Journal articles on the topic 'Ion beam induced luminescence'

To see the other types of publications on this topic, follow the link: Ion beam induced luminescence.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ion beam induced luminescence.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Malmqvist, K. G. "Ion Beam Induced Luminescence." Solid State Phenomena 63-64 (December 1998): 147–50. http://dx.doi.org/10.4028/www.scientific.net/ssp.63-64.147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Huddle, James R., Patrick G. Grant, Alexander R. Ludington, and Robert L. Foster. "Ion beam-induced luminescence." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 261, no. 1-2 (August 2007): 475–76. http://dx.doi.org/10.1016/j.nimb.2007.04.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brooks, R. J., D. E. Hole, and P. D. Townsend. "Ion beam induced luminescence of materials." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 190, no. 1-4 (May 2002): 136–40. http://dx.doi.org/10.1016/s0168-583x(01)01226-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ryuto, H., F. Musumeci, A. Sakata, M. Takeuchi, and G. H. Takaoka. "Spectrometer for cluster ion beam induced luminescence." Review of Scientific Instruments 86, no. 2 (February 2015): 023106. http://dx.doi.org/10.1063/1.4907540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brooks, R. J., D. E. Hole, P. D. Townsend, Z. Wu, J. Gonzalo, A. Suarez-Garcia, and P. Knott. "Ion beam induced luminescence of thin films." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 190, no. 1-4 (May 2002): 709–13. http://dx.doi.org/10.1016/s0168-583x(01)01256-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sullivan, P. A., and R. A. Baragiola. "Ion beam induced luminescence in natural diamond." Journal of Applied Physics 76, no. 8 (October 15, 1994): 4847–52. http://dx.doi.org/10.1063/1.357258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Haycock, P. W., and P. D. Townsend. "Ion beam induced luminescence spectra of LiNbO3." Radiation Effects 98, no. 1-4 (September 1986): 243–48. http://dx.doi.org/10.1080/00337578608206115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

KATO, Daiji, Hiroyuki A. SAKAUE, Izumi MURAKAMI, Teruya TANAKA, Takeo MUROGA, and Akio SAGARA. "Ion-Beam Induced Luminescence and Damage of Er2O3." Plasma and Fusion Research 7 (2012): 2405043. http://dx.doi.org/10.1585/pfr.7.2405043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Iwaki, Masaya, Makoto Kumagai, and Keiko Aono. "Ion beam induced luminescence of Tb-implanted sapphire." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 127-128 (May 1997): 488–91. http://dx.doi.org/10.1016/s0168-583x(96)00976-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rossi, P., D. K. Brice, C. H. Seager, F. D. McDaniel, G. Vizkelethy, and B. L. Doyle. "Ion beam induced luminescence of doped yttrium compounds." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 219-220 (June 2004): 327–32. http://dx.doi.org/10.1016/j.nimb.2004.01.078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Quaranta, A., J. Salomon, J. C. Dran, M. Tonezzer, and G. Della Mea. "Ion beam induced luminescence analysis of painting pigments." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 254, no. 2 (January 2007): 289–94. http://dx.doi.org/10.1016/j.nimb.2006.11.072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Suchańska, M., A. I. Bazhin, and E. I. Konopelko. "Ion Beam Induced Luminescence of Alkali Halide Crystals." physica status solidi (b) 182, no. 1 (March 1, 1994): 231–40. http://dx.doi.org/10.1002/pssb.2221820124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

ZHAO, Guo-qiang, Jin-fu ZHANG, Guang-fu WANG, Meng-lin QIU, Ting-shun WANG, and Qing-song HUA. "ZnO Luminescence Behavior Under Low Temperature by Ion-beam-induced Luminescence." Chinese Journal of Luminescence 43, no. 02 (2022): 226–37. http://dx.doi.org/10.37188/cjl.20210339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ahmad, S. B., F. E. McNeill, S. H. Byun, W. V. Prestwich, C. Seymour, and C. E. Mothersill. "Ion beam induced luminescence: Relevance to radiation induced bystander effects." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 288 (October 2012): 81–88. http://dx.doi.org/10.1016/j.nimb.2012.05.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zhurenko, Vitaliy P., Oganes V. Kalantaryan, and Sergiy I. Kononenko. "Change of silica luminescence due to fast hydrogen ion bombardment." Nukleonika 60, no. 2 (June 1, 2015): 289–92. http://dx.doi.org/10.1515/nuka-2015-0063.

Full text
Abstract:
AbstractThis paper deals with the luminescence of silica (KV-type) induced by beam of hydrogen ions with the energy of 210 keV per nucleon. An average implantation dose of up to 3.5 × 1021cm−3(5 × 1010Gy) was accumulated during irradiation over an extended period. The luminescent spectra consisted of the blue band (maximum at 456 nm) and the red band (650 nm) in the visible range. It was shown that increase in the absorption dose had an effect on the silica luminescence. It was found that the most significant changes in the spectrum occurred during the dose accumulation in the region of 550–700 nm. The shape of the spectrum of the luminescent radiation in this wavelength range was affected both by the oxygen deficient centres (blue band) and non-bridging oxygen hole centers (red band). Mathematical processing of the experimental spectra permitted to identify contributions to the luminescent radiation coming from both types of defects.
APA, Harvard, Vancouver, ISO, and other styles
16

TOIDA, Hiroshi, Keiichi TERASHIMA, Keiko AONO, and Masaya IWAKI. "Ion Beam Induced Luminescence of Ce-Implanted .ALPHA.-Al2O3." Journal of the Surface Finishing Society of Japan 51, no. 4 (2000): 420–24. http://dx.doi.org/10.4139/sfj.51.420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Qiu, Meng-Lin, Ying-Jie Chu, Guang-Fu Wang, Mi Xu, and Li Zheng. "Ion-Beam-Induced Luminescence of LiF Using Negative Ions." Chinese Physics Letters 34, no. 1 (January 2017): 016104. http://dx.doi.org/10.1088/0256-307x/34/1/016104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Carturan, S., A. Quaranta, A. Vomiero, M. Bonafini, G. Maggioni, and G. Della Mea. "Polyimide-based scintillators studied by ion beam induced luminescence." IEEE Transactions on Nuclear Science 52, no. 3 (June 2005): 748–51. http://dx.doi.org/10.1109/tns.2005.850962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Gosnell, G. E., C. J. Wetteland, J. R. Tesmer, M. G. Hollander, D. W. Cooke, I. V. Afanasyev, and K. E. Sickafus. "The effects of thermal quenching on ion-beam-induced phase transformation detection by ion-beam-induced luminescence." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 241, no. 1-4 (December 2005): 563–67. http://dx.doi.org/10.1016/j.nimb.2005.07.067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Zhao, Guoqiang, Menglin Qiu, Guangfu Wang, Tingshun Wang, and Jinfu Zhang. "Temperature dependence of ZnO crystals from ion-beam-induced luminescence." Journal of Luminescence 241 (January 2022): 118465. http://dx.doi.org/10.1016/j.jlumin.2021.118465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Aono, K., and M. Iwaki. "Ion beam-induced luminescence of Eu-implanted Al2O3 and CaF2." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 141, no. 1-4 (May 1998): 518–22. http://dx.doi.org/10.1016/s0168-583x(98)00174-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Qiu, Menglin, Yingjie Chu, Guangfu Wang, Mi Xu, and Li Zheng. "Ion beam induced luminescence studies of LiAlO2 using negative ions." Radiation Measurements 94 (November 2016): 49–52. http://dx.doi.org/10.1016/j.radmeas.2016.09.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kada, W., T. Satoh, S. Yamada, M. Koka, N. Yamada, K. Miura, and O. Hanaizumi. "Micro-ion beam-induced luminescence spectroscopy for evaluating SiAlON scintillators." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 477 (August 2020): 66–72. http://dx.doi.org/10.1016/j.nimb.2019.10.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Quaranta, A., J. C. Dran, J. Salomon, M. Tonezzer, C. Scian, L. Beck, S. Carturan, G. Maggioni, and G. Della Mea. "Ion beam induced luminescence on white inorganic pigments for paintings." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266, no. 10 (May 2008): 2301–5. http://dx.doi.org/10.1016/j.nimb.2008.03.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Taguchi, Tsunemasa, Yasushi Kawaguchi, Hiroshi Otera, and Akio Hiraki. "Preparation and Ion-Beam-Induced Luminescence of Thermal CVD Diamond." Japanese Journal of Applied Physics 26, Part 1, No. 11 (November 20, 1987): 1923–24. http://dx.doi.org/10.1143/jjap.26.1923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Manfredotti, C., G. Apostolo, G. Cinque, F. Fizzotti, A. Lo Giudice, P. Polesello, M. Truccato, et al. "Ion beam induced luminescence and charge collection in CVD diamond." Diamond and Related Materials 7, no. 6 (June 1998): 742–47. http://dx.doi.org/10.1016/s0925-9635(97)00197-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Gupta, Karan Kumar, R. M. Kadam, N. S. Dhoble, S. P. Lochab, and S. J. Dhoble. "On the study of the C6+ ion beam and γ-ray induced effect on structural and luminescence properties of Eu doped LiNaSO4: explanation of TSL mechanism using PL, TL and EPR study." Physical Chemistry Chemical Physics 20, no. 3 (2018): 1540–59. http://dx.doi.org/10.1039/c7cp05835g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Bibi, Baseerat, Ishaq Ahmad, Javaid Hussain, Ziyad Awadh Alrowaili, Ting-kai Zhao, Waseem ur Rahman, and Samson O. Aisidia. "Sapphire irradiation by phosphorus as an approach to improve its optical properties." Open Physics 20, no. 1 (January 1, 2022): 202–7. http://dx.doi.org/10.1515/phys-2022-0022.

Full text
Abstract:
Abstract Ion beam-induced luminescence (IBIL) is a versatile technique used to elucidate the chemical bond’s nature and analyze the defects study and impurities present in the material. In this study, IBIL spectra of phosphorus-irradiated sapphire has been analyzed under 2 MeV proton beam as a function of ion dose ranging from 1 × 1014 to 10 × 1014 ions/cm2 at room temperature in the wavelength range of 200–1,000 nm. The IBIL spectrum shows three kinds of luminescence features. The bands centered at 419 nm as F center and 330 nm as F+ center are associated with oxygen vacancies. The third kind of luminescence feature located at 704 nm is related to chromium impurities present in the crystal. The luminescence spectrum of the phosphorus-irradiated sapphire has been correlated with the spectrum obtained from pristine sapphire. The finding indicates that the intensity of defects due to phosphorus irradiation is reduced. As the proton ion fluence increases, the F and F+ center luminescence intensity eventually varies; it turns out that in phosphorus-irradiated sapphire, single crystal defects were reduced and the optical quality was improved.
APA, Harvard, Vancouver, ISO, and other styles
29

Quaranta, A., J. C. Dran, J. Salomon, J. C. Pivin, A. Vomiero, M. Tonezzer, G. Maggioni, S. Carturan, and G. Della Mea. "Analysis of art objects by means of ion beam induced luminescence." Journal of Physics: Conference Series 41 (May 1, 2006): 543–46. http://dx.doi.org/10.1088/1742-6596/41/1/065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Quaranta, A., S. Carturan, T. Marchi, A. Antonaci, C. Scian, V. L. Kravchuk, M. Degerlier, F. Gramegna, and G. Maggioni. "Radiation hardness of polysiloxane scintillators analyzed by ion beam induced luminescence." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268, no. 19 (October 2010): 3155–59. http://dx.doi.org/10.1016/j.nimb.2010.05.077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

ASAHARA, Jun, Hiroyuki MIYAMARU, and Akito TAKAHASHI. "Time-resolved Spectroscopy of Luminescence Induced by a Pulsed Ion Beam." Journal of Nuclear Science and Technology 36, no. 11 (November 1999): 1098–100. http://dx.doi.org/10.1080/18811248.1999.9726302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Akiyama, Shun, Runa Nakajima, Aika Sasaki, Shigeki Kimura, Kazuya Iiduka, Yuki Akagami, Makoto Sakai, Osamu Hanaizumi, and Wataru Kada. "Ion beam induced luminescence (IBIL) analysis of europium-activated phosphate glass micro-beads scintillators at clinical carbon beam therapy field." Journal of Physics: Conference Series 2326, no. 1 (October 1, 2022): 012012. http://dx.doi.org/10.1088/1742-6596/2326/1/012012.

Full text
Abstract:
Abstract The possibility of real-time monitoring of clinical carbon beams was investigated by analyzing ion beam induced luminescence (IBIL) using phosphate glass (PG) with a dopant of europium (Eu). Phosphate glass with a silver activator (PG: Ag) is known as a substrate for personal dosimeters. Several trials are being made by utilizing PG: Ag as an in-situ diagnostic tool for the clinical radiation therapy field. However, silvers are not actively responding to the radiation during the irradiation because of their build-up effect. In this study, we introduced a co-activator of europium, which is expected to coexist with silvers and have a scintillator property for real-time response. IBIL was successfully visualized with each bunch of 290 MeV/n from synchrotron under different beam intensity from 6.0×106 to 3.0×109 (clinical beam condition) counts/spill. IBIL measurement at each position of Bragg peak suggested that developed PG:Ag-beads with Eu co-activators have successfully demonstrated real-time radiation monitoring of clinical carbon beams.
APA, Harvard, Vancouver, ISO, and other styles
33

KADA, W., A. YOKOYAMA, M. KOKA, T. SATOH, and T. KAMIYA. "DEVELOPMENT OF ANALYSIS SYSTEM OF MICRO-IBIL COMBINED WITH MICRO-PIXE." International Journal of PIXE 21, no. 01n02 (January 2011): 1–11. http://dx.doi.org/10.1142/s0129083511002100.

Full text
Abstract:
An ion beam induced luminescence analysis system using ion micro-beam (micro-IBIL) was newly developed on the microbeam system of the 3 MeV single-ended accelerator at ion-irradiation research facility TIARA, JAEA. The developed IBIL system consisted of an aspheric microlens, optical fibers, a monochromator and a photon-counting system to observe IBIL photons of specific wavelength with the resolution of 2 nm. A photomultiplier in the photon-counting system was cooled to around 0°C by a peltier device to reduce the background noises down to 10 cps and able to observe weak photon signals from specific chemical composites of the target. Experiments of micro-IBIL were performed using 3 MeV proton microbeam for several scintillators and particulate targets i.e. aerosol particles. The system had achieved chemical-imaging of aerosols by obtaining wavelength-dispersive micro-IBIL image at luminescence center of silicon dioxide.
APA, Harvard, Vancouver, ISO, and other styles
34

Marković, N., Z. Siketić, D. Cosic, H. K. Jung, N. H. Lee, W. T. Han, and M. Jakšić. "Ion beam induced luminescence (IBIL) system for imaging of radiation induced changes in materials." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 343 (January 2015): 167–72. http://dx.doi.org/10.1016/j.nimb.2014.11.046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kada, Wataru, Akihito Yokoyama, Masashi Koka, Kenta Miura, Takahiro Satoh, Osamu Hanaizumi, and Tomihiro Kamiya. "Continuous observation of ion beam induced luminescence spectra from organic standard targets." International Journal of PIXE 25, no. 01n02 (January 2015): 127–34. http://dx.doi.org/10.1142/s0129083515500138.

Full text
Abstract:
Ion beam induced luminescence (IBIL) analysis was performed on organic targets are typical organic contaminants in aerosols. An external proton microbeam with an energy of 3 MeV was selected as the probe for the continuous IBIL measurement. Commercially available organic standards, including common amino acids (nicotinamide adenine dinucleotide, riboflavin and tryptophan) and a polycyclic aromatic hydrocarbon (benzo[a]pyrene), were used to test the analysis. Differences in chemical composition were distinguished by the shape of the IBIL spectrum in the UV/visible/near-IR region (200–900 nm). The IBIL spectrum changed as the proton irradiation damage increased. These results suggest that qualitative characterization of organic materials might be possible through the continuous measurement of IBIL spectra.
APA, Harvard, Vancouver, ISO, and other styles
36

Zhang, Jinfu, Tingshun Wang, Menglin Qiu, Guoqiang Zhao, Shasha Lv, Zhenglong Wu, and Guangfu Wang. "Optical spectral study of Nd3+ in YSZs with ion beam-induced luminescence." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 504 (October 2021): 6–13. http://dx.doi.org/10.1016/j.nimb.2021.07.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Mohan, Sruthi, Gurpreet Kaur, Sachin Kumar Srivastava, P. Magudapathy, C. David, and Amarendra Gangavarapu. "Correlation between anion related defects and ion beam induced luminescence in Y4Zr3O12." Applied Physics Letters 119, no. 3 (July 19, 2021): 031901. http://dx.doi.org/10.1063/5.0057058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Gawlik, G., J. Sarnecki, I. Jóźwik, J. Jagielski, and M. Pawłowska. "Ion and Electron Beam Induced Luminescence οf Rare Earth Doped YAG Crystals." Acta Physica Polonica A 120, no. 1 (July 2011): 181–83. http://dx.doi.org/10.12693/aphyspola.120.181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Townsend, P. D., and M. L. Crespillo. "An Ideal System for Analysis and Interpretation of Ion Beam Induced Luminescence." Physics Procedia 66 (2015): 345–51. http://dx.doi.org/10.1016/j.phpro.2015.05.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Quaranta, Alberto, Fabiana Gramegna, Vladimir Kravchuk, and Carlo Scian. "Radiation damage mechanisms in CsI(Tl) studied by ion beam induced luminescence." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266, no. 12-13 (June 2008): 2723–28. http://dx.doi.org/10.1016/j.nimb.2008.03.195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Shivaramu, N. J., K. R. Nagabhushana, B. N. Lakshminarasappa, and Fouran Singh. "Ion beam induced luminescence studies of sol gel derived Y2O3:Dy3+ nanophosphors." Journal of Luminescence 169 (January 2016): 627–34. http://dx.doi.org/10.1016/j.jlumin.2015.07.054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Valotto, Gabrio, Alberto Quaranta, Elti Cattaruzza, Francesco Gonella, and Giancarlo Rampazzo. "Multivariate analysis of Ion Beam Induced Luminescence spectra of irradiated silver ion-exchanged silicate glasses." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 95 (September 2012): 533–39. http://dx.doi.org/10.1016/j.saa.2012.04.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Nagabhushana, H., S. C. Prashantha, B. M. Nagabhushana, B. N. Lakshminarasappa, Fouran Singh, and R. P. S. Chakradhar. "Ion beam-induced luminescence and photoluminescence of 100 MeV Si8+ ion irradiated kyanite single crystals." Solid State Communications 147, no. 9-10 (September 2008): 377–80. http://dx.doi.org/10.1016/j.ssc.2008.06.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Nagata, S., K. Takahiro, B. Tsuchiya, H. Katsui, and T. Shikama. "Ion beam induced luminescence of polyethylene terephthalate foils under MeV H and He ion bombardment." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 267, no. 8-9 (May 2009): 1553–56. http://dx.doi.org/10.1016/j.nimb.2009.01.085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Song, Yingjie, Jigao Song, Menglin Qiu, Guangfu Wang, and Jinfu Zhang. "Temperature and fluence dependence of the luminescence properties of Ce:YAG single crystals with ion beam-induced luminescence." Radiation Measurements 160 (January 2023): 106878. http://dx.doi.org/10.1016/j.radmeas.2022.106878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ананченко, Д. В., С. В. Никифоров, Г. Р. Рамазанова, Р. И. Баталов, Р. М. Баязитов, and Г. А. Новиков. "Люминесценция дефектов F-типа и их термическая стабильность в сапфире, облученном импульсными ионными пучками." Журнал технической физики 128, no. 2 (2020): 211. http://dx.doi.org/10.21883/os.2020.02.48962.244-19.

Full text
Abstract:
Luminescence and thermal stability of defects formed in alpha-Al2O3 single crystals under pulsed ion beam treatment (C+/H+ ions with an energy 300 keV, pulse duration 80 ns) were investigated. This type of irradiation leads to the intensive generation of both single F- and F+-centers and more complex defects (F2-type aggregate centers or vacancy-impurity complexes) in alpha-Al2O3. It was confirmed by the results of optical absorption, photoluminescence, and pulsed cathodoluminescence measurements. The thermal stability of F-type defects formed in alpha-Al2O3 under the pulsed ion beam treatment is comparable to the stability of radiation-induced defects in neutron-irradiated samples.
APA, Harvard, Vancouver, ISO, and other styles
47

Quaranta, A., A. Vomiero, S. Carturan, G. Maggioni, and G. Della Mea. "Polymer film degradation under ion irradiation studied by ion beam induced luminescence (IBIL) and optical analyses." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 191, no. 1-4 (May 2002): 680–84. http://dx.doi.org/10.1016/s0168-583x(02)00632-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Qiu Meng-Lin, Wang Guang-Fu, Chu Ying-Jie, Zheng Li, Xu Mi, and Yin Peng. "Ion beam induced luminescence spectra of lithium fluoride at high-and low-temperature." Acta Physica Sinica 66, no. 20 (2017): 207801. http://dx.doi.org/10.7498/aps.66.207801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Valotto, G., A. Quaranta, F. Melgani, F. Gonella, and G. Rampazzo. "Multivariate analysis as a tool for Ion Beam Induced Luminescence (IBIL) spectra interpretation." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 81, no. 1 (October 2011): 353–58. http://dx.doi.org/10.1016/j.saa.2011.06.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Quaranta, A., G. Valotto, A. De Lorenzi Pezzolo, and G. A. Mazzocchin. "Ion Beam Induced Luminescence capabilities for the analysis of coarse-grained river sediments." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 121 (March 2014): 1–8. http://dx.doi.org/10.1016/j.saa.2013.10.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography