To see the other types of publications on this topic, follow the link: Inverse desing.

Journal articles on the topic 'Inverse desing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Inverse desing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Chen Yiteng, 陈毅腾, 邱吉芳 Qiu Jifang, 董振理 Dong Zhenli, 潘宥西 Pan Youxi, 陈玉琛 Chen Yuchen, 郭宏翔 Guo Hongxiang, and 伍剑 Wu Jian. "基于逆设计的新型垂直耦合器." Acta Optica Sinica 41, no. 17 (2021): 1713001. http://dx.doi.org/10.3788/aos202141.1713001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

HONG Peng, 洪鹏, 胡珑夏雨 HU Longxiayu, 周子昕 ZHOU Zixin, 秦浩然 QIN Haoran, 陈佳乐 CHEN Jiale, 范烨 FAN Ye, 殷同宇 YIN Tongyu, 寇君龙 KOU Junlong, and 陆延青 LU Yanqing. "光子学逆向设计研究进展(特邀)." ACTA PHOTONICA SINICA 52, no. 6 (2023): 0623001. http://dx.doi.org/10.3788/gzxb20235206.0623001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liao Junpeng, 廖俊鹏, 田野 Tian Ye, 杨子荣 Yang Zirong, 康哲 Kang Zhe, 郑紫薇 Zheng Ziwei, 金庆辉 Jin Qinghui, and 张晓伟 Zhang Xiaowei. "基于边界逆向优化算法的任意分光比耦合器设计." Acta Optica Sinica 43, no. 1 (2023): 0113001. http://dx.doi.org/10.3788/aos221241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

MA Dina, 玛地娜, 程化 CHENG Hua, 田建国 TIAN Jianguo, and 陈树琪 CHEN Shuqi. "人工光子学器件的逆向设计方法与应用(特邀)." ACTA PHOTONICA SINICA 51, no. 1 (2022): 0151110. http://dx.doi.org/10.3788/gzxb20225101.0151110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wei Heming, 魏鹤鸣, 胡文琛 Hu Wenchen, and 庞拂飞 Pang Fufei. "高性能近红外聚合物超透镜的逆向设计." Acta Optica Sinica 44, no. 8 (2024): 0822002. http://dx.doi.org/10.3788/aos231859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sahoo, Abhilipsa, and Kaushika Patel. "Machine Learning-based Inverse Design Model of a Transistor." Indian Journal Of Science And Technology 17, no. 7 (February 15, 2024): 617–24. http://dx.doi.org/10.17485/ijst/v17i7.3076.

Full text
Abstract:
Objectives: To develop an inverse design model for transistors, utilizing machine learning algorithms to predict key design parameters specifically, the length and width based on specified gain and bandwidth requirements. And to conduct a comprehensive comparative analysis with existing literature, evaluating the efficacy and novelty of the proposed model in the context of semiconductor engineering challenges and methodologies. Methods: The comprehensive dataset, comprising 30,000 values generated through LTspice simulations, forms the basis for training the machine learning model. Utilizing a Random Forest regressor as the base model and a multi-output regressor as the main model, the project involves extensive data analysis, model development, and iterative fine-tuning. Findings: The outcomes demonstrate the efficacy of the developed model in accurately predicting transistor dimensions. Performance metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), and R-squared, highlight the precision of the model in fulfilling the specified objectives. Novelty: This study introduces a novel approach to semiconductor device design optimization, showcasing the potential of machine learning to streamline the inverse design process. The use of a multi-output regressor, feature engineering, and fine-tuning through log transformation contribute to the innovative nature of the developed model. Keywords: Machine Learning (ML) model, Random Forest regressor, multi­output regressor, Feature engineering, Fine­tuning
APA, Harvard, Vancouver, ISO, and other styles
7

Gu Qiongchan, 谷琼婵, and 张睿哲 Zhang Ruizhe. "基于残差架构的超表面逆向设计方法." Acta Optica Sinica 45, no. 3 (2025): 0324001. https://doi.org/10.3788/aos241587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Roh, Hee-Jung, and Jeong-Hwan Cho. "Design of Inverse E Class Frequency Multiplier with High Efficiency." Journal of the Korean Institute of Illuminating and Electrical Installation Engineers 25, no. 11 (November 30, 2011): 98–102. http://dx.doi.org/10.5207/jieie.2011.25.11.098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Muin, Abdul, Arista Ambar Pratiwi, and Gusni Satriawati. "Didactical Design for Overcoming Students' Learning Obstacles on the Inverse Function Concept." TARBIYA: Journal of Education in Muslim Society 7, no. 2 (April 20, 2021): 183–91. http://dx.doi.org/10.15408/tjems.v7i2.20455.

