EUV Microscopy by Ion Beam Lithography / Johannes Overbuschmann." Bonn : Universitäts- und Landesbibliothek Bonn, 2014. http://d-nb.info/107728926X/34.
Full textMoore, Chad Andrew. "A multi-axis stereolithography controller with a graphical user interface (GUI)." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/16350.
Full textMárik, Marian. "Pokročilé techniky vytváření mikro a nanosystémů pro senzoriku." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-220083.
Full textDavis, Brian Edward. "Characterization and calibration of stereolithography products and processes." Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/17677.
Full textBlom, Tobias. "Fabrication and Applications of a Focused Ion Beam Based Nanocontact Platform for Electrical Characterization of Molecules and Particles." Doctoral thesis, Uppsala universitet, Experimentell fysik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-122940.
Full textKato, T., S. Iwata, Y. Yamauchi, S. Tsunashima, K. Matsumoto, T. Morikawa, and K. Ozaki. "Planar patterned media fabricated by ion irradiation into CrPt3 ordered alloy films." American Institite of Physics, 2009. http://hdl.handle.net/2237/12635.
Full textLynn, Charity M. "Accuracy models for SLA build style decision support." Thesis, Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/16832.
Full textOstřížek, Petr. "Elektrotransportní vlastnosti nanostruktur připravených metodou FIB." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229474.
Full textPatryarcha, Lukas [Verfasser]. "Experiments and simulations on the structural and electrical properties of nano- and microstructures on graphite surfaces produced by ion beam lithography / Lukas Patryarcha." Dortmund : Universitätsbibliothek Technische Universität Dortmund, 2011. http://d-nb.info/1018124373/34.
Full textDiaz, Regis. "Développement du pompage de charges pour la caractérisation in-situ de nanocristaux de Si synthétisés localement dans SiO2 par implantation ionique basse énergie et lithographie stencil." Thesis, Toulouse, INSA, 2011. http://www.theses.fr/2011ISAT0034/document.
Full textThe aim of this thesis has been to fabricate and electrically characterize elementary memory cells containing silicon nanocrystals (Si-ncs), in other words MOSFET which insulating layer (SiO2) contains a Si-ncs array storing the electrical charge. We have shown that we perfectly control the synthesis of a 2D array of 3-4 nm Si-ncs embedded into the MOSFET oxide by low-energy ion implantation (1-3 keV) Reaching this goal implied two key steps: on the one hand develop a reliable MOSFET fabrication process incorporating the Si-ncs synthesis steps and on the other hand develop tools and methods for both memory window and Si-ncs array itself characterizations. We have developed an in-situ characterization technique based on the well-known charge pumping technique, allowing for the first time the extraction of traps depth (e.g. the Si-ncs array) further than 3 nm into the oxide layer leading to the characterization of both position of these Si-ncs into the SiO2 matrix and their structural properties (diameter, density). These results have been confirmed by EF-TEM measurements. Finally, we have worked on the improvement of controlled local synthesis of Si-ncs pockets by combining low-energy ion implantation and stencil lithography. We reduced the size of these pockets down to about 400 nm using this parallel, low cost and reliable technique and identified the limiting effect for the pockets size reduction. These results pave the way for memory cells containing a few Si-ncs with a well-defined position into the oxide and a well-controlled number of ncs
Hartl, Hugo M. "Modification of small-molecule organic thin films using energetic beams and plasma." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/129526/9/Hugo%20Hartl%20Thesis.pdf.
Full textShahali, Hesam. "Assessment of the bactericidal effect of biomimicked nanopillars of cicada wings on titanium implants." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/204245/1/Hesam_Shahali_Thesis.pdf.
Full textMulot, Mikaël. "Two-Dimensional Photonic Crystals in InP-based Materials." Doctoral thesis, KTH, Microelectronics and Information Technology, IMIT, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3751.
Full textPhotonic crystals (PhCs) are structures periodic in thedielectric constant. They exhibit a photonic bandgap, i.e., arange of wavelengths for which light propagation is forbidden.Engineering of defects in the PhC lattice offers new ways toconfine and guide light. PhCs have been manufactured usingsemiconductors and other material technologies. This thesisfocuses on two-dimensional PhCs etched in InP-based materials.Only recently, such structures were identified as promisingcandidates for the realization of novel and advanced functionsfor optical communication applications.
The primary focus was on fabrication and characterization ofPhC structures in the InP/GaInAsP/InP material system. Thedemands on fabrication are very high: holes as small as100-300nm in diameter have to be etched at least as deep as 2µm. Thus, different etch processes had to be explored andspecifically developed for InP. We have implemented an etchingprocess based on Ar/Cl2chemically assisted ion beam etching (CAIBE), thatrepresents the state of the art PhC etching in InP.
Different building blocks were manufactured using thisprocess. A transmission loss of 10dB/mm for a PhC waveguide, areflection of 96.5% for a 4-row mirror and a record qualityfactor of 310 for a 1D cavity were achieved for this materialsystem. With an etch depth of 4.5 µm, optical loss wasfound to be close to the intrinsic limit. PhC-based opticalfilters were demonstrated using (a) a Fabry-Pérot cavityinserted in a PhC waveguide and (b) a contra-directionalcoupler. Lag effect in CAIBE was utilized positively to realizehigh quality PhC taper sections. Using a PhC taper, a couplingefficiency of 70% was demonstrated from a standard ridgewaveguide to a single line defect PhC waveguide.
During the course of this work, InP membrane technology wasdeveloped and a Fabry-Pérot cavity with a quality factorof 3200 was demonstrated.
Keywords:photonic crystals, photonic bandgap materials,indium phosphide, dry etching, chemically assisted ion beametching, reactive ion etching, electron beam lithography,photonic integrated circuits, optical waveguides, resonantcavities, optical filtering, finite difference time domain,plane wave expansion.
Dvořák, Petr. "Studium vlastností povrchových plazmonových polaritonů na magnetických materiálech." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229810.
Full textRichardson, Scott. "The fabrication and lithography of conjugated polymer distributed feedback lasers and development of their applications." Thesis, St Andrews, 2007. http://hdl.handle.net/10023/401.
Full textReinspach, Julia. "High-Resolution Nanostructuring for Soft X-Ray Zone-Plate Optics." Doctoral thesis, KTH, Biomedicinsk fysik och röntgenfysik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-47409.
Full textQC 20111114
Winston, Donald Ph D. Massachusetts Institute of Technology. "Sub-10-nm lithography with light-ion beams." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/71495.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 203-212).
Scanning-electron-beam lithography (SEBL) is the workhorse of nanoscale lithography in part because of the high brightness of the Schottky source of electrons, but also benefiting from decades of incremental innovation and engineering of apparatus around the Schottky source. Light ions are an attractive intermediary between electrons and heavy ions in terms of exposure efficiency and resolution by attaining a minimal interaction volume within the resist layer, if only we had bright sources of these light ions and could thus achieve small spot sizes. In this thesis, I present sub-10-nm lithography at high exposure efficiency using the gas field ionization source (GFIS) with helium and neon ions. I also present preliminary results using the magnetooptical trap ion source (MOTIS) with lithium ions. This work has also challenged the understanding of exposure efficiency as directly proportional to the so-called stopping power of incident beam particles - i.e. the average energy loss per unit path length, particularly for thin (less than 20 nm thick) resist. Values of stopping power are readily obtained via the popular Stopping and Range of Ions in Matter (SRIM) software for a variety of beam species and target materials at various landing energies, making this metric particularly convenient for predicting exposure efficiency. However, the exposure efficiency of neon ions for thin hydrogen silsesquioxane (HSQ) resist on bulk silicon is similar to that of gallium ions at 20-30 keV landing energy despite SRIM indicating a much larger stopping power for the gallium ions. Separating stopping power into nuclear and electronic components reveals that both the neon and gallium ions have similar electronic stopping powers. This correspondence points to electronic stopping power as a better indication of exposure efficiency in ion beam lithography. Unfortunately, the use of electronic stopping power alone to predict exposure efficiency has too been challenged by the data. Whereas the exposure efficiencies of neon and gallium ions were much higher than that of helium ions for the landing energies studied, the electronic stopping powers were all similar. One interpretation of this anomaly is that slower ions, i.e. neon and gallium ions in this case, for the same total energy dissipated via ionization per unit path length, produce a redshifted secondary-electron (SE) spectrum (with a correspondingly larger number of SEs), and that these lower-energy SEs are more efficient at exposure of resist. Such a phenomenon would be hidden by reliance on a single number, the electronic stopping power, to predict exposure efficiency. In addition to demonstrating sub-10-nm lithography at high exposure efficiency with light-ion beams, this thesis provides data toward predicting exposure efficiency in charged-particle-beam lithography in a way that is as simple as possible, but not simpler, using point exposures in a thin-film, high-contrast resist process. In contrast with SEBL, the lithographic techniques presented in this thesis are at their infancy. With further development, light-ion-beam lithography may serve as a useful complement to SEBL for nanofabrication in a wide variety of contexts.
by Donald Winston.
