Academic literature on the topic 'Inverter'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Inverter.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Inverter"
Abdel-Aziz, Ali, Mohamed A. Elgenedy, and Barry Williams. "A Comparative Review of Three Different Power Inverters for DC–AC Applications." Energies 16, no. 21 (October 25, 2023): 7254. http://dx.doi.org/10.3390/en16217254.
Full textNayeemuddin, M., T. Bramhananda Reddy, and M. Vijaya Kumar. "Level Shifted Discontinuous PWM Algorithms to Minimize Common Mode Voltage for Cascaded Multilevel Inverter Fed Induction Motor Drive." International Journal of Power Electronics and Drive Systems (IJPEDS) 9, no. 2 (June 1, 2018): 504. http://dx.doi.org/10.11591/ijpeds.v9.i2.pp504-518.
Full textChinmay V., Deshpande, Deshpande Chaitanya V., and Deokar Sanjay A. "Performance Evaluation of Dynamic Voltage Restorer Based on Transformer-based Z Source Inverter." International Journal of Power Electronics and Drive Systems (IJPEDS) 8, no. 3 (September 1, 2017): 1101. http://dx.doi.org/10.11591/ijpeds.v8.i3.pp1101-1108.
Full textIwаszkiewicz, Jаn, and Adam Muc. "The active filtering of the inverter output voltage by use of orthogonal vectors’ control strategy." Renewable Energy and Power Quality Journal 20 (September 2022): 817–21. http://dx.doi.org/10.24084/repqj20.446.
Full textChemseddine, Aicha, Noureddine Benabadji, Ali Cheknane, and Salah Eddine Mankour. "A comparison of single phase standalone square waveform solar inverter topologies: half bridge and full bridge." International Journal of Electrical and Computer Engineering (IJECE) 10, no. 4 (August 1, 2020): 3384. http://dx.doi.org/10.11591/ijece.v10i4.pp3384-3392.
Full textGireesh Kumar, Devineni, Nagineni Venkata Sireesha, D. S. Naga Malleswara Rao, Pandla Chinna Dastagiri Goud, Musheer Vaqur, and T. V. V. Pavan kumar. "Optimized Inverter Circuits for Driving Dual AC Loads for Home Solar Water Pumping." E3S Web of Conferences 430 (2023): 01005. http://dx.doi.org/10.1051/e3sconf/202343001005.
Full textSusheela, Nunsavath. "Comparative Analysis of Carrier based techniques for Single phase Diode Clamped MLI and Hybrid inverter with reduced components." Indonesian Journal of Electrical Engineering and Computer Science 7, no. 3 (September 1, 2017): 687. http://dx.doi.org/10.11591/ijeecs.v7.i3.pp687-697.
Full textMurdianto, Farid Dwi, Indhana Sudihato, Anang Budi Karso, and Wildana Zulfa. "Design of a Single Phase HERIC-SPWM." INTEK: Jurnal Penelitian 9, no. 1 (April 1, 2022): 7. http://dx.doi.org/10.31963/intek.v9i1.2995.
Full textLakshmi, G. Sree, and S. Naveen Kumar. "Comparison of Multilevel Inverters with T-type MLI: A Brief Review." Jurnal Kejuruteraan 35, no. 4 (July 30, 2023): 803–9. http://dx.doi.org/10.17576/jkukm-2023-35(4)-02.
Full textBalaji, V., Uppili Subha, and G. Joga Rao. "A Reduced Switch Count Seven Level Symmetrical Inverter with Low Distortion." International Journal of Recent Technology and Engineering (IJRTE) 10, no. 2 (July 30, 2021): 181–86. http://dx.doi.org/10.35940/ijrte.b6032.0710221.
Full textDissertations / Theses on the topic "Inverter"
Faraci, William Eric. "Design of a Resonant Snubber Inverter for Photovoltaic Inverter Systems." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/47800.
Full textMaster of Science
Tang, Yuqing. "High Power Inverter EMI Characterization and Improvement by Auxiliary Resonant Snubber Inverter." Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/31022.
Full textIn this paper, the relation between the dv/dt di/dt and the EMI generation are discussed. The EMI sources of a hard-switching single-phase PWM inverter are identified and measured with separation of common-mode and differential-mode noises. The noise reduction in an auxiliary resonant snubber inverter (RSI) is presented. The observation of voltage ringing and current ringing and the methods to suppress these ringing in the implementation of RSI are also discussed. The test condition and circuit layout are described as the basis of the study. And the experimental EMI spectra of both hard- and soft-switching inverter are compared. The effectiveness and limitation of the EMI reduction of the ZVT-RSI are also discussed and concluded.
The control interface circuit and gate driver design are described in the appendix. The implementation of variable charging time control of the resonant inductor current is also explained in the appendix.
Master of Science
Saghaleini, Mahdi. "Switching Patterns and Steady-State Analysis of Grid-Connected and Stand-Alone Single-Stage Boost-Inverters for PV Applications." FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/796.
Full textMansfield, Keith. "COMPARISON OF SINGLE STAGE AND TWO STAGE STAGE GRID-TIE INVERTERS." Master's thesis, University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2730.
Full textM.S.E.E.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering MSEE
Larsen, Alexander, and Pontus Lindquist. "Forecasting mismatch losses: An empirical study investigating module level inverter- and string inverter systems." Thesis, KTH, Energiteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-148089.
Full textSyftet med detta arbete är att utforska korrelationen mellan solinstrålning och producerad effekt för två olika system. Det ena systemet består av lokala växelriktare och det andra av en strängomriktare. En empirisk studie har utförts och i detta arbete diskuteras växelriktare i fotovoltaiska system. Olika orsaker till varför förlorad effekt uppstår mellan modulerna så som ålder, skuggning och tillverkningsfel omfattas även av detta arbete. Det förutspådda värdet på effektförluster mellan modulerna i strängomriktarsystemet uppgick till 2,6 %, vilket är baserat på flash tester för nya solceller. Detta värde är troligtvis underskattat med tanke på att de celler som använts är föråldrade och att effekten av detta inte är medtaget i beräkningarna. Systemet med lokala växelriktare genererade 6,1 % mer elektricitet under den uppmätta perioden. Fastän den uppmätta perioden var kort och antalet system som studerades var litet så kunde flera faktorer identifieras som förklarar varför strängomriktare är underlägsna lokala växelriktare sett till producerad effekt.
Krogemann, Markus. "The parallel resonant DC link inverter : a soft-switching inverter topology with PWM capability." Thesis, University of Nottingham, 1997. http://eprints.nottingham.ac.uk/13526/.
Full textBreda, David Pedro. "Simulation of a resonant inverter." Master's thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/15931.
Full textMostly developed since the Industrial Revolution, the automation of systems and equipment around us is responsible for a technological progress and economic growth without precedents, but also by a relentless energy dependence. Currently, fossil fuels still tend to come as the main energy source, even in developed countries, due to the ease in its extraction and the mastery of the technology needed for its use. However, the perception of its ending availability, as well as the environmental impact of this practice has led to a growing energy production originated from renewable sources. Easy maintenance, coupled with the fact that they are virtually inexhaustible, makes the solar and wind energy very promising solutions. In this context, this work proposes to facilitate energy production from these sources. To this end, in this work the power inverter is studied, which is an equipment responsible for converting DC power available by solar or wind power in traditional AC power. Then it is discussed and designed a new architecture which, in addition to achieve a high energy e - ciency, has also the ability to adapt to the type of conversion desired by the user, namely if he wants to sell electricity to the power grid, be independent of it or bet on a self consumption system. In order to achieve the promised energy e ciency, the projected inverter uses a resonant DC-DC converter, whose architecture signi cantly decreases the energy dissipated in the conversion, allowing a higher power density. The adaptability of the equipment is provided by an adaptive control algorithm, responsible for assessing its behavior on every iteration and making the necessary changes to achieve maximum stability throughout the process. To evaluate the functioning of the proposed architecture, a simulation is presented using the PLECS simulation software.
Desenvolvida maioritariamente a partir da Revolução Industrial, a automatização dos sistemas e equipamentos que nos rodeiam e responsável por um progresso tecnológico e crescimento económico sem precedentes, mas também por uma incessante dependência energética. Atualmente, combustíveis fosseis ainda tendem a surgir com principal fonte de energia, mesmo em países desenvolvidos, devido a facilidade na sua extração e domínio da tecnologia necessária a sua utilização. No entanto, a perceção quer da sua findável disponibilidade, quer do impacto ambiental desta pratica, tem levado a uma crescente produção de energia proveniente de fontes renováveis. A sua fácil manutenção, aliada ao facto de serem praticamente inesgotáveis, faz das energias solar e eólica uma solução muito promissora. Neste contexto, esta dissertação propõe facilitar a produção de energia proveniente destas fontes. Assim, neste trabalho são estudados os inversores de potencia, equipamentos responsáveis por converter energia DC disponibilizada por uma fonte solar ou eólica em energia AC tradicional. Seguidamente e discutida e projetada uma nova arquitetura que, para al em de conseguir um alto rendimento energético, tem também a capacidade de se adaptar face ao tipo de conversão pretendida pelo utilizador, caso este queira vender energia a rede elétrica, ser independente desta ou apostar num sistema de auto consumo. Para alcançar o alto rendimento energético prometido, o inversor projetado faz uso de um conversor DC-DC ressonante, cuja arquitetura diminui consideravelmente a energia dissipada na conversão, permitindo assim uma maior densidade de potencia. A versatilidade do equipamento e disponibilizada por um algoritmo de controlo adaptativo, responsável por avaliar o comportamento deste a cada iteração e fazer as alterações necessárias para alcançar a máxima estabilidade ao longo de todo o processo. Para uma avaliação do funcionamento da arquitetura proposta, apresenta-se a simulação da mesma utilizando o software de simulação PLECS.
Joel, Jaldemark. "Remote control of frequency inverter." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-41400.
Full textChen, Baifeng. "High-efficiency Transformerless PV Inverter Circuits." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/56686.
Full textPh. D.
Sirisukprasert, Siriroj. "Optimized Harmonic Stepped-Waveform for Multilevel Inverter." Thesis, Virginia Tech, 1999. http://hdl.handle.net/10919/35333.
Full textMaster of Science
Books on the topic "Inverter"
Bedford, B. D. Principles of inverter circuits. Malabar, Fla: R.E. Krieger Pub. Co., 1985.
Find full textGuzinski, Jaroslaw, Haitham Abu-Rub, and Patryk Strankowski. Variable Speed AC Drives with Inverter Output Filters. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118782989.
Full textMcCormick, John A. Three-phase inverter for small high speed motors. Hanover, NH: Creare Inc., 1991.
Find full textA, Valenzuela Javier, and United States. National Aeronautics and Space Administration., eds. Three-phase inverter for small high speed motors. Hanover, NH: Creare Inc., 1991.
Find full textA, Valenzuela Javier, and United States. National Aeronautics and Space Administration., eds. Three-phase inverter for small high speed motors. Hanover, NH: Creare Inc., 1991.
Find full textSkinner, A. J. Four quadrant inverter technologies for high frequency UPS. Leatherhead, Surrey, England: ERA Technology, 1992.
Find full textAhmad, Hammoud, and United States. National Aeronautics and Space Administration., eds. Development of a 1 kW, 200C̊ Mapham inverter. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Find full textPalani, Rakesh Kumar, and Ramesh Harjani. Inverter-Based Circuit Design Techniques for Low Supply Voltages. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46628-6.
Full textMason, C. R. High power G.T.O. circuit design for inverter drive applications. Birmingham: University of Birmingham, 1987.
Find full textT, Myers Ira, and United States. National Aeronautics and Space Administration., eds. Multi-megawatt inverter/converter technology for space power applications. [Washington, DC]: National Aeronautics and Space Administration, 1992.
Find full textBook chapters on the topic "Inverter"
Melkebeek, Jan A. "Inverter." In Electrical Machines and Drives, 307–42. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72730-1_11.
Full textWeik, Martin H. "inverter." In Computer Science and Communications Dictionary, 835. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_9577.
Full textGiebel, Thomas. "Der Inverter." In Grundlagen der CMOS-Technologie, 151–79. Wiesbaden: Vieweg+Teubner Verlag, 2002. http://dx.doi.org/10.1007/978-3-663-07914-9_6.
Full textWeik, Martin H. "image inverter." In Computer Science and Communications Dictionary, 751. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_8650.
Full textUyemura, John P. "The CMOS Inverter." In Circuit Design for CMOS VLSI, 79–113. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3620-8_3.
Full textShen, Shuiwen, and Qiong-zhong Chen. "Inverter PWM Control." In Lecture Notes in Electrical Engineering, 289–318. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-38161-4_9.
Full textAmin, Bahram. "Inverter-Fed Induction Motors." In Power Systems, 109–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04373-8_6.
Full textNeuburger, Martin. "Photovoltaic based inverter charger." In Proceedings, 181–97. Wiesbaden: Springer Fachmedien Wiesbaden, 2014. http://dx.doi.org/10.1007/978-3-658-05130-3_14.
Full textPalani, Rakesh Kumar, and Ramesh Harjani. "Inverter Based OTA Design." In Analog Circuits and Signal Processing, 29–39. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46628-6_3.
Full textLiu, Hongpeng, Zichao Zhou, Yuhao Li, Wentao Wu, Jiabao Jiang, and Enda Shi. "Z-Source Inverter and Control." In Impedance Source Inverters, 29–49. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2763-0_2.
Full textConference papers on the topic "Inverter"
Gayathry, P. R., S. Sreehari, and Alan Mathew George. "Comparative Analysis of Standard Cascaded H-Bridge and Improved Switched Capacitor Multilevel Inverter." In 2nd International Conference on Modern Trends in Engineering Technology and Management. AIJR Publisher, 2023. http://dx.doi.org/10.21467/proceedings.160.49.
Full textChen, Minjia, Chunhui Yao, Adrian Wonfor, Shuai Yang, Mark Holm, Qixiang Cheng, and Richard Penty. "Direct Iterative Photonic Integrated Matrix Inverter." In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_si.2023.sm1p.2.
Full textLynn, Kevin. "Outdoor Performance Characterization of Grid-Connected Inverters." In ASME 2004 International Solar Energy Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/isec2004-65114.
Full textKiss, Gergely, Francesco Duchi, and Tim Steinhaus. "Hardware-in-the-Loop Testing for Optimizing Inverter Performance in Electric Vehicles." In 16th International Conference on Engines & Vehicles. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-24-0178.
Full textFlicker, Jack. "PV inverter reliability: Advanced Inverter Functionality." In Proposed for presentation at the IEEE Energy Conversion Congress and Exposition (ECCE) held October 10-14, 2022 in Detroit, MI United States. US DOE, 2022. http://dx.doi.org/10.2172/2004723.
Full textDuraipandi, Arumuga Pandian, Renan Leon, Herve Ribot, Antony Vinoth Raja, Altafhussain Farooqui, and Vinoth-Roy Chandrasekaran. "Structural Validation and Correlation of Inverter Gasket." In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-01-2744.
Full textLynn, Kevin, and William Wilson. "Early Results From the Long-Term Testing of Inverters." In ASME 2006 International Solar Energy Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/isec2006-99111.
Full textK R, Adhipa, and Jayanand B. "Comparison of Sine-wave inverter topologies: Infinite-Level inverter and Differential inverter." In 2023 International Conference on Power, Instrumentation, Control and Computing (PICC). IEEE, 2023. http://dx.doi.org/10.1109/picc57976.2023.10142553.
Full textDos Santos, Rafael, and Flávio A. S. Gonçalves. "Sinusoidal PWM techniques comparison for the Quasi-Y-Source Inverter." In Simpósio Brasileiro de Sistemas Elétricos - SBSE2020. sbabra, 2020. http://dx.doi.org/10.48011/sbse.v1i1.2316.
Full textGekeler, Manfred W. "Soft switching three level inverter (S3L inverter)." In 2013 15th European Conference on Power Electronics and Applications (EPE). IEEE, 2013. http://dx.doi.org/10.1109/epe.2013.6631756.
Full textReports on the topic "Inverter"
Zhao, Zilai, and Charles Gough. Next Generation Inverter. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1261839.
Full textGriesbach, C. R., and R. L. Moser. Advanced Inverter Technology. Fort Belvoir, VA: Defense Technical Information Center, October 1985. http://dx.doi.org/10.21236/ada162360.
Full textNagarajan, Adarsh, Ramanathan Thiagarajan, Ingrid L. Repins, and Peter L. Hacke. Photovoltaic Inverter Reliability Assessment. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1573462.
Full textAdam Szczepanek. Advanced Modular Inverter Technology Development. Office of Scientific and Technical Information (OSTI), February 2006. http://dx.doi.org/10.2172/898117.
Full textHoke, Andy, Austin Nelson, Sudipta Chakraborty, Justin Chebahtah, Trudie Wang, and Michael McCarty. Inverter Ground Fault Overvoltage Testing. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1215244.
Full textChinthavali, Madhu Sudhan, Steven Campbell, Mariko Shirazi, Sudipta Chakraborty, Akanksha Singh, Kumaraguru Prabakar, and Colin Tombari. Additively Manufactured Photovoltaic Inverter (AMPVI). Office of Scientific and Technical Information (OSTI), January 2020. http://dx.doi.org/10.2172/1606907.
Full textYe, Z., M. Dame, and B. Kroposki. Grid-Connected Inverter Anti-Islanding Test Results for General Electric Inverter-Based Interconnection Technology. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/15011440.
Full textBailey, J. M. Dual Mode Inverter Control Test Verification. Office of Scientific and Technical Information (OSTI), April 2001. http://dx.doi.org/10.2172/814403.
Full textHoke, Anderson, Austin Nelson, Brian Miller, Sudipta Chakraborty, Frances Bell, and Michael McCarty. Experimental Evaluation of PV Inverter Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1265055.
Full textLai, Jihsheng. Single DC Source Based Cascaded Multilevel Inverter. Office of Scientific and Technical Information (OSTI), April 2022. http://dx.doi.org/10.2172/2205207.
Full text