Full text
Abstract:
AbstractThe inverse function in secondary schools is still a difficult concept to learn. Meanwhile, in national exams or competitions this problem often arises. Didactic design is an attempt to improve the learning process. The purpose of this study is to identify the epistemological obstacle, to develop the learning designs, and to describe the students’ responses regarding the implementation of inverse function’s concept learning designs in the class. This research was held in one of Senior High School in South Tangerang of 38 people from class X. The research method is Didactical Design Research (DDR). This method is conducted from three stages, prospective analysis, metapedia didactic analysis, and retrospective analysis. The result of the study was indicated that the student’s obstacles are according to predictions and didactical design still generates some new epistemological obstacle. The revised didactical design was obtained by updating the initial didactical design to resolve the obstacle. The revised didactical design includes choosing vocabulary, adding new instructions, and expanding predictions and anticipating student responses.AbstrakFungsi invers di sekolah menengah masih merupakan konsep yang sulit dipelajari. Sedangkan dalam ujian atau kompetisi nasional masalah ini sering muncul. Desain didaktik merupakan upaya untuk meningkatkan proses pembelajaran. Tujuan penelitian ini adalah untuk mengidentifikasi hambatan epistemologis, mengembangkan desain pembelajaran, dan mendeskripsikan tanggapan siswa terkait penerapan desain pembelajaran konsep fungsi invers di kelas. Penelitian ini dilaksanakan di salah satu Sekolah Menengah Atas di Tangerang Selatan yang berjumlah 38 orang dari kelas X. Metode penelitian yang digunakan adalah Penelitian Desain Didaktik. Metode ini dilakukan dari tiga tahap yaitu analisis prospektif, analisis metapedadidaktik, dan analisis retrospektif. Hasil penelitian menunjukkan bahwa kesulitan yang dialami siswa sesuai dengan prediksi dan desain didaktis masih menimbulkan hambatan epistemologis baru. Desain didaktis yang direvisi diperoleh dengan memperbarui desain didaktis awal untuk menyelesaikan kesulitan. Desain didaktis yang direvisi terdiri atas: memilih kosakata, menambahkan instruksi baru, dan memperluas prediksi dan mengantisipasi respon siswa. How to Cite: Muin, A., Pratiwi, A. A., Satriawati, G. (2020). Didactical Design for Overcoming Students' Learning Obstacles on the Inverse Function Concept. TARBIYA: Journal of Education in Muslim Society, 7(2), 183-191. doi:10.15408/tjems.v7i2.13041.
APA, Harvard, Vancouver, ISO, and other styles
10

Hunek, Wojciech, and Krzysztof Latawiec. "A study on new right/left inverses of nonsquare polynomial matrices." International Journal of Applied Mathematics and Computer Science 21, no. 2 (June 1, 2011): 331–48. http://dx.doi.org/10.2478/v10006-011-0025-y.

Full text
Abstract:
A study on new right/left inverses of nonsquare polynomial matricesThis paper presents several new results on the inversion of full normal rank nonsquare polynomial matrices. New analytical right/left inverses of polynomial matrices are introduced, including the so-called τ-inverses, σ-inverses and, in particular,S-inverses, the latter providing the most general tool for the design of various polynomial matrix inverses. The applicationoriented problem of selecting stable inverses is also solved. Applications in inverse-model control, in particular robust minimum variance control, are exploited, and possible applications in signal transmission/recovery in various types of MIMO channels are indicated.
APA, Harvard, Vancouver, ISO, and other styles
11

