Dissertations / Theses on the topic 'Inversion complète de la forme d'onde'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 20 dissertations / theses for your research on the topic 'Inversion complète de la forme d'onde.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Asnaashari, Amir. "Imagerie sismique 4D quantitative en milieux complexes par l'inversion 2D de forme d'onde complète." Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00932597.
Full textWellington, Paul John. "Efficient 1D, 2D and 3D Geostatistical constraints and their application to Full Waveform Inversion." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAU032/document.
Full textFull waveform inversion (FWI) is a non-linear, ill-posed, local data fitting technique. FWI looks to moves from an initial, low-wavenumber representation of the earth parameters to a broadband representation. During this iterative process a number of undesirable artifacts can map into our model parameter reconstruction. To mitigate these artifacts and to ensure a geologically consistent model parameter reconstruction, various preconditioning and/or regularization strategies have been proposed.This thesis details the construction of new, efficient, multi-dimensional, structurally-orientated wavenumber filters. A preconditioning strategy has been devised using these filters that we have successfully applied to FWI. The 1D analytical inverse Laplacian covariance operator (Tarantola, 2005) forms the basis of higher dimensional operators and is initially validated by comparing to the 1D analytical Laplacian covariance operator. We use this analytical 1D inverse function as the basis for higher dimensional filtering via the addition of multiple, orthogonally orientated inverse functions. These additive inverse laplacian functions (AIL) are shown in 2D and 3D configurations and are discretized using finite-difference techniques. We show that one can calculate, a rapid and robust wavenumber filter, by solving the linear system associated with these inverse operators. When dip is included at the finite difference discretization stage, it is possible to use these operators as highly efficient, structurally orientated wavenumber filters.The AIL filter is shown to be rapid to converge and its performance is independent of the vector to be filtered. We show, that the filter can be a useful preconditioning operator for the FWI gradient. Preconditioning the gradient can mitigate against ill-posed effects mapping into the model-space. Two synthetic (Valhall and Marmousi) frequency domain FWI example are shown in this thesis. The AIL preconditioner has success at mitigating the ill-posed imprint coming from ambient noise in the observed data and also artifacts from spatial aliasing effects in the FWI imaging condition. The ability to include dip, allows one to preferentially filter along geological dip. This filtering strategy allows the mitigation of artifacts, while simultaneously preserving the stratigraphic based wavenumber content that is orthogonal to dip.A 2D, real data FWI case-study is also shown and we highlight the sensitivity of the inversion result to the initial model. The initial model is of key importance, this especially true in the areas deeper than the maximum penetration of transmitted waves. The application of FWI on this line is able to significantly improve gather alignment on a RTM, migrated image. We also see that the AIL preconditioner can allows us to significantly decrease the number of shot records we are required to model in our inversion workflow without degrading the key geological wavenumber content in the final inversion result
Mamfoumbi, Ozoumet Frichnel W. "Inversion de formes d'ondes complètes dans le domaine fréquentiel en se basant sur un espace de recherche étendu : comprendre les limites." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5008.
Full textFull Waveform Inversion (FWI) has become the cornerstone of seismic imaging workflows in exploration geophysics. FWI is a non destructive imaging device that estimates properties of a medium from waves. Mathematically, FWI is an inverse scattering problem formulated as a constrained data fitting problem for the estimation of the parameters contained in the coefficients of the wave equation constraint. FWI is generally solved with iterative local optimization methods due to the size of the data and parameter spaces. As solving FWI with the method of Lagrange multipliers is expensive, the full search space is classically projected onto the parameter space by variable projection leading to a highly nonlinear problem. This nonlinearity results from the single-scattering Born approximation with which partial derivative data simulate the measured scattered data or data residuals. This approximation requires to satisfy the cycle skipping criterion, that is the simulated data should predict the recorded data with phase errors less than pi. This thesis deals with the wavefield reconstruction inversion (WRI) method, which extends the linear regime of FWI by reconstructing wavefields that are closer to the true wavefields and match the observables without cycle skipping. To this end, wavefields are computed in the initial medium with extended sources given by the sum of the experimental sources and an approximation of the volume sources that would generate the scattered fields by the sought model perturbation at the current iteration. The volume sources are estimated by solving an upstream scattered-data fitting problem before pushing the parameters towards the true ones by minimizing the source extensions. This thesis first provides an update overview of these principles. The optimization problem is formulated with the alternating-direction method of multipliers (ADMM) where the wavefields, the parameters and the Lagrange multipliers are updated with alternating directions and nonsmooth regularization is implemented with proximal algorithms. Then, the behavior of WRI are illustrated with synthetic benchmarks. The first illustrates how WRI manages cycle skipping with a full-aperture circular acquisition. Then, a surface acquisition illustrates how WRI reconstructs progressively the medium from shallow to deep areas. This results because the wavefields are computed by backward/forward propagation of the data residuals from the receivers in the inaccurate background medium. Then, the benefit of long-offset acquisition to perform well-posed WRI while avoiding cycle skipping is shown. The fourth test illustrates the sensitivity of WRI to the penalty parameter controling the relative weight of the data and source misfit functions and compare the results of WRI and FWI. Then, the role of sparsity-promoting regularization to reconstruct complex media containing salt bodies is illustrated. Finally, WRI is assessed at the regional scale where the size of the domains leads to hundred of propagated wavelengths and the inversion is stabilized with weighting operator in the source misfit function. Finally, WRI is assessed with a 2D real dataset from the OBN Gorgon survey, Australia. Although the results were impeded by the 2D configuration, the ability of WRI to match arbitrarily well the data is shown while WRI outperforms FWI as highlighted by a better match of well logs and sharper reconstruction of the Gorgon horst at reservoir levels. Perspectives are the efficient numerical implementation of WRI allowing for application on 3D real data to refine the conclusions drawn from this first real data application
Gao, Guochao. "Contribution to seismic modeling and imaging in the presence of reflector roughness." Thesis, Ecole centrale de Marseille, 2020. http://www.theses.fr/2020ECDM0010.
Full textDue to various geological processes and crustal movements, rough interfaces widely exist within the Earth. The rough interface can strongly affect seismic wave propagation, manifested as changes in the amplitude, phase, scattering angle, frequency content, and even the wave-type conversion. Inevitably, the quality of seismic imaging or inversion is also greatly influenced. Despite the numerous works devoted to the interaction of waves with rough interfaces, this interaction remains to be better understood, as it is still quite challenging to model the seismic wave propagation and to properly reconstruct the subsurface. The thesis investigates the effect of rough interfaces on seismic wave modeling and imaging, and explores the potential of an electromagnetic method to remove this effect and to better image the subsurface.We use a spectral-element method, and more specifically the code SPECFEM2D, for modeling acoustic wave propagation in the time domain. First, we consider a sinusoidal grating and illustrate numerically the consequences of the grating equation on the temporal signals. Then, using f-k analysis, we show the location of the different diffraction orders in the frequency-wavenumber domain. After a sensitivity analysis, we select an appropriate configuration that allows for the separation of diffraction orders from a shot gather. Last, both roughness height and correlation length are shown to obviously influence the appearance of the diffracted wavefield. However, the correlation length has less effect on the energy of the diffracted waves than the interface roughness.We adopt a full-waveform inversion (FWI) scheme based on the software package DENISE to study the influence of different roughness heights and correlation lengths on seismic imaging results. When the roughness height increases up to the dominant wavelength or is greater, the random noise dominates in the seismic data, and the FWI results significantly deteriorate, especially for the reconstruction of a horizontal reflector located below the rough interface. In contrast, the correlation length has a much smaller effect on both random noise and quality of the inverted results than the roughness height. As shown here, the interface roughness has a major impact on both seismic wave propagation and imaging. When a rough interface is expected to be present in the subsurface, its effect should be critically considered in FWI, in order to properly reconstruct reflectors possibly located below, and then to properly interpret images of the subsurface. In this context, we perform some preliminary tests on the use of a selective extinction method to remove the impact of the roughness on the wavefields. The results are promising and show the potential of the method for better imaging. In addition, the standard deviation of the amplitude of the processed data may be used to evaluate the characteristics of the rough interface, which is also of interest for geophysicists and geologists
Dongmo, Wamba Mathurin. "Tomographie de l'Océan Indien par inversion de forme d'onde." Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7077.
Full textThe arrival of some plumes and the birth of hotspots at the Earth surface is more likely the cause of the break up of the Pangea ~200 Ma ago, during the jurassic era. The Gondwana was formed by many continental masses like Africa, Australia, India and Antarctic. The late cretaceous was affected by a biological crisis caused by a volcanic and/or asteroid cataclysm which provoke the disappearance of 90% of life on the Earth including dinosaurs, and produced India Deccan trapps with an area of 2 millions km^2 and thickness of 2.5-3 km. This volcanic disaster was associated with the birth of la Réunion hotspot ~65 Ma years ago, from there the india plate entered into the northward migration with a velocity of about 18-20 cm/year, and the closure of the Tethys ocean in front of the indian plate started; in the meantime the raising of basaltic lava from the indian ridges formed a new ocean floor behind the indian plate: this was the birth of indian ocean. In 1953 the Canadian researcher Tuzo Wilson suggested that such an intra-plate volcano may be due to a fixed hotspot in the mantle capable to create successive volcano on the surface; later in 1971 Jason Morgan suggested that the hotspot is fed by a mantle plume rising from the core-mantle boundary due to thermal instabilies. The goal of this thesis is to investigate the actual state of the plume in the entire indian ocean, responsible of many volcanic islands such as Maldives, Maurice and Réunion. By applying waveform inversion we are able to image the earth structure down to the lower mantle; we use Rhum-Rum data and also data collected from FDSN (Federation of Digital Seismograph Networks) data center to perfom our inversion. We perform the forward modelling with the spectral element method. For this regional case we use RegSEM (regional spectral element method) to compute synthetic seismograms that were compared to real seismograms later on. We divided the waveform into several wavepackets, each wavepacket corresponds to a specific mode. We inverted for two parameters, isotropic velocity and radial anisotropy.The result shows a large velocity anomaly channel extending from East to West over nearly ~2100 km in the Mascarene basin at a depth of 200 km. Our model also bring to light a plume under the Reunion hotspot with a broad head in the upper mantle and a narrow tail anchored in the lower mantle. Our model sheds light on the connection between the Reunion plume and the South African LLSVP (Large Low Shear Velocity Province), as well as between the Mascarene anomaly and the base of the lower mantle
Han, Chao. "Advanced signal and imaging methods in ultrasound cortical bone assessment." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS144.
Full textUltrasound technology provides an affordable means to implement non-invasive solutions to diagnostically assess the mechanical characteristics of the bone. In this thesis we introduce Orthogonal Matching Pursuit (OMP) to obtain a robust reconstruction of the waveform of each echo bouncing off the cortical bone surfaces. Echoes' time-of-flight and central frequencies are used to calculate Ct.Th and normalized broadband attenuation (nBUA). In vivo measurements have been successfully performed with pulse-echo ultrasound and reference data wase obtained with HR-pQCT (cortical thickness, vBMD). Ct.Th and nBUA were highly correlated to reference thickness values (r2=0.90) and vBMD (r2=0,90), respectively. The second main contribution is that we introduce Time Domain Topological Energy (TDTE) method and migration into cortical bone imaging. TDTE shows well performance in extracting the structure of cortical bone, including the external, internal boundary of cortical bone and porous structure inside the cortical bone. Migration can provide a rough quantitative distribution of density, compression wave speed, and shear wave speed
Hu, Guanghui. "Inversion acoustique tridimensionnelle des formes d'onde complètes : méthodes algorithmes et application au réservoir pétrolier de Valhall." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00744453.
Full textBottero, Alexis. "Simulation numérique en forme d'onde complète d'ondes T et de sources acoustiques en mouvement." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0325/document.
Full textThis thesis combines observations, simulations and development of high performance numerical tools in the field of underwater acoustics, and in particular for the study of T-waves. After a literature review on T-waves, we analysed real data recorded in Italy. In order to model the phenomenon we have developed an axisymmetric spectral element solver in the time domain, which we present and validate. We also present a parametric study of the influence of seafloor slope in a typical scenario of generation / conversion of a T-wave. The energy and duration of these waves is particularly sensitive to the environment. In particular, we have seen that the slopes and characteristics of the seabed are of crucial importance. Our studies confirm that at regional distances the ocean speed profile is only a second order parameter. To evaluate its impact we have developed a procedure for the calculation of transmission and dispersion loss maps from full waveform numerical simulations in the time domain. In a second step we show that a medium-sized commercial boat can create T-waves of a significant amplitude and of low dispersion by diffraction. This T-wave generation mode, still undocumented, must be particularly frequent in areas where maritime traffic is dense and could explain some abyssal T-waves still misunderstood. Finally, we present numerical tools for calculating the acoustic field created by a moving source
Clévédé, Eric. "Modelisation et inversion de forme d'onde dans une terre tridimensionnelle et anelastique." Paris 7, 1996. http://www.theses.fr/1996PA077310.
Full textPinard, Hugo. "Imagerie électromagnétique 2D par inversion des formes d'ondes complètes : Approche multiparamètres sur cas synthétiques et données réelles." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAU041/document.
Full textGround Penetrating Radar (GPR) is a geophysical investigation method based on electromagnetic waves propagation in the underground. With frequencies ranging from 5 MHz to a few GHz and a high sensitivity to electrical properties, GPR provides reflectivity images in a wide variety of contexts and scales: civil engineering, geology, hydrogeology, glaciology, archeology. However, in some cases, a better understanding of some subsurface processes requires a quantification of the physical parameters of the subsoil. For this purpose, inversion of full waveforms, a method initially developed for seismic exploration that exploits all the recorded signals, could prove effective. In this thesis, I propose methodological developments using a multiparameter inversion approach (dielectric permittivity and conductivity), for two-dimensional transmission configurations. These developments are then applied to a real data set acquired between boreholes.In a first part, I present the numerical method used to model the propagation of electromagnetic waves in a heterogeneous 2D environment, a much-needed element to carry out the process of imaging. Then, I introduce and study the potential of standard local optimization methods (nonlinear conjugate gradient, l-BFGS, Newton truncated in its Gauss-Newton and Exact-Newton versions) to fight the trade-off effects related to the dielectric permittivity and to the electrical conductivity. In particular, I show that effective decoupling is possible only with a sufficiently accurate initial model and the most sophisticated method (truncated Newton). As in the general case, this initial model is not available, it is necessary to introduce a scaling factor which distributes the relative weight of each parameter class in the inversion. In a realistic medium and for a cross-hole acquisition configuration, I show that the different optimization methods give similar results in terms of parameters decoupling. It is eventually the l-BFGS method that is used for the application to the real data, because of lower computation costs.In a second part, I applied the developed Full waveform inversion methodology to a set of real data acquired between two boreholes located in carbonate formations, in Rustrel (France, 84). This inversion is carried out together with a synthetic approach using a model representative of the studied site and with a similar acquisition configuration. This approach enables us to monitor and validate the observations and conclusions derived from data inversion. It shows that reconstruction of dielectrical permittivity is very robust. Conversely, conductivity estimation suffers from two major couplings: the permittivity and the amplitude of the estimated source. The derived results are successfully compared with independent data (surface geophysics and rock analysis on plugs) and provides a high resolution image of the geological formation. On the other hand, a 3D analysis confirms that 3D structures presenting high properties contrasts, such as the buried gallery present in our site, would require a 3D approach, notably to better explain the observed amplitudes
Castellanos, Lopez Clara. "Accélération et régularisation de la méthode d'inversion des formes d'ondes complètes en exploration sismique." Phd thesis, Université Nice Sophia Antipolis, 2014. http://tel.archives-ouvertes.fr/tel-01064412.
Full textMohamadian, Sarvandani Mohamadhasan. "Seismic tomography of an amagmatic ultra-slow spreading ridge." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS467.
Full textUltra-slow spreading ridges are a new category of spreading ridges characterized by quasi-amagmatic crustal accretion, exposing considerable amounts of mantle derived peridotites on the seafloor. Investigating the contributions of tectonic, magmatic, and other involved processes is necessary to gain a comprehensive conceptual model of ultra-slow spreading ridges. Imaging the crustal and upper mantle structures can help us to understand the past and current geological activities in the ultra-slow spreading ridges. The aim of the project is to understand the oceanic crust formed in an ultra-slow spreading ridge called the Southwest Indian Ridge with a low melt supply. Our research project is based on the processing and modeling of the active and passive seismic data in the easternmost part of Southwest Indian Ridge. The data acquisition took place in 2014 during the SISMOSMOOTH cruise. We analyzed vertical component recordings from 43 ocean-bottom seismometers in our passive seismic approach and the hydrophone components of 16 ocean-bottom seismometers in the active seismic approach. Ambient-noise interferometry and full-waveform inversion (FWI) of refraction data were used to image the internal structures of the lithosphere. In the modeling of ambient-noise interferometry, we find an average crustal thickness of 7 km with a shallow layer of low shear velocities. Moreover, we infer that the uppermost 2 km are highly porous and may be strongly serpentinized. The average shear wave velocity between the base of the crust and the maximum depth of our model (15 km) was less than the global reference value of 4.5 km/s and was explained by the younger age of the seafloor in our area. Our two-dimensional P-wave velocity model obtained from FWI suggests considerable variations in the upper lithospheric compositions along the axis-parallel profile. A transition is expected at a distance of ∼65-95 km along the profile from the predominantly volcanic domain in the western zone to variable serpentinized peridotite in the eastern zone. Dike injections are predicted in this area. A westward increase in melt supply is proposed in the seafloor accretion mode. The serpentinization and P-wave velocity model suggests that the Moho is a gradual transition from hydrated to unaltered peridotite
Sirgue, Laurentf1975. "Inversion de la forme d'onde dans le domaine fréquentiel de données sismiques grands offsets." Paris 11, 2003. http://www.theses.fr/2003PA112088.
Full textThe standard imaging approach in exploration seismology relies on a decomposition of the velocity model by spatial scales: the determination of the low wavenumbers of the velocity field is followed by the reconstruction of the high wavenumbers. However, for models presenting a complex structure, the recovery of the high wavenumbers may be significantly improved by the determination of intermediate wavenumbers. These, can potentially be recovered by local, non-linear waveform inversion of wide-angle data. However, waveform inversion is limited by the non-linearity of the inverse problem, which is in turn governed by the minimum frequency in the data and the starting model. For very low frequencies, below 7 Hz, the problem is reasonably linear so that waveform inversion may be applied using a starting model obtained from traveltime tomography. The frequency domain is then particularly advantageous as the inversion from the low to the high frequencies is very efficient. Moreover, it is possible to discretise the frequencies with a much larger sampling interval than dictated by the sampling theorem and still obtain a good imaging result. A strategy for selecting frequencies is developed where the number of input frequencies can be reduced when a range of offsets is available: the larger the maximum offset is, the fewer frequencies are required. Real seismic data unfortunatly do not contain very low frequencies and waveform inversion at higher frequencies are likely to fail due to convergence into a local minimum. Preconditioning techniques must hence be applied on the gradient vector and the data residuals in order to enhance the efficacy of waveform inversion starting from realistic frequencies. The smoothing of the gradient vector and inversion of early arrivals significantly improve the chance of convergence into the global minimum. The efficacy of preconditioning methods are however limited by the accuracy of the starting model
Bachmann, Etienne. "Imagerie ultrasonore 2D et 3D sur GPU : application au temps réel et à l'inversion de forme d'onde complète." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30133/document.
Full textIf the most important progresses in ultrasound imaging have been closely linked to the instrumentation's quality, the advent of computing science revolutionized this discipline by introducing growing possibilities in data processing to obtain a better picture. In addition, GPUs, which are the main components of the graphics cards deliver thanks to their architecture a significantly higher processing speed compared with processors, and also for scientific calculation purpose. The goal of this work is to take the best benefit of this new computing tool, by aiming two complementary applications. The first one is to enable real-time imaging with a better quality than other sonographic imaging techniques, thanks to the parallelization of the FTIM (Fast Tpological IMaging) imaging process. The second one is to introduce quantitative imaging and more particularly reconstructing the wavespeed map of an unknown medium, using Full Waveform Inversion
Dessa, Jean-Xavier. "Modelisation et inversion de la forme d'onde en domaine frequentiel : applications a la tomographie multi-offsets." Paris 11, 2001. http://www.theses.fr/2001PA112145.
Full textRoberts, Mark Alvin. "Full waveform inversion of walk-away VSP data." Paris, Institut de physique du globe, 2007. http://www.theses.fr/2007GLOB0020.
Full textDepletion of the earth’s hydrocarbon reserves has led to exploration and production in increasingly complex environments. Imaging beneath allochthonous salt (e. G. Salt domes) remains a challenging task for seismic techniques due to the large velocity contrast of the salt with neighbouring sediments and the very complex structures generated by salt movement. Extensive allochthonous salt sheets cover many potentially productive regions in the deep-water Gulf of Mexico. Drilling through the base of salt is an extremely challenging task due to widely varying pore-pressure found in the sediments beneath. Seismic methods to estimate the seismic velocity can be used in conjunction with empirical formula to predict the pore pressure. However, accurate measurements are often not possible from surface reflection seismic data, so walk-away Vertical Seismic Profile (VSP) data has been used. This involves repeatedly firing a seismic source at various distances from the borehole (usually an airgun array) while recording the velocities measured by geophones in the borehole placed at appropriate depths near the base of the salt. Before this thesis, the data had been processed using the amplitude versus angle information in a simple one-dimension approximation or using travel time information (also using a 1D assumption). In this thesis, I have used 2D full waveform inversion to tackle the problem of velocity estimation. This has the advantage of simultaneously inverting the whole dataset (including transmitted waves, reflected waves, converted waves) and the method includes traveltime and amplitude information. The inversion was performed using local inversion methods due to the size of the inverse problem and the cost of the forward problem. Concerns over large sensitivity variations, that are inherent in the data acquisition, have lead to an examination of the Gauss-Newton method and possible preconditioning matrices for the conjugate gradient method. Due to the poorly constrained nature of the inverse problem, a smoothness constraint has been applied with an innovative preconditioning method. The methodology has been applied to real data and the pore pressure has been predicted using the well established Eaton equation. In addition, the sub-salt structure was recovered, further demonstrating the value of this technique
Wang, Yi. "Imagerie haute résolution des structures lithosphériques par inversion de formes d'ondes P télésismiques courte période." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30018.
Full textSeismic tomography allows us to image the Earth's interior based on surface observations of seismic waves. The full waveform inversion (FWI) method has the potential to improve tomographic images for the fine scale structures of the lithosphere. For this reason it receives a lot of attention of seismologists. FWI requires an efficient and precise numerical techniques to solve the elastic wave equation in 3D heterogeneous media. Its resolution potential is limited by the shortest wavelength in the seismic wavefield and the wavefield sampling density. Because of the high computational cost of modeling the propagation of seismic waves in heterogeneous media, FWI remains challenging. However, owing to the progress in high performance computational resources and numerical simulation techniques, as well as the deployment of permanent and temporary broadband arrays in the last two decades, this situation has changed dramatically. In this thesis, we focus on the high resolution imaging of lithospheric structure beneath the Pyrenean range by FWI, to quantify the highly controversial amount of convergence that occurred during the formation of this mountain range. In order to obtain finely resolved tomographic images, we exploit short period teleseismic P waves recorded by dense transects. We use a hybrid method that couples a global wave propagation method in a 1D Earth model to a 3D spectral-element method in a regional domain. A boundary coupling approach is used to match the global and regional wavefields on the boundaries of the regional domain. This hybrid method restricts the costly 3D computations inside the regional domain, which dramatically decreases the computational cost. The hybrid method can model teleseismic wavefields down to 1s period, accounting for all the complexities that may affect the propagation of seismic waves in the 3D regional domain. By using this hybrid method, the sensitivity kernels of the least square waveform misfit function with respect to elastic and density perturbations in the regional domain are computed with the adjoint state method. These waveform sensitivity kernels are used in an iterative L-BFGS algorithm to invert broad-band waveform data recorded by two dense transects deployed during the temporary PYROPE experiment across the Pyrenees mountains. We obtain the first high resolution lithospheric sections of compressional and shear velocities across the Pyrenean orogenic belt. The tomographic models provide clear evidence for the underthrust of the thinned Iberian crust beneath the European plate and for the important role of rift-inherited mantle structures during the formation of the Pyrenees
Monmayrant, Antoine. "Façonnage et caractérisation d'impulsions ultracourtes : contrôle cohérent de systèmes simples." Toulouse 3, 2005. https://tel.archives-ouvertes.fr/tel-00289515.
Full textMonmayrant, Antoine. "FAÇONNAGE ET CARACTÉRISATION D'IMPULSIONS ULTRACOURTES.CONTRÔLE COHÉRENT DE SYSTÈMES SIMPLES." Phd thesis, Université Paul Sabatier - Toulouse III, 2005. http://tel.archives-ouvertes.fr/tel-00289515.
Full textDans un premier temps, nous présentons la conception et la fabrication d'un façonneur haute résolution pour des impulsions infrarouges. Nous détaillerons les étapes de réalisation de ce dernier ainsi que ses caractéristiques novatrices. Enfin, les limitations de ce dispositif ainsi que les résultats obtenus seront présentés et discutés. Dans un deuxième temps, nous utilisons ce façonneur dans des expériences de contrôle cohérent sur l'atome de rubidium. Ces expériences reposent sur le contrôle du comportement transitoire d'un atome lors de son interaction avec une impulsion résonnante. Nous rappellerons tout d'abord l'origine de ce comportement transitoire, appelé transitoire cohérent, ainsi que sa première mise en évidence expérimentale. Nous présenterons aussi différentes expériences visant à manipuler ce transitoire cohérent en modifiant la forme des impulsions interagissant avec l'atome. Puis, nous verrons comment manipuler différents transitoires cohérents pour reconstruire la fonction d'onde atomique transitoire. Cette technique dite de spirographe atomique a permis la reconstruction de la fonction d'onde de l'atome soumis à différentes impulsions de contrôle. Nous présenterons ces reconstructions et discuterons de leur domaine de validité ainsi que de leur lien avec d'autres techniques de mesure de fonctions d'onde. Nous présenterons ensuite une technique de caractérisation complète d'impulsions ultra-courtes directement dérivée du spirographe atomique. Cette caractérisation par transitoires cohérents permet de mesurer l'impulsion (les impulsions en fait) interagissant avec l'atome. Elle présente des caractéristiques assez inhabituelles que nous détaillerons. Nous présenterons les différentes mesures expérimentales réalisées et discuterons des perspectives qu'ouvre cette technique de mesure.
De, Barros Louis. "Sensibilité et inversion de formes d'ondes complètes en milieu poreux stratifié." Phd thesis, 2007. http://tel.archives-ouvertes.fr/tel-00204917.
Full textLes théories poro-élastiques (Biot,1956) nécessitent de nombreux paramètres pour caractériser les milieux poreux et conduisent à des propriétés particulières des ondes sismiques (deux ondes de compression, atténuation intrinsèquement définies,...). Ces équations sont résolues pour un milieu poreux stratifié plan saturé par un fluide homogène par une méthode de réflectivité associée à une intégration en nombre d'ondes discrets. Ce programme de simulation est tout d'abord utilisé pour estimer la sensibilité des ondes réfléchies à la localisation et à la concentration du dioxyde de carbone dans le cas d'un stockage dans un aquifère marin profond. La sensibilité de la réponse sismique aux différents paramètres du milieu poreux est ensuite établie de manière plus systématique par le calcul analytique des dérivées de Fréchet des sismogrammes et leur mise en oeuvre numérique. Les applications numériques réalisées indiquent que les paramètres primordiaux à déterminer sont la porosité et la consolidation.
Ces opérateurs de sensibilité ont ensuite été intégrés dans un code d'inversion de formes d'ondes complètes (algorithme de Quasi-Newton). Les calculs d'inversion réalisés à partir de données synthétiques indiquent que les distributions de porosité et les paramètres caractérisant le solide et le fluide (densité et modules mécaniques) peuvent être correctement reconstruits lorsque les autres paramètres sont bien déterminés.
Cependant, l'inversion de plusieurs paramètres reste un problème difficile du fait des couplages sismiques existant entre eux. Il est cependant possible de résoudre des problèmes complexes en ne considérant qu'un seul paramètre pour le fluide (saturation) et un pour les minéraux (lithologie), ou en effectuant des inversions différentielles pour suivre des variations du fluide.
La méthode d'inversion est finalement appliquée à un jeu de données réelles acquis sur le site côtier de Maguelonne dans l'Hérault. Les variations du milieu peuvent être reconstruites en utilisant de l'information a priori venant de forages.