Academic literature on the topic 'Inversion methods'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Inversion methods.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Inversion methods"
Thompson, M. J. "Inversion Methods." Symposium - International Astronomical Union 185 (1998): 125–34. http://dx.doi.org/10.1017/s0074180900238448.
Full textTang, J., and Q. Zhuang. "Technical Note: Methods for interval constrained atmospheric inversion of methane." Atmospheric Chemistry and Physics Discussions 10, no. 8 (August 24, 2010): 19981–20004. http://dx.doi.org/10.5194/acpd-10-19981-2010.
Full textKorda, David, Michal Švanda, and Junwei Zhao. "Comparison of time–distance inversion methods applied to SDO/HMI Dopplergrams." Astronomy & Astrophysics 629 (September 2019): A55. http://dx.doi.org/10.1051/0004-6361/201936268.
Full textUrsenbach, Charles P., and Robert R. Stewart. "Two-term AVO inversion: Equivalences and new methods." GEOPHYSICS 73, no. 6 (November 2008): C31—C38. http://dx.doi.org/10.1190/1.2978388.
Full textKarimpour, Mohammadkarim, Evert Cornelis Slob, and Laura Valentina Socco. "Physically Constrained 2D Joint Inversion of Surface and Body Wave Tomography." Journal of Environmental and Engineering Geophysics 27, no. 2 (June 2022): 57–71. http://dx.doi.org/10.32389/jeeg21-031.
Full textRosa, Daiane R., Juliana M. C. Santos, Rafael M. Souza, Dario Grana, Denis J. Schiozer, Alessandra Davolio, and Yanghua Wang. "Comparing different approaches of time-lapse seismic inversion." Journal of Geophysics and Engineering 17, no. 6 (November 4, 2020): 929–39. http://dx.doi.org/10.1093/jge/gxaa053.
Full textHicks, Graham J., and R. Gerhard Pratt. "Reflection waveform inversion using local descent methods: Estimating attenuation and velocity over a gas‐sand deposit." GEOPHYSICS 66, no. 2 (March 2001): 598–612. http://dx.doi.org/10.1190/1.1444951.
Full textPoroshina, N. I., and V. M. Ryabov. "Methods for laplace transform inversion." Vestnik St. Petersburg University: Mathematics 44, no. 3 (August 24, 2011): 214–22. http://dx.doi.org/10.3103/s1063454111030071.
Full textJohnson, Lane. "Methods and Applications of Inversion." Eos, Transactions American Geophysical Union 81, no. 52 (2000): 645. http://dx.doi.org/10.1029/eo081i052p00645-03.
Full textChapman, Ross. "Assessment of geoacoustic inversion methods." Journal of the Acoustical Society of America 131, no. 4 (April 2012): 3240. http://dx.doi.org/10.1121/1.4708090.
Full textDissertations / Theses on the topic "Inversion methods"
Kamm, Jochen. "Inversion and Joint Inversion of Electromagnetic and Potential Field Data." Doctoral thesis, Uppsala universitet, Geofysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-215673.
Full textDiese Arbeit hat die Lösung von vier geophysikalischen Umkehraufgaben, sogenannten Inversionsproblemen, zum Gegenstand. Zwei dieser Aufgaben befassen sich mit der Inversion elektromagnetischer Daten, zwei weitere sind Probleme der kombinierten Inversion von Datensätzen aus unterschiedlichen geophysikalischen Messverfahren. Im ersten Problem wird die für die Auswertung elektromagnetischer Zweispulensystemdaten typische lineare Näherung der kleinen Induktionszahlen als Bornsche Näherung verallgemeinert, ihre Anwendbarkeit durch exakte Berücksichtigung der Induktionsvorgänge in einem beliebigen homogenen Halbraum von schlechtleitenden auf gutleitende Untergründe ausgedehnt und schließlich zur zwei- und dreidimensionalen Inversion eingesetzt. Dadurch kann auch im leitfähigen Untergrund eine aufwändige exakte Modellierung vermieden werden. Im zweiten Problem wird eine dreidimensionale Inversion von flugzeuggestützten Längstwellenmessungen entwickelt und als ihre Grundlage eine exakte elektromagnetische Rechnung erdacht. Damit wird traditionelle kartengestützte Dateninterpretation durch ein dreidimensionales Leitfähigkeitsmodell ergänzt, welches die oberen hundert bis dreihundert Meter der Erdkruste bis hin zur Tiefe des obersten Leiters abbildet, so dass dessen Oberflächenform erkundet werden kann. Die enorme Problemgröße wird durch eine Fouriertransformationsmethode bewältigt, welche die elektromagnetischen Wechselwirkungen nach ihrer Reichweite einteilt, die Fernwirkungen mit entsprechend verringerter Genauigkeit behandelt und dadurch eine erhebliche Anzahl an Rechnungen einspart. Im dritten Problem werden refraktionsseismische und geoelektrische Messungen kombiniert, indem sowohl das Geschwindigkeits- als auch das Widerstandsmodell mit einer gemeinsamen, lateral veränderlichen und durch beide Datensätze bestimmten Schichtstruktur versehen werden. Ein solches, durch Schichten definiertes Inversionsergebnis, stellt in vielen oberflächennahen Anwendungen, beispielsweise im Grundwasserbereich, ein sinnvolles Abbild der Erde dar. Im vierten Problem werden Schweremessungen und Magnetfeldmessungen, die über einer Gabbrointrusion aufgenommen wurden, mittels einer empirischen petrophysikalischen Beziehung vereinigt, welche aus Labormessungen an einer großen Anzahl von Gesteinsproben abgeleitet wurde. Hierbei wird der Einfluss dieser Modellkopplung solange maximiert, wie beide Datensätze mit derjenigen Genauigkeit angepasst werden können, welche vorher in Einzelinversionen erreicht wurde. Das Ergebnis ist ein einfaches, geometrisch konsistentes Modell der Verteilungen von Dichte und magnetischer Suszeptibilität. In allen vier Aufgaben wurden erfolgreich reale Felddaten invertiert. Die Güte der Ergebnisse wurde mittels synthetischer Experimente untersucht und, so vorhanden, mit unabhängigen Informationen verglichen.
Saunders, Jonathan Howard. "Electrical inversion and characterisation methods in geophysics." Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413721.
Full textMACIEL, Jonathas da Silva. "Structural constraints for image-based inversion methods." Universidade Federal do Pará, 2016. http://repositorio.ufpa.br/jspui/handle/2011/9021.
Full textApproved for entry into archive by Irvana Coutinho (irvana@ufpa.br) on 2017-08-23T13:21:47Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_StructuralconstraintsImage.pdf: 21057747 bytes, checksum: c218ce93af99d33375ec25eeec4aa33e (MD5)
Made available in DSpace on 2017-08-23T13:21:47Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_StructuralconstraintsImage.pdf: 21057747 bytes, checksum: c218ce93af99d33375ec25eeec4aa33e (MD5) Previous issue date: 2016-04-22
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Esta tese apresenta duas metodologias de regularização estrutural para os métodos de análise de velocidade com migração e inversão conjunta com migração: regularização gradiente cruzado e filtragem com operadores morfológicos. Na análise de velocidade com migração, a regularização de gradiente cruzado tem como objetivo vincular os contrates de velocidade com o mapa de refletividade, através da paralelização dos vetores gradiente de velocidade com os vetores gradiente da imagem. Propõe-se uma versão com gradiente cruzado das funções objeto de minimização: Differential Semblance, Stack Power e Partial Stack Power. Combina-se a função Partial Stack Power com sua versão de gradiente cruzados, com o objetivo de aumentar gradativamente a resolução do modelo de velocidade, sem comprometer o ajuste das componentes de longo comprimento de onda do modelo de velocidade. Na inversão conjunta com migração propõe-se aplicar os operadores morfológicos de erosão e dilatação, no pré-condicionamento do modelo de velocidade em cada iteração. Os operadores usam o mapa de refletividade para delimitar as regiões com mesmo valor de propriedade física. Eles homogenizam a camada geológica e acentuam o contraste de velocidade nas bordas. Os vínculos estruturais não apenas irão reduzir a ambiguidade na estimativa do modelo de velocidade, mas tornará os métodos de inversão com migração mais estáveis, reduzindo artefatos, delineando soluções geologicamente plausíveis e acelerando a convergência da função objeto de minimização.
This thesis presents two methodologies of structural regularization for Wave-Equation Migration Velocity Analysis and Joint Migration Inversion: cross-gradient regularization and filtering with morphological operators. In Wave-Equation Migration Velocity Analysis, the cross-gradient regularization aims to constrain the velocity contrasts with the reflectivity map by parallelization of the velocity gradient vector and the image gradient vector. We propose a version with cross-gradient of the objective functions: Differential Semblance, Stack Power and Partial Stack Power. We combine the Partial Stack Power with its version of cross-gradient, in order to gradually increase the resolution of the velocity model without compromising the adjustment of the long wavelengths of the velocity model. In Joint Migration Inversion, we propose to apply morphological operators of erosion and dilation in the preconditioning of the velocity model in each iteration. Operators use the reflectivity map to mark the regions with the same value of physical property. They homogenize the geological layer and accentuate the velocity contrast at the edges. Structural constraints do not only reduce the ambiguity in estimating a velocity model, but also make the migration/inversion methods more stable, reducing artifacts, delineating geologically plausible solutions, and accelerating the convergence of the objective function.
Walker, Matthew James. "Methods for Bayesian inversion of seismic data." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/10504.
Full textLi, Song. "Numerical methods for stable inversion of nonlinear systems." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/15028.
Full textWilson, Adam. "Theory and methods of frequency-dependent AVO Inversion." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4740.
Full textSawyer, Nicolas B. E. "Novel optical surface metrology methods." Thesis, University of Nottingham, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287239.
Full textThurin, Julien. "Uncertainties estimation in Full Waveform Inversion using Ensemble methods." Thesis, Université Grenoble Alpes, 2020. https://tel.archives-ouvertes.fr/tel-02570602.
Full textFull Waveform Inversion (FWI) is an ill-posed non-linear inverse problem, aiming at recovering detailed pictures of subsurface physical properties, which are crucial to explore and understand Earth structures.Classically formulated as a least-squares optimization scheme, FWI yields a single subsurface model amongst an infinite possibility of solutions. With the general lack of systematic and scalable uncertainty estimation, this formulation makes interpretation of FWI's outcomes complex.In this thesis, we propose an unconventional, scalable way of tackling the lack of uncertainty estimation in FWI, thanks to data assimilation ensemble methods. We develop a scheme combining both classical FWI and the Ensemble Transform Kalman Filter, that we call ETKF-FWI, and which is successfully applied on two 2-D test cases. This scheme takes advantage of the theoretical common-ground between least-squares optimization problems and Bayesian filtering. We use it to recast FWI in a local Bayesian inference framework, thanks to the ensemble representation. The ETKF-FWI provides high-resolution subsurface tomographic models and yields a low-rank approximation of the posterior covariance, holding the uncertainty and resolution information of the proposed solution. We show how the ETKF-FWI can be applied to qualitatively evaluate uncertainty and resolution of the solution. Instead of providing a single solution, the filter yields an ensemble of models, from which statistical information can be inferred.Uncertainty is evaluated from the ensemble's variance, which relates to the diversity of solution amongst the ensemble members for each parameter. We show that lines of the correlation matrix are ideal to evaluate qualitatively parameters resolution, thanks to their adimentionality. While the methodology is computationally intensive, it has the benefit of being fully scalable. Its applicability is demonstrated on a synthetic benchmark. This preliminary test allows us to assess the sensitivity of the ensemble representation to the common undersampling bias encountered in ensemble data assimilation. While undersampling does not affect the image reconstruction in any way, it results in variance underestimation, which makes the whole exercise of quantitative uncertainty assessment complicated. Ensemble inflation has been used to mitigate this bias, but does not seems to be a practical solution.A field data experiment is also discussed in this thesis. It makes it possible to test the sensitivity of the ETKF-FWI to complex noise structure and realistic physics. As it stands, the complexity of the problem reduces flexibility in the ensemble generation, and hence on the uncertainty estimate. Despite these limitations, results are consistent with the synthetic benchmark, and we are able to provide a qualitative uncertainty assessment. The field data case also allows us to evaluate the possibilities to use the ETKF-FWI on multiparameter inversion, which is still regarded as a challenging topic in FWI. The ETKF-FWI multiparameter inversion yields improved models compared with conventional ones. More importantly, it makes it possible to assess the uncertainty associated with parameters cross-talks
Kim, Junkyoung. "Complex seismic sources and time-dependent moment tensor inversion." Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184841.
Full textMichelen, Strofer Carlos Alejandro. "Machine Learning and Field Inversion approaches to Data-Driven Turbulence Modeling." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103155.
Full textDoctor of Philosophy
The Reynolds-averaged Navier-Stokes (RANS) equations are widely used to simulate fluid flows in engineering applications despite their known inaccuracy in many flows of practical interest. The uncertainty in the RANS equations is known to stem from the Reynolds stress tensor for which no universally applicable turbulence model exists. The computational cost of more accurate methods for fluid flow simulation, however, means RANS simulations will likely continue to be a major tool in engineering applications and there is still a need for improved RANS turbulence modeling. This dissertation explores two different approaches to use available experimental data to improve RANS predictions by improving the uncertain Reynolds stress tensor field. The first approach is using machine learning to learn a data-driven turbulence model from a set of training data. This model can then be applied to predict new flows in place of traditional turbulence models. To this end, this dissertation presents a novel framework for training deep neural networks using experimental measurements of velocity and pressure. When using velocity and pressure data, gradient-based training of the neural network requires the sensitivity of the RANS equations to the learned Reynolds stress. Two different methods, the continuous adjoint and ensemble approximation, are used to obtain the required sensitivity. The second approach explored in this dissertation is field inversion, whereby available data for a flow of interest is used to infer a Reynolds stress field that leads to improved RANS solutions for that same flow. Here, the field inversion is done via the ensemble Kalman inversion (EKI), a Monte Carlo Bayesian procedure, and the focus is on improving the inference by enforcing known physical constraints on the inferred Reynolds stress field. To this end, a method for enforcing boundary conditions on the inferred field is presented. While further development is needed, the two data-driven approaches explored and improved upon here demonstrate the potential for improved practical RANS predictions.
Books on the topic "Inversion methods"
Hansen, Per Christian, Bo Holm Jacobsen, and Klaus Mosegaard, eds. Methods and Applications of Inversion. Berlin/Heidelberg: Springer-Verlag, 2000. http://dx.doi.org/10.1007/bfb0010278.
Full textCohen, A. M. Numerical methods for Laplace transform inversion. New York: Springer, 2011.
Find full text1948-, Stoffa Paul L., ed. Global optimization methods in geophysical inversion. Amsterdam: Elsevier, 1995.
Find full textVogel, Andreas, Charles O. Ofoegbu, Rudolf Gorenflo, and Bjorn Ursin, eds. Geophysical Data Inversion Methods and Applications. Wiesbaden: Vieweg+Teubner Verlag, 1990. http://dx.doi.org/10.1007/978-3-322-89416-8.
Full textMaurya, S. P., N. P. Singh, and K. H. Singh. Seismic Inversion Methods: A Practical Approach. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45662-7.
Full textEarth soundings analysis: Processing versus inversion. Boston: Blackwell Scientific Publications, 1992.
Find full textDiachok, O., A. Caiti, P. Gerstoft, and H. Schmidt, eds. Full Field Inversion Methods in Ocean and Seismo-Acoustics. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8476-0.
Full textDiachok, O. Full Field Inversion Methods in Ocean and Seismo-Acoustics. Dordrecht: Springer Netherlands, 1995.
Find full textWaveform inversion of seismic reflection data through local optimisation methods. Uppsala: [University of Uppsala], 1992.
Find full textO, Diachok, ed. Full field inversion methods in ocean and seismo-acoustics: Edited by O. Diachok ... [et al.]. Dordrecht: Kluwer Academic Publishers, 1995.
Find full textBook chapters on the topic "Inversion methods"
Thompson, M. J. "Inversion Methods." In New Eyes to See Inside the Sun and Stars, 125–34. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4982-2_28.
Full textBertero, Mario, Patrizia Boccacci, and Christine De MoI. "Inversion methods revisited." In Introduction to Inverse Problems in Imaging, 183–212. 2nd ed. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003032755-8.
Full textBerdichevsky, Mark, and Vladimir I. Dmitriev. "Inversion Strategy." In Models and Methods of Magnetotellurics, 453–544. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77814-1_12.
Full textMaurya, S. P., N. P. Singh, and K. H. Singh. "Geostatistical Inversion." In Seismic Inversion Methods: A Practical Approach, 177–216. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45662-7_7.
Full textMaurya, S. P., N. P. Singh, and K. H. Singh. "Pre-stack Inversion." In Seismic Inversion Methods: A Practical Approach, 81–105. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45662-7_4.
Full textFichtner, Andreas. "Finite-Difference Methods." In Full Seismic Waveform Modelling and Inversion, 23–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15807-0_3.
Full textFichtner, Andreas. "Spectral-Element Methods." In Full Seismic Waveform Modelling and Inversion, 59–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15807-0_4.
Full textShen, Qiuyang, Jiefu Chen, Xuqing Wu, Yueqin Huang, and Zhu Han. "Bayesian Inversion and Sampling Methods." In SpringerBriefs in Petroleum Geoscience & Engineering, 17–29. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57097-2_2.
Full textPike, E. R., G. Hester, B. McNally, and G. D. de Villiers. "Mathematical Methods for Data Inversion." In Light Scattering from Microstructures, 41–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-46614-2_3.
Full textKythe, Prem K., and Pratap Puri. "Inversion of Laplace Transforms." In Computational Methods for Linear Integral Equations, 375–415. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0101-4_12.
Full textConference papers on the topic "Inversion methods"
Jackiewicz, Jason, Joyce Ann Guzik, and Paul A. Bradley. "Seismic Inversion Methods." In STELLAR PULSATION: CHALLENGES FOR THEORY AND OBSERVATION: Proceedings of the International Conference. AIP, 2009. http://dx.doi.org/10.1063/1.3246565.
Full textThore, P., H. Klemm, and L. Azevedo. "The Impact of Seismic Inversion Methods on Facies Prediction." In First EAGE Conference on Seismic Inversion. European Association of Geoscientists & Engineers, 2020. http://dx.doi.org/10.3997/2214-4609.202037021.
Full textRoyle, Gillian. "Viscoelastic orthorhombic full wavefield inversion: Development of multiparameter inversion methods." In SEG Technical Program Expanded Abstracts 2011. Society of Exploration Geophysicists, 2011. http://dx.doi.org/10.1190/1.3628112.
Full textJensås, I., J. Eidsvik, and U. Theune. "Methods for Blocky Seismic AVA Inversion." In 70th EAGE Conference and Exhibition - Workshops and Fieldtrips. European Association of Geoscientists & Engineers, 2008. http://dx.doi.org/10.3997/2214-4609.20148055.
Full textYiding, Wang, Wang Yunhong, and Zhao shi. "Errors Analysis of Spectrum Inversion Methods." In 2007 IEEE International Conference on Signal Processing and Communications. IEEE, 2007. http://dx.doi.org/10.1109/icspc.2007.4728304.
Full textKatz, Simon, and Alex Beylin. "Hybrid methods of seismic data inversion." In SPIE's 1993 International Symposium on Optics, Imaging, and Instrumentation, edited by Sergio E. Zarantonello. SPIE, 1993. http://dx.doi.org/10.1117/12.164844.
Full textRussell, Brian, and Dan Hampson. "Comparison of poststack seismic inversion methods." In SEG Technical Program Expanded Abstracts 1991. Society of Exploration Geophysicists, 1991. http://dx.doi.org/10.1190/1.1888870.
Full textCho, Jeongik, and Adam Krzyzak. "Dynamic Latent Scale for GAN Inversion." In 11th International Conference on Pattern Recognition Applications and Methods. SCITEPRESS - Science and Technology Publications, 2022. http://dx.doi.org/10.5220/0010816800003122.
Full textStoffa, P. L., and M. K. Sen. "Seismic Waveform Inversion Using Global Optimization Methods." In 2nd International Congress of the Brazilian Geophysical Society. European Association of Geoscientists & Engineers, 1991. http://dx.doi.org/10.3997/2214-4609-pdb.316.156.
Full textBockmann, C., and S. Samaras. "Regularization Methods for Microphysical Aerosol Parameter Inversion." In Annual International Conference on Computational Mathematics, Computational Geometry & Statistics. Global Science and Technology Forum (GSTF), 2015. http://dx.doi.org/10.5176/2251-1911_cmcgs15.09.
Full textReports on the topic "Inversion methods"
McGehee, Duncan E., Mark C. Benfield, D. Van Holliday, and Charles F. Greenlaw. Advanced Multifrequency Inversion Methods for Classifying Acoustic Scatterers. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada633271.
Full textBenfield, Mark C. Advanced Multi-frequency Inversion Methods for Classifying Acoustic Scatterers. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada612285.
Full textMcGehee, Duncan E., Mark C. Benfield, Charles F. Greenlaw, and D. V. Holliday. Advanced Multi-Frequency Inversion Methods for Classifying Acoustic Scatterers. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada621142.
Full textTurgut, Altan. Rapid Geoacoustics Inversion Methods Used in LWAD98-2 Sea Test,. Fort Belvoir, VA: Defense Technical Information Center, April 1999. http://dx.doi.org/10.21236/ada361913.
Full textMichalopoulou, Zoi-Heleni. Efficient Inversion in Underwater Acoustics with Iterative and Sequential Bayesian Methods. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada574976.
Full textMichalopoulou, Zoi-Heleni. Efficient Inversion in Underwater Acoustics with Analytic, Iterative, and Sequential Bayesian Methods. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada617529.
Full textReimus, Paul W. Binary Tracers and Multiple Geophysical Data Set Inversion Methods to Improve EGS Reservoir Characterization and Imaging. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1130518.
Full textGoodwin, J. A., W. Jiang, A. J. Meixner, S. R. B. McAlpine, S. Buckerfield, M. G. Nicoll, and M. Crowe. Estimating cover thickness in the Southern Thomson Orogen: results from the pre-drilling application of refraction seismic, audio-magnetotelluric and targeted magnetic inversion modelling methods on proposed borehole sites. Geoscience Australia, 2017. http://dx.doi.org/10.11636/record.2017.021.
Full textTolstoy, A. Low Frequency Geoacoustic Inversion Method. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada571774.
Full textTolstoy, A. Low Frequency Geoacoustic Inversion Method. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada575210.
Full text