Li, Jiahao, Mengwei Cao, Weili Liang, Yilin Zhang, Zhenwei Xie, and Xiaocong Yuan. "Inverse design of 1D color splitter for high-efficiency color imaging." Chinese Optics Letters 20, no. 7 (2022): 073601. http://dx.doi.org/10.3788/col202220.073601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Han Ding, 韩丁, 马子寅 Ma Ziyin, 王俊林 Wang Junlin, 王鑫 Wang Xin, and 刘苏雅拉图 Liu Suyalatu. "基于粒子群算法的超材料吸波体传感器逆设计." Chinese Journal of Lasers 49, no. 17 (2022): 1714001. http://dx.doi.org/10.3788/cjl202249.1714001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Shi, Chenyu, Yu Wang, Qiongjun Liu, Sai Chen, Weipeng Zhao, Xiaojun Wu, Jierong Cheng, and Shengjiang Chang. "Inverse design on terahertz multilevel diffractive lens based on 3D printing." Chinese Optics Letters 21, no. 11 (2023): 110006. http://dx.doi.org/10.3788/col202321.110006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Yang Zirong, 杨子荣, 田野 Tian Ye, 廖俊鹏 Liao Junpeng, 康哲 Kang Zhe, 张晓伟 Zhang Xiaowei, and 金庆辉 Jing Qinghui. "基于边缘智能优化的高性能模式转换器逆设计." Chinese Journal of Lasers 50, no. 18 (2023): 1819001. http://dx.doi.org/10.3788/cjl221276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Jin, Xin, Jinbin Xu, Yaqian Li, Cuiwei Xue, Rujun Liao, Liucheng Fu, Min Liu, Yunliang Shen, Xueling Quan, and Xiulan Cheng. "Fabrication-constrained inverse design and demonstration of high-performance grating couplers." Chinese Optics Letters 22, no. 11 (2024): 112201. http://dx.doi.org/10.3788/col202422.112201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Liao, Junpeng, Ye Tian, Zirong Yang, Haoda Xu, Chen Tang, Yuheng Wang, Xiaowei Zhang, and Zhe Kang. "Inverse design of highly efficient and broadband mode splitter on SOI platform." Chinese Optics Letters 22, no. 1 (2024): 011302. http://dx.doi.org/10.3788/col202422.011302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wang Tao, 王涛, 宋清海 Song Qinghai, and 徐科 Xu Ke. "基于逆向设计的集成光学超构波导研究进展(特邀)." Acta Optica Sinica 44, no. 15 (2024): 1513019. http://dx.doi.org/10.3788/aos240865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Liu, David, Lucas H. Gabrielli, Michal Lipson, and Steven G. Johnson. "Transformation inverse design." Optics Express 21, no. 12 (June 7, 2013): 14223. http://dx.doi.org/10.1364/oe.21.014223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Truhlar, Donald G. "Inverse solvent design." Nature Chemistry 5, no. 11 (September 22, 2013): 902–3. http://dx.doi.org/10.1038/nchem.1774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

HIRAMOTO, Kazuhiko, Taichi MATSUOKA, Akira FUKUKITA, and Katsuaki SUNAKODA. "1A15 Integrated Design of Structural and Semi-active Control Systems : Inverse Lyapunov Approach." Proceedings of the Symposium on the Motion and Vibration Control 2010 (2010): _1A15–1_—_1A15–12_. http://dx.doi.org/10.1299/jsmemovic.2010._1a15-1_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Zhang Jingpeng, 张靖鹏, 陈起行 Chen Qihang, 王妍卉 Wang Yanhui, 董磊 Dong Lei, 郑珍珍 Zheng Zhenzhen, and 张文鑫 Zhang Wenxin. "天基逆合成孔径激光雷达LEO目标成像模式设计." Infrared and Laser Engineering 52, no. 5 (2023): 20220679. http://dx.doi.org/10.3788/irla20220679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kofoworola, Adewumi Hope, Awodele Mojoyinola Kofoworola Abiodun Ayodele Joshua, Ajiboye Joseph Olumide, Oyeshola Hakeem Olayinka Dauda Basit Gbolahan, Olatunji Abdulateef Ayomide, Akintoyinbo Timileyin James, Agboola Abdul-Hakiim, and Adedeji Kowiyu Omotayo. "Design, Construction and Implementation of 1KVA Inverter." International Journal of Research Publication and Reviews 5, no. 11 (November 2024): 1684–94. http://dx.doi.org/10.55248/gengpi.5.1124.3222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Palevi, Bima Romadhon Parada Dian, M. Abd. Hamid, and Citra Dewi Megawati. "Rekomendasi Desain Relay Arus Lebih Standar IEC Berbiaya Rendah Menggunakan Arsitektur Mikrokontroller ATMega328P." Prosiding SENIATI 6, no. 3 (July 14, 2022): 500–506. http://dx.doi.org/10.36040/seniati.v6i3.5086.