Ph.D.
Höwler, Marcel. "Präparation und Charakterisierung von TMR-Nanosäulen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-91946.
Full textThis thesis deals with the fabrication of nanopillars with tunnel magnetoresistance effect (TMR-effect), which are used in magnetoresistive memory (MRAM) and may be used as nanooscillators for future near field communication devices. Starting with the selection of a suitable TMR-layer stack with MgO-tunnel barrier, the whole process chain covering the fabrication of the nanopillars, sidewall isolation and preparation of the supply lines on top is developed and optimised. The structures are defined by optical and electron beam lithography, the subsequent patterning is done by ion beam etching (partially reactive) and lift-off. Techniques providing feedback on the nanofabrication are transmission electron microscopy (partially with target preparation by focused ion beam, FIB), scanning electron microscopy and optical microscopy. In this way nanopillars with minimal dimensions reaching 69 nm x 71 nm could be fabricated, of which nanopillars with a size of 65 nm x 87 nm were characterized fundamentally with respect to their magnetic and electric properties. This covers the determination of the TMR-effect and the resistance of the tunnel barrier (RA-product). In addition, the behaviour of the magnetic layers under higher magnetic fields (up to +-200mT) and the switching behaviour of the free layer at different angles between the easy axis of the TMR-element and the external magnetic field were investigated. The spin transfer torque effect could not be detected in the fabricated nanopillars due to the high electrical resistance of the tunnel barriers which were used. The resistance could be lowered by using thinner barriers, but this led to a quick degradation of the barrier when a current was applied. Continuative work should focus on the preparation of tunnel barriers in an appropriate TMR-stack being low resistive and electrically robust at the same time. A first selection of concepts and ideas from the literature for this task is given in the outlook
Höwler, Marcel. "Präparation und Charakterisierung von TMR-Nanosäulen." Doctoral thesis, Helmholtz-Zentrum Dresden-Rossendorf, 2011. https://tud.qucosa.de/id/qucosa%3A26102.
Full textThis thesis deals with the fabrication of nanopillars with tunnel magnetoresistance effect (TMR-effect), which are used in magnetoresistive memory (MRAM) and may be used as nanooscillators for future near field communication devices. Starting with the selection of a suitable TMR-layer stack with MgO-tunnel barrier, the whole process chain covering the fabrication of the nanopillars, sidewall isolation and preparation of the supply lines on top is developed and optimised. The structures are defined by optical and electron beam lithography, the subsequent patterning is done by ion beam etching (partially reactive) and lift-off. Techniques providing feedback on the nanofabrication are transmission electron microscopy (partially with target preparation by focused ion beam, FIB), scanning electron microscopy and optical microscopy. In this way nanopillars with minimal dimensions reaching 69 nm x 71 nm could be fabricated, of which nanopillars with a size of 65 nm x 87 nm were characterized fundamentally with respect to their magnetic and electric properties. This covers the determination of the TMR-effect and the resistance of the tunnel barrier (RA-product). In addition, the behaviour of the magnetic layers under higher magnetic fields (up to +-200mT) and the switching behaviour of the free layer at different angles between the easy axis of the TMR-element and the external magnetic field were investigated. The spin transfer torque effect could not be detected in the fabricated nanopillars due to the high electrical resistance of the tunnel barriers which were used. The resistance could be lowered by using thinner barriers, but this led to a quick degradation of the barrier when a current was applied. Continuative work should focus on the preparation of tunnel barriers in an appropriate TMR-stack being low resistive and electrically robust at the same time. A first selection of concepts and ideas from the literature for this task is given in the outlook.:Einleitung I Grundlagen 1 Spinelektronik und Magnetowiderstand 1.1 Der Elektronenspin – Grundlage des Magnetismus 1.2 Magnetoresistive Effekte 1.2.1 AnisotroperMagnetowiderstand 1.2.2 Riesenmagnetowiderstand 1.2.3 Tunnelmagnetowiderstand 1.3 Spin-Transfer-Torque 1.4 Anwendungen 1.4.1 Festplattenleseköpfe 1.4.2 Magnetoresistive Random AccessMemory (MRAM) 1.4.3 Nanooszillatoren für drahtlose Kommunikation 2 Grundlagen der Mikro- und Nanostrukturierung 2.1 Belacken 2.2 Belichten 2.2.1 Optische Lithographie 2.2.2 Elektronenstrahllithographie 2.3 Entwickeln 2.4 Strukturübertragung 2.4.1 Die Lift-off Technik 2.4.2 Ätzen 2.5 Entfernen der Lackmaske 2.6 Reinigung 2.6.1 Quellen von Verunreinigungen 2.6.2 Auswirkungen von Verunreinigungen 2.6.3 Entfernung von Verunreinigungen 2.6.4 Spülen und Trocknen der Probenoberfläche 3 Ionenstrahlätzen 3.1 Physikalisches Ätzen – Sputterätzen 3.2 Reaktives Ionenstrahlätzen – RIBE 3.3 Anlagentechnik 3.3.1 Parameter 3.3.2 Homogenität 3.3.3 Endpunktdetektion II Ergebnisse und Diskussion 4 TMR-Schichtsysteme 4.1 Prinzipielle Schichtfolge 4.2 Verwendete TMR-Schichtsysteme 4.3 Rekristallisation von Kupfer 4.4 Formierung der TMR-Schichtsysteme 4.4.1 Antiferromagnetische Kopplung an PtMn 4.4.2 Rekristallisation an der MgO-Barriere 4.5 Anpassung der MgO-Schicht – TMR-Effekt und RA-Produkt 4.6 Magnetische Charakterisierung 5 Probendesign 5.1 Beschreibung der vier lithographischen Ebenen 5.2 Layout für statische und dynamischeMessungen 5.2.1 Geometrie 5.2.2 Anforderungen für die Hochfrequenzmessung 5.3 Layout für Zuverlässigkeitsmessungen 5.3.1 Geometrie 5.3.2 Voraussetzungen für die Funktion 5.4 Chiplayout 5.4.1 Zusatzstrukturen 5.4.2 Anordnung der Elemente 6 Fertigung eines Maskensatzes für die optische Lithographie 6.1 Vorbereitung desMaskenrohlings 6.2 Strukturierung mittels Elektronenstrahllithographie 6.3 Ätzen der Chromschicht 7 Ergebnisse und Diskussion der Probenpräparation 7.1 Definition der Grundelektrode 7.1.1 Freistellen der Grundelektrode 7.1.2 Gratfreiheit der Grundelektrode 7.1.3 Oberflächenqualität nach der Strukturierung 7.2 Präparation der magnetischen Nanosäulen 7.2.1 Aufbringen einer Ätzmaske 7.2.2 Ionenstrahlätzen der TMR-Nanosäule 7.2.3 Abmessungen der präparierten Nanosäulen 7.3 Vertikale Kontaktierung 7.3.1 Seitenwandisolation 7.3.2 Freilegen der Kontakte 7.3.3 Aufbringen der elektrischen Zuleitungen 7.4 Die komplette Prozesskette und Ausbeute 8 Magneto-elektrische Charakterisierung 8.1 Messung des Tunnelmagnetowiderstandes 8.2 Stabilität der magnetischen Konfiguration 8.3 Spin-Transfer-Torque an TMR-Nanosäulen 9 Zusammenfassung und Ausblick Literaturverzeichnis
Yan, Li. "Two phase magnetoelectric epitaxial composite thin films." Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/30130.
Full textPh. D.
Johansson, Anders. "Template-Based fabrication of Nanostructured Materials." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7364.
Full textAbargues, López Rafael. "Conducting polymers as charge dissipator layers for electron beam lithography." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=981465927.
Full textTeixeira, Fernanda de Sá. "Implantação iônica de baixa energia em polímero para desenvolvimento de camadas compósitas nanoestruturadas condutoras litografáveis." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/3/3140/tde-23082010-103839/.
Full textElectronics using polymers instead of silicon is a recent research area with promising economic perspectives. Polymer with metallic particles composites presents interesting electrical, magnetic and optical properties and they have been produced by a broad variety of techniques. Metal ion implantation using plasma is one of the used methods to obtain conductor composites. In this work it is performed low energy gold ion implantation in PMMA by using plasma. PMMA has great technological importance once it is broadly used as resist in electron-beam, X-ray, ion and deep UV lithography. As a result of low energy ion implantation in PMMA, a nanometric conducting layer is formed. This new material, named insulator-conductor composite, can allow the creation of micro and nanodevices through well known microelectronics techniques. Electrical measurements are performed in situ as a function of metal ions implanted dose, which allows the investigation of electrical transport of these new materials, which can be modeled by the percolation theory. Simulations using TRIDYN computer code provide the prediction of depth profile of implanted ions. Important characterizations are showed such as Transmission Electron Microscopy, Scanning Tunneling Microscopy, Small Angle X-Ray Scattering, X-Ray Diffraction and UV-vis Spectroscopy. These techniques allow to visualize and to investigate the nanostructured character of the metal-polymer composite. Still as a part of this project, the conducting layers formed are characterized in relation to the maintenance of their characteristics as electron-beam resist.
Keskinbora, Kahraman [Verfasser], and Gisela [Akademischer Betreuer] Schütz. "Ion beam lithographic and multilayer fresnel zone plates for soft and hard X-rays : nanofabrication and characterization / Kahraman Keskinbora ; Betreuer: Gisela Schütz." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2016. http://d-nb.info/1118370937/34.
Full textSéméria, Marie-Noëlle. "Etude de circuits submicroniques implantés pour mémoire à bulles magnétiques." Grenoble 1, 1987. http://www.theses.fr/1987GRE10137.
Full textFrisque, Gary A. "Modeling pattern transfer distortions in Ion-Beam Lithography masks/." 2000. http://catalog.hathitrust.org/api/volumes/oclc/44779895.html.
Full textTejeda, Richard O. "Analysis, design, and optimization of ion-beam lithography masks." 1999. http://catalog.hathitrust.org/api/volumes/oclc/42005630.html.
Full textPienaar, M. G. "Investigation into a low cost stereolithography system for rapid prototyping." Thesis, 2015. http://hdl.handle.net/10210/14293.
Full textChou, Qiong-Ru, and 周瓊茹. "Fabrication of deep sub-micrometer silicon cylinder array using e-beam lithography and reactive ion etching." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/00880349585709860408.
Full text國立中正大學
物理所
94
In electron beam lithography, the matter wave length of electron, which be added 20 keV voltage, is pproximately 10-11m. The wave length is smaller than 193 nm or 157 nm that the Optical lithography excimer laser wave length has. In general, the electron beam lithography has the very good ability of high resolution, and the resolution can reach several nm degree(ignoring exposure depth).The electron beam lithography can be used in photo masks fabrication, direct e-bean writing, and nanometer structures fabrication. In our article, we try to fabricate high aspect ratio 2-D cylinder array structure. The desire of diameter is smaller than 150 nm, height is higher than 2 mm, and the lattice const is 300 nm. We want to use e-bean lithography and reactive ion etching (RIE) to fabricate the desired size. We must make up the etching mask, then try the RIE parameter. We try the positive and negative photo resist at the same time in order to choosing the best method. The changes of RIE parameters will make the change in the etching structures and height. We try to change the etching time, power, pressure and ratio of the gas, and compare the RIE result. In this way, we want to get the best RIE parameters for helping us to fabricate the desired structures.
Batra, Nitin M. "Device Fabrication and Probing of Discrete Carbon Nanostructures." Thesis, 2015. http://hdl.handle.net/10754/552679.
Full textVan, Niekerk G. J. "Intelligent STL file correction." Thesis, 2012. http://hdl.handle.net/10210/7041.
Full textLayered Manufacturing (LM), also known as "Rapid Prototyping", is that process in terms of which a computer-designed model is created layer by layer with the aid of specific LM hardware. Telemanufacturing constitutes an extension of this technology that allows remote submission of manufacturing jobs or assignments across a communication medium, typically the Internet, to be built at the manufacturing bureau concerned. The de facto standard of LM is the STL file. Simply put, this file consists of a number of triangles that are used to describe an object in its entirety. This file format has several advantages over other known formats and allows easy 2D rendering. Unfortunately, however, the limitations of the latter format outweigh its advantages. Since the entire model is described in terms of a collection of triangles, the original geometry of the model is lost. As a result, a certain level of degradation will occur, especially around curvatures in the model. Although an increase in the number of triangles around such areas will enhance precision, it will also result in a much larger STL file. Triangles that get lost somewhere inside the file could also give rise to holes, orphaned surfaces and zero-width walls in the projected object. It is vital, therefore, that the manufacturing bureau verify the correctness of the entire file before it is built in order to prevent machine time and materials from being wasted. Instead of transmitting the entire file again, the bureau could attempt automatically to correct and repair less critical errors, thereby saving valuable resources and time.
Wu, Zhuojie. "Study of initial void formation and electron wind force for scaling effects on electromigration in Cu interconnects." Thesis, 2013. http://hdl.handle.net/2152/25145.
Full texttext
Neubauer, Henrike. "Ein Verfahren zur Herstellung zweidimensionaler Röntgenwellenleiter." Doctoral thesis, 2012. http://hdl.handle.net/11858/00-1735-0000-0001-BABC-7.
Full text