Full text
Abstract:
Dalam operasi sistem tenaga listrik, gangguan yang terjadi dapat mengakibatkan terganggunya penyaluran tenaga listrik ke konsumen. Sistem proteksi berperan penting dalam mendeteksi adanya gangguan dan dapat mencegah kerusakan yang dapat menyebabkan gangguan lebih besar. Relay Arus Lebih (Over Current Relay/OCR) adalah suatu perangkat yang bekerja berdasarkan kenaikan arus yang melebihi suatu nilai pengaman tertentu dalam jangka waktu tertentu. Dalam standar IEC Curve metode yang digunakan terdiri dari Extremely Inverse, Very Inverse, Normally Inverse, dan Moderatelly Invese. Pada paper ini telah dirancang suatu purwarupa OCR menggunakan mikrokontroller ATMega328P sebagai pemroses algoritma. Purwarupa OCR dilengkapi dengan pengaturan ISetting (PS) menggunakan potensiometer yang terhubung pada papan Arduino Uno dengan memperhatikan besarnya beban yang ditangani. Pick up sensor menggunakan sensor arus Current Transformers (CT) yang akan mendeteksi perubahan besaran arus AC yang mengalir pada beban. Pada penelitian ini tidak membandingkan metode mana yang terbaik dalam operasi sistem proteksi OCR, tetapi lebih ke arah pembuktian, bahwa OCR sederhana yang dibangun menggunakan arsitektur ATMega328P cukup handal, murah, dan sederhana dalam instumentasi.
APA, Harvard, Vancouver, ISO, and other styles
24

Molesky, Sean, Zin Lin, Alexander Y. Piggott, Weiliang Jin, Jelena Vucković, and Alejandro W. Rodriguez. "Inverse design in nanophotonics." Nature Photonics 12, no. 11 (October 26, 2018): 659–70. http://dx.doi.org/10.1038/s41566-018-0246-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

A. Gravvanis, George, and Christos K. Filelis-Papadopoulos. "On the multigrid cycle strategy with approximate inverse smoothing." Engineering Computations 31, no. 1 (February 25, 2014): 110–22. http://dx.doi.org/10.1108/ec-03-2012-0055.

Full text
Abstract:
Purpose – The purpose of this paper is to propose multigrid methods in conjunction with explicit approximate inverses with various cycles strategies and comparison with the other smoothers. Design/methodology/approach – The main motive for the derivation of the various multigrid schemes lies in the efficiency of the multigrid methods as well as the explicit approximate inverses. The combination of the various multigrid cycles with the explicit approximate inverses as smoothers in conjunction with the dynamic over/under relaxation (DOUR) algorithm results in efficient schemes for solving large sparse linear systems derived from the discretization of partial differential equations (PDE). Findings – Application of the proposed multigrid methods on two-dimensional boundary value problems is discussed and numerical results are given concerning the convergence behavior and the convergence factors. The results are comparatively better than the V-cycle multigrid schemes presented in a recent report (Filelis-Papadopoulos and Gravvanis). Research limitations/implications – The limitations of the proposed scheme lie in the fact that the explicit finite difference approximate inverse matrix used as smoother in the multigrid method is a preconditioner for specific sparsity pattern. Further research is carried out in order to derive a generic explicit approximate inverse for any type of sparsity pattern. Originality/value – A novel smoother for the geometric multigrid method is proposed, based on optimized banded approximate inverse matrix preconditioner, the Richardson method in conjunction with the DOUR scheme, for solving large sparse linear systems derived from finite difference discretization of PDEs. Moreover, the applicability and convergence behavior of the proposed scheme is examined based on various cycles and comparative results are given against the damped Jacobi smoother.
APA, Harvard, Vancouver, ISO, and other styles
26

Na, Yusung, Nguyen Dang An, and Chulhun Seo. "Design of High-Efficiency and High-Power Inverse Class-F GaN HEMT Synchronous Rectifier." Journal of Korean Institute of Electromagnetic Engineering and Science 35, no. 3 (March 2024): 205–10. http://dx.doi.org/10.5515/kjkiees.2024.35.3.205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Limache, Alejandro C. "Inverse method for airfoil design." Journal of Aircraft 32, no. 5 (September 1995): 1001–11. http://dx.doi.org/10.2514/3.46829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ansari, Navid, Hans-Peter Seidel, and Vahid Babaei. "Mixed integer neural inverse design." ACM Transactions on Graphics 41, no. 4 (July 2022): 1–14. http://dx.doi.org/10.1145/3528223.3530083.

Full text
Abstract:
In computational design and fabrication, neural networks are becoming important surrogates for bulky forward simulations. A long-standing, intertwined question is that of inverse design: how to compute a design that satisfies a desired target performance? Here, we show that the piecewise linear property, very common in everyday neural networks, allows for an inverse design formulation based on mixed-integer linear programming. Our mixed-integer inverse design uncovers globally optimal or near optimal solutions in a principled manner. Furthermore, our method significantly facilitates emerging, but challenging, combinatorial inverse design tasks, such as material selection. For problems where finding the optimal solution is intractable, we develop an efficient yet near-optimal hybrid approach. Eventually, our method is able to find solutions provably robust to possible fabrication perturbations among multiple designs with similar performances. Our code and data are available at https://gitlab.mpi-klsb.mpg.de/nansari/mixed-integer-neural-inverse-design.
APA, Harvard, Vancouver, ISO, and other styles
29

Gao, Yubin, Qikai Chen, Sijie Pian, and Yaoguang Ma. "Inverse design in flat optics." Photonics and Nanostructures - Fundamentals and Applications 52 (December 2022): 101074. http://dx.doi.org/10.1016/j.photonics.2022.101074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Selig, Michael S., and Mark D. Maughmer. "Generalized multipoint inverse airfoil design." AIAA Journal 30, no. 11 (November 1992): 2618–25. http://dx.doi.org/10.2514/3.11276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Mas, A., I. Martín, and G. Patow. "Fast Inverse Reflector Design (FIRD)." Computer Graphics Forum 28, no. 8 (December 2009): 2046–56. http://dx.doi.org/10.1111/j.1467-8659.2009.01430.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kuhn, Christoph, and David N. Beratan. "Inverse Strategies for Molecular Design." Journal of Physical Chemistry 100, no. 25 (January 1996): 10595–99. http://dx.doi.org/10.1021/jp960518i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Piñeros, William D., Beth A. Lindquist, Ryan B. Jadrich, and Thomas M. Truskett. "Inverse design of multicomponent assemblies." Journal of Chemical Physics 148, no. 10 (March 14, 2018): 104509. http://dx.doi.org/10.1063/1.5021648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Patow, Gustavo, Xavier Pueyo, and Alvar Vinacua. "User-guided inverse reflector design." Computers & Graphics 31, no. 3 (June 2007): 501–15. http://dx.doi.org/10.1016/j.cag.2006.12.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Mas, Albert, Ignacio Martín, and Gustavo Patow. "Heuristic driven inverse reflector design." Computers & Graphics 77 (December 2018): 1–15. http://dx.doi.org/10.1016/j.cag.2018.09.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Frankel, J. I. "Constraining inverse stefan design problems." ZAMP Zeitschrift f�r angewandte Mathematik und Physik 47, no. 3 (May 1996): 456–66. http://dx.doi.org/10.1007/bf00916649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wu, Hongzhi, Julie Dorsey, and Holly Rushmeier. "Inverse bi-scale material design." ACM Transactions on Graphics 32, no. 6 (November 2013): 1–10. http://dx.doi.org/10.1145/2508363.2508394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Bennett, A. F. "Array design by inverse methods." Progress in Oceanography 15, no. 2 (January 1985): 129–56. http://dx.doi.org/10.1016/0079-6611(85)90033-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Jain, Avni, Jonathan A. Bollinger, and Thomas M. Truskett. "Inverse methods for material design." AIChE Journal 60, no. 8 (May 21, 2014): 2732–40. http://dx.doi.org/10.1002/aic.14491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hackhofer, W., J. Sammer, and J. Gerhold. "Inverse magnetic separation coil design." Journal of Magnetism and Magnetic Materials 83, no. 1-3 (January 1990): 493–94. http://dx.doi.org/10.1016/0304-8853(90)90599-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Mathew Oduka, Ugbede, and Felix Kelechi Opara. "Design of a high power, energy efficient RF inverse class F power amplifier using GaN HEMT." International Journal of Academic Research 5 (October 15, 2013): 162–67. http://dx.doi.org/10.7813/2075-4124.2013/5-5/a.23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Xu, Su, Yong Wang, BaiLe Zhang, and HongSheng Chen. "Invisibility cloaks from forward design to inverse design." Science China Information Sciences 56, no. 12 (December 2013): 1–11. http://dx.doi.org/10.1007/s11432-013-5033-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lee, Kyoung-Yong, Young-Seok Choi, Young-Lyul Kim, and Jae-Ho Yun. "Design of axial fan using inverse design method." Journal of Mechanical Science and Technology 22, no. 10 (October 2008): 1883–88. http://dx.doi.org/10.1007/s12206-008-0727-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ma, Ju, Yijia Huang, Mingbo Pu, Dong Xu, Jun Luo, Yinghui Guo, and Xiangang Luo. "Inverse design of broadband metasurface absorber based on convolutional autoencoder network and inverse design network." Journal of Physics D: Applied Physics 53, no. 46 (August 27, 2020): 464002. http://dx.doi.org/10.1088/1361-6463/aba3ec.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Alakel Abazid, Mohammad, Aref Lakhal, and Alfred K. Louis. "Inverse design of anti-reflection coatings using the nonlinear approximate inverse." Inverse Problems in Science and Engineering 24, no. 6 (October 9, 2015): 917–35. http://dx.doi.org/10.1080/17415977.2015.1077446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Campos, Ignacio Juarez, Oracio Garcia Lara, and Beatriz Juarez Campos. "The Inverse Kinematics of the RPSP Screw-Based Robot Manipulator(Design and Control 1,Session: MP1-B)." Abstracts of the international conference on advanced mechatronics : toward evolutionary fusion of IT and mechatronics : ICAM 2004.4 (2004): 27. http://dx.doi.org/10.1299/jsmeicam.2004.4.27_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Parizotto, Rodrigo, Evandro Claiton Goltz, Ederson dos Reis, and Paulo Roberto Eckert. "DESIGN AND DEVELOPMENT OF A MULTIPHASE INVERTER FOR AUTOMOTIVE APPLICATIONS." Eletrônica de Potência 27, no. 02 (June 30, 2022): 1–10. http://dx.doi.org/10.18618/rep.2022.2.0033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

H Zope Pravin, Pankaj. "Design and Implementation of Carrier Based Sinusoidal PWM (Bipolar) Inverter." International Journal of Science and Research (IJSR) 1, no. 3 (March 5, 2012): 129–33. http://dx.doi.org/10.21275/ijsr12120395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Deshmukh, Prof Rohan, Amin Pathan, Ganesh Raut, Prajwal Nakade, and Saurabh Mohankar. "Design and Development of Vertical Axis Wind Turbine with Inverter." International Journal of Research Publication and Reviews 5, no. 5 (May 26, 2024): 12099–102. http://dx.doi.org/10.55248/gengpi.5.0524.1427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Vassberg, John C., and Antony Jameson. "Test cases for inverse aerodynamic design." Computers & Fluids 223 (June 2021): 104923. http://dx.doi.org/10.1016/j.compfluid.2021.104923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography