Journal articles on the topic 'Invasive plants Government policy South Africa'

To see the other types of publications on this topic, follow the link: Invasive plants Government policy South Africa.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 31 journal articles for your research on the topic 'Invasive plants Government policy South Africa.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Smith, F. H. "Swartwattelbome: seën of vloek vir Suid- Afrika?" Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie 25, no. 4 (September 22, 2006): 226–47. http://dx.doi.org/10.4102/satnt.v25i4.166.

Full text
Abstract:
Daar is reeds baie geskryf oor uitheemse indringerplante, veral Acacia mearnsii De Wild, die swartwattelboom en die skade wat hierdie plante aan die plaaslike ekologie aanrig. In hierdie artikel word aandag gegee aan die ontstaan van die probleem, asook aan die inbring en verspreiding van swartwattelbome in die Republiek van Suid-Afrika (Suid-Afrika). Die probleme wat deur die onbeheerde verspreiding van wattelbome veroorsaak is, het die regering verplig om op te tree ten einde hierdie probleme te bekamp. Voor 1936 was daar aanvanklik geen formele beleid met betrekking tot die invoer, kweek en beheer van hierdie bome nie. Dit het daartoe gelei dat die regering in die wattelbedryf ingegryp het om ’n sekere mate van beheer te vestig en om probleme met betrekking tot uitheemse indringerplante in die algemeen – en die swartwattelboom in die besonder – die hoof te bied. Voorts sal daar ook gelet word op die rol van swartwattel in volhoubare ontwikkeling deur te fokus op die omgewings-/ekologiese probleem van impak op die biodiversiteit en die waterbronne en ook op die voordele wat dit het om woudherstel aan te help. Die artikel bespreek sosiale voordele wat die boom het vir inwoners van landelike gebiede as voorsiener in bou- en konstruksiemateriaal en vuurmaakhout, wat andersins uit die boomveld en/of inheemse woude verkry moet word. Die boom voorsien ook in die houtbehoeftes van die industrie in die vorm van byvoorbeeld pale, pulp en ekstrak. Laastens volg ’n bespreking van die Werk-vir-Water-program. AbatractBlack wattle trees: blessing or curse to South Africa Much has been written about alien invasive plants, especially Acacia mearnsii De Wild, the black wattle tree and the damage done by these plants to the local ecology. In this article cognisance is taken of how the problem was created, the introduction into and the distribution of black wattle trees in the Republic of South Africa (South Africa). Problems experienced by the uncontrolled spreading of wattle trees forced the government to act, as there was no formal policy before 1936 on the importation, cultivation and control thereof. This led to intervention by government in the wattle industry to establish some form of control and to address the problems related to alien invasive plants in general, and the black wattle tree in particular. Furthermore, cognisance will be taken of the role the black wattle plays in sustainable development by considering the environmental/ecological problem of its impact on bio-diversity and the water sources as well as the advantages it has in the process of forest recovery. Secondly notice will be taken of the social advantages the tree has for the inhabitants of rural areas as a provider of building and construction material and firewood, which would otherwise come from the woodlands and/or indigenous forests. The tree also provides in the timber requirements of industry in the form of for instance poles, pulp and extract. Lastly, the article explores the Work-for-Water Programme.
APA, Harvard, Vancouver, ISO, and other styles
2

Paterson, AR. "Clearing a Path Towards Effective Alien Invasive Control: the Legal Conundrum." Potchefstroom Electronic Law Journal/Potchefstroomse Elektroniese Regsblad 9, no. 1 (July 10, 2017): 151. http://dx.doi.org/10.17159/1727-3781/2006/v9i1a2815.

Full text
Abstract:
Alien invasive plants pose significant ecological, social and economic challenges for South Africa. These species threaten South Africa’s rich biodiversity, deplete our scarce water resources, reduce the agricultural potential of land, cause soil erosion and intensify flooding and fires. According to recent estimations, over eight percent of land in South Africa has been invaded by these species and at current rates of expansion their impact could double in the next fifteen years. In an attempt to curb the impending crises, the South African government has promulgated eleven national and various provincial laws which contain mechanisms for regulating the different threats posed by alien invasive plants. Certain of these laws are framework in nature while the majority are sectoral and aimed at regulating these species for one of the following four main purposes: biodiversity conservation; water conservation; agricultural management; and fire risk management. The responsibility for administering these laws spans four national departments, nine provincial environmental authorities, provincial conservation authorities, numerous local and statutory authorities. This fragmented regime, coupled with the adoption of a command and control approach to regulation, has proven inept in effectively regulating the spread of alien invasive plants in South Africa. This reality led the previous Minister of Environmental Affairs and Tourism, Mr Valli Moosa, to call for the development of a “coherent legislative framework … streamlined along the lines of the principles endorsed by the Convention on Biological Diversity”. This article critically analyses the government’s attempts to develop such a “coherent legislative framework” to regulate alien invasive plants in light of recent legislative reform. It is divided into two parts. Part one critically considers South Africa’s current laws of relevance to alien invasive plants with specific emphasis on their fragmented approach to planning and implementation. Part two provides suggestions on how the current legislative framework can be rationalised to entrench a more integrated, and hopefully successful, approach to the future regulation of alien invasive plants in South Africa.
APA, Harvard, Vancouver, ISO, and other styles
3

Jonker, Willem, Alan Colin Brent, Josephine Kaviti Musango, and Imke De Kock. "Implications of biofuel production in the Western Cape province, South Africa: A system dynamics modelling approach of South Africa: A system dynamics modelling approach." Journal of Energy in Southern Africa 28, no. 1 (March 23, 2017): 1. http://dx.doi.org/10.17159/2413-3051/2017/v28i1a1457.

Full text
Abstract:
The national government instated a mandatory blending policy to facilitate the uptake and establishment of a biofuels sector in South Africa. Uncertainty exists, however, regarding the implications and effects of producing biofuels within the Western Cape province, as part of a strategy of the province to transition to a green economy. This investigation was carried out as an effort to simulate the biofuel production within the Western Cape under certain project and policy considerations. A system dynamics model was developed to identify key strategic intervention points that could strengthen the business case of biofuel production. The model showed a feasible business case for bioethanol production, with the best case showing an internal rate of return of 23% (without government subsidy), and an emissions reduction of 63% when compared with coal. It is recommended that special consideration be given to the location of bioethanol production facilities, as operational costs can be minimised by incorporating invasive alien land-clearing schemes as part of the bioethanol production. The model further showed that medium-to-large-scale biodiesel production in the province is not feasible under the given model assumptions, as the positive effects of local biodiesel production do not justify the required government subsidy of ZAR 4.30 per litre. It is recommended that a different approach be investigated, where multiple on-site small-scale biodiesel production facilities are used, thus utilising multiple feedstock options and minimising capital expenditure.Keywords: green economy; transportation; blending; uncertainty; complexity
APA, Harvard, Vancouver, ISO, and other styles
4

Adeeyo, Adeyemi O., Stanley S. Ndlovu, Linda M. Ngwagwe, Mulalo Mudau, Mercy A. Alabi, and Joshua N. Edokpayi. "Wetland Resources in South Africa: Threats and Metadata Study." Resources 11, no. 6 (June 3, 2022): 54. http://dx.doi.org/10.3390/resources11060054.

Full text
Abstract:
Wetlands are important ecosystems with physical and economic benefits. However, many reports confirm the drastic loss of wetlands due to urbanisation and anthropogenic activities in many parts of the world. This study focused on the present-day state of wetlands in the Republic of South Africa. A meta-analysis was performed to elucidate the distribution and level of protection of selected wetlands. The classification of existing wetlands and the threat against wetlands were reported. Wetlands in South Africa are grossly endangered by human pollution, developmental activities, and invasive plants. From data obtained, about 47.89% of reported wetlands have a low level of protection and are thus susceptible to threats. The South African Department of Environmental Affairs protects most of the wetlands (28.17%) in the country. Major weaknesses identified for wetland degradation are the ignorance of people about the benefits of wetlands and the weak implementation of frameworks and policies that currently exist. The impact of legislations and policies on the preservation of wetlands is presented as well as the need for community education on environmental degradation. Therefore, the current state of several wetlands calls for urgent attention, and there is need for a strengthening of existing laws and policies in order to prevent wetland damage and extinction.
APA, Harvard, Vancouver, ISO, and other styles
5

Uhunamure, Solomon E., and Karabo Shale. "A SWOT Analysis Approach for a Sustainable Transition to Renewable Energy in South Africa." Sustainability 13, no. 7 (April 2, 2021): 3933. http://dx.doi.org/10.3390/su13073933.

Full text
Abstract:
South Africa is been faced with erratic power supply, resulting in persistent load shedding due to ageing in most of its coal-fired power plants. Associated with generating electricity from fossil fuel are environmental consequences such as greenhouse emissions and climate change. On the other hand, the country is endowed with abundant renewable energy resources that can potentially ameliorate its energy needs. This article explores the viability of renewable energy using the strengths, weaknesses, opportunities and threats (SWOT) analysis approach on the key renewable potential in the country. The result indicates that geographic position, political and economic stability and policy implementation are some of the strengths. However, Government bureaucratic processes, level of awareness and high investment cost are some of the weaknesses. Several opportunities favour switching to renewable energy, and these include regional integration, global awareness on climate change and the continuous electricity demand. Some threats hindering the renewable energy sector in the country include land ownership, corruption and erratic climatic conditions. Some policy implications are suggested based on the findings of the study.
APA, Harvard, Vancouver, ISO, and other styles
6

Ravhuhali, Khuliso Emmanuel, Humbelani Silas Mudau, Bethwell Moyo, Onke Hawu, and Ntokozo Happy Msiza. "Prosopis Species—An Invasive Species and a Potential Source of Browse for Livestock in Semi-Arid Areas of South Africa." Sustainability 13, no. 13 (July 1, 2021): 7369. http://dx.doi.org/10.3390/su13137369.

Full text
Abstract:
Globally, there have been differing views on whether the proliferation of invasive species will be of benefit as a livestock feed source or it will have detrimental effects on the ecosystem. The infestation of invasive plants such as Prosopis species does not only affect the groundwater levels but also threatens the grazing capacity and species richness of most of the semi-arid areas around South Africa. Though Prosopis is invasive, it is however of good nutritive value and can serve as an alternative source of protein and minerals for livestock during the dry season. Bush encroachment by browsable invasive species can be controlled through biological methods by using organisms such as livestock. The utilisation of Prosopis through browse benefits livestock production and at the same time reduces its spread, thereby preventing possible environmental harm that may arise. Although several studies have been carried out globally on the assessment of the Prosopis species’ nutritive value and also on the threat of this invasive species to the environment, there is a need to update the state of knowledge on this species, particularly in the context of the semi-arid areas of South Africa where the dry season is characterised by less herbage of poor quality. It is therefore critical to understand whether Prosopis is a beneficial invader, or a detriment that needs to be eradicated. This review will contribute knowledge towards finding practical solutions to controlling Prosopis species and whether utilising Prosopis as a feed source will limit its spread and result in a vegetation structure where Prosopis becomes part of the ecosystem with limited detrimental impact. This means that the several components of the species such as nutritive value and the negative impact associated with this plant species along with the means to control its spreading must be well understood to recognise the plant species’ vital contribution to the ecosystem.
APA, Harvard, Vancouver, ISO, and other styles
7

Ilo, Obianuju Patience, Mulala Danny Simatele, S’phumelele Lucky Nkomo, Ntandoyenkosi Malusi Mkhize, and Nagendra Gopinath Prabhu. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa." Sustainability 13, no. 12 (June 15, 2021): 6746. http://dx.doi.org/10.3390/su13126746.

Full text
Abstract:
Anaerobic digestion has been identified as a feasible fragment of a bioeconomy, yet numerous factors hinder the adoption of the technology in South Africa. Apart from its energy recovery, other nonmarket advantages support the technology. Though it may be challenging to have a price tag, they provide clear added worth for such investments. With a growing energy demand and global energy transitions, there is a need to sustainably commercialise the biogas industry in South Africa. Most studies are at laboratory scale and under specific conditions, which invariably create gaps in using their data for commercialising the biogas technology. The key to recognising these gaps depends on knowing the crucial technical phases that have the utmost outcome on the economics of biogas production. This study is a meta-analysis of the optimisation of anaerobic digestion through methodological approaches aimed at enhancing the production of biogas. This review, therefore, argues that regulating the fundamental operational parameters, understanding the microbial community’s interactions, and modelling the anaerobic processes are vital indicators for improving the process stability and methane yield for the commercialisation of the technology. It further argues that South Africa can exploit water hyacinth as a substrate for a self-sufficient biogas production system in a bid to mitigate the invasive alien plants.
APA, Harvard, Vancouver, ISO, and other styles
8

Atyosi, Zizipho, Luambo Jeffrey Ramarumo, and Alfred Maroyi. "Alien Plants in the Eastern Cape Province in South Africa: Perceptions of Their Contributions to Livelihoods of Local Communities." Sustainability 11, no. 18 (September 16, 2019): 5043. http://dx.doi.org/10.3390/su11185043.

Full text
Abstract:
Invasive alien plant species are plant species that establish themselves outside their native distributional range. The current study documented utilization of alien plant species in the Eastern Cape province in South Africa. Information about utilization of alien plant species was gathered through interviews conducted with 120 participants, which included 13 traditional healers, 27 herbalists, ten farmers and 70 laypeople. Ethnobotanical importance of documented species was assessed through evaluation of use value (UV), fidelity level (FL) and relative frequency citation (RFC). A third of the participants (33.3%) perceived alien plant species as undesirable, while 71.1% of the participants argued that alien plant species had beneficial effects. A total of 26 alien plant species were recorded, seven species being fruit trees, followed by ornamental plants (five species), fodder and herbal medicines (four species each), construction materials, erosion control and vegetables (two species each). The popular alien plant species with UV > 0.1, RFC > 0.4 and FL > 4.0% included Amaranthus spinosus, Cannabis sativa, Cereus jamaracu, Harrisia balansae, Opuntia engelmannii, Opuntia ficus-indica, Opuntia monocantha and Prunus persica. Information on perceptions of local communities in the Eastern Cape province on the contributions of alien plant species to livelihood needs is an important stage of initiating a management protocol that incorporates public perceptions and values associated with alien plant species.
APA, Harvard, Vancouver, ISO, and other styles
9

Reynolds, Chevonne, Nic Venter, Blair W. Cowie, Danica Marlin, Samalesu Mayonde, Claudia Tocco, and Marcus J. Byrne. "Mapping the socio-ecological impacts of invasive plants in South Africa: Are poorer households with high ecosystem service use most at risk?" Ecosystem Services 42 (April 2020): 101075. http://dx.doi.org/10.1016/j.ecoser.2020.101075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Davids, Rashieda, Mathieu Rouget, Margaret Burger, Kirsten Mahood, Ntswaki Ditlhale, and Rob Slotow. "Civic Ecology Uplifts Low-Income Communities, Improves Ecosystem Services and Well-Being, and Strengthens Social Cohesion." Sustainability 13, no. 3 (January 27, 2021): 1300. http://dx.doi.org/10.3390/su13031300.

Full text
Abstract:
Ecosystem services enhance well-being and the livelihoods of disadvantaged communities. Civic ecology can enhance social–ecological systems; however, their contributions to ecosystem services are rarely measured. We analysed the outcomes of civic ecology interventions undertaken in Durban, South Africa, as part of the Wise Wayz Water Care programme (the case study). Using mixed methods (household and beneficiary (community members implementing interventions) surveys, interviews, field observations, and workshops), we identified ecosystem service use and values, as well as the benefits of six interventions (solid waste management and removal from aquatic and terrestrial areas, recycling, invasive alien plant control, river water quality monitoring, vegetable production, and community engagement). Ecosystem services were widely used for agriculture, subsistence, and cultural uses. River water was used for crop irrigation, livestock, and recreation. Respondents noted numerous improvements to natural habitats: decrease in invasive alien plants, less pollution, improved condition of wetlands, and increased production of diverse vegetables. Improved habitats were linked to enhanced ecosystem services: clean water, agricultural production, harvesting of wood, and increased cultural and spiritual activities. Key social benefits were increased social cohesion, education, and new business opportunities. We highlight that local communities can leverage natural capital for well-being and encourage policy support of civic ecology initiatives.
APA, Harvard, Vancouver, ISO, and other styles
11

Zhang, Xuhui, Haiyan Wei, Zefang Zhao, Jing Liu, Quanzhong Zhang, Xiaoyan Zhang, and Wei Gu. "The Global Potential Distribution of Invasive Plants: Anredera cordifolia under Climate Change and Human Activity Based on Random Forest Models." Sustainability 12, no. 4 (February 17, 2020): 1491. http://dx.doi.org/10.3390/su12041491.

Full text
Abstract:
The potential distribution of the invasive plant Anredera cordifolia (Tenore) Steenis was predicted by Random Forest models under current and future climate-change pathways (i.e., RCP4.5 and RCP8.5 of 2050s and the 2070s). Pearson correlations were used to select variables; the prediction accuracy of the models was evaluated by using AUC, Kappa, and TSS. The results show that suitable future distribution areas are mainly in Southeast Asia, Eastern Oceania, a few parts of Eastern Africa, Southern North America, and Eastern South America. Temperature is the key climatic factor affecting the distribution of A. cordifolia. Important metrics include mean temperature of the coldest quarter (0.3 °C ≤ Bio11 ≤ 22.9 °C), max temperature of the warmest month (17.1 °C ≤ Bio5 ≤ 35.5 °C), temperature annual range (10.7 °C ≤ Bio7 ≤ 33 °C), annual mean air temperature (6.8 °C ≤ Bio1 ≤ 24.4 °C), and min temperature of coldest month (−2.8 °C ≤ Bio6 ≤ 17.2 °C). Only one precipitation index (Bio19) was important, precipitation of coldest quarter (7 mm ≤ Bio19 ≤ 631 mm). In addition, areas with strong human activities are most prone to invasion. This species is native to Brazil, but has been introduced in Asia, where it is widely planted and has escaped from cultivation. Under the future climate scenarios, suitable habitat areas of A. cordifolia will expand to higher latitudes. This study can provide a reference for the rational management and control of A. cordifolia.
APA, Harvard, Vancouver, ISO, and other styles
12

De Villiers, Colette, Cilence Munghemezulu, George Chirima, Philemon Tsele, and Zinhle Mashaba-Munghemezulu. "Machine learning algorithms for mapping Prosopis glandulosa and land cover change using multi-temporal Landsat products: a case study of Prieska in the Northern Cape Province, South Africa." South African Journal of Geomatics 9, no. 2 (September 6, 2022): 179–97. http://dx.doi.org/10.4314/sajg.v9i2.13.

Full text
Abstract:
Invasive alien plants (IAPs) are responsible for loss in biodiversity and the depletion of water resources in natural ecosystems. Prosopis species are IAPs previously introduced by farmers to provide shade and fodder for livestock. In the Northern Cape, Prosopis spp. invasions are associated with the loss of native species resulting in overgrazing and degrading rangelands. Mapping Prosopis glandulosa is essential for management initiatives to assist the government in minimising the spread and impact of IAPs. This study aims to evaluate the performance of two machine learning algorithms i.e., Support Vector Machine (SVM) and Random Forest (RF) to map the spatial dynamics of P. glandulosa in Prieska. The spatial invasion extent of P. glandulosa was mapped using multitemporal Landsat data spanning the period from 1990 to 2018. Validation of the results was done through an estimated error matrix with the use of the proportion of area and the estimates of overall accuracy, user’s accuracy and producer’s accuracy with a 95% confidence interval. The performance of the SVM and RF classifiers showed similar results in the overall accuracy and Kappa statistics throughout the years. These methods showed an overall increase of at least 3.3% of the area invaded by P. glandulosa from 1990 to 2018. The study indicates the importance of Landsat imagery for mapping historical and current land cover change of IAPs. The spread of P. glandulosa was confirmed by an increase in the total area of invasion, which enables decision-makers to improve monitoring and eradication initiatives.
APA, Harvard, Vancouver, ISO, and other styles
13

Gebretsadik, Kiros, and Ashenafi Kiflu. "Challenges and Opportunities of Genetically Modified Crops Production; Future Perspectives in Ethiopia, Review." Open Agriculture Journal 12, no. 1 (November 30, 2018): 240–50. http://dx.doi.org/10.2174/1874331501819010240.

Full text
Abstract:
Introduction:Genetically modified (GM) crop species were proven to be a solution for the increasing food consumption in many countries. The cultivation of transgenic plants is increasing from time to time. In 2017 alone, 27 different genetically modified (GM) crop species were produced in 40 countries.Explanation:Biotechnology is revolutionizing science, promising to solve hunger, malnutrition and production demands of industrial raw materials from plants. However, there are biosafety concerns that GM crops may have unintended and hazardous impacts on living organisms well-being and environment both on target and non-target organisms. To tackle such potential problems many countries are implementing international as well as national biosafety regulations. America, Brazil, Belgium, China and India are among the top GM crop users in the world, whereas Egypt, Sudan, South Africa and Burkina Faso are leading GM crop producers in Africa. Ethiopia has also developed its own policy and biosafety regulations for biotechnology products.Conclusion:The Ethiopian government has given due attention to GM crops as a tool for the transformation of agricultural productivity and quality. Before a couple of years, Bt cotton (cotton containing toxic protein fromBacillus thuringiensis) has been introduced to Ethiopia and is expected to bring fundamental change in the production of fibers for the textile industries and also will have crucial consequence to the forthcoming use of the modern biotechnological Science in the country. The introduction of Bt cotton is a typical example worth mentioning here which shows a relative flexibility of the current Ethiopian biosafety regulation. This paper reviews the possible challenges and opportunities of using GM crops in Ethiopia.
APA, Harvard, Vancouver, ISO, and other styles
14

Ntalo, Malizo, Khuliso Emmanuel Ravhuhali, Bethwell Moyo, Onke Hawu, and Ntokozo Happy Msiza. "Lantana camara: Poisonous Species and a Potential Browse Species for Goats in Southern Africa—A Review." Sustainability 14, no. 2 (January 11, 2022): 751. http://dx.doi.org/10.3390/su14020751.

Full text
Abstract:
Among the possible impacts of plant invaders on South African biodiversity, water supplies, and rangeland production, Lantana camara is ranked the highest in terms of its environmental impact. Globally, L. camara is regarded as one of the most ecologically and economically destructive invasive alien plants. The spread of L. camara affects the environment and threatens livestock productivity due to its toxicity to animals (especial cattle and sheep) in most semi-arid areas of South Africa. Lantana camara is known to have high concentrations of nutrients that are beneficial to livestock, but most previous research has concentrated on its toxicity. To enrich our knowledge on its nutritive value, further research has to evaluate its dietary impact on the growth and health of different ruminant livestock species, particularly goats. This review evaluates L. camara as a potential browse species for goats in southern Africa, and its adverse effects on goats and other ruminant livestock are also presented. The review describes L. camara and its distribution globally, its poisonous effect to livestock, and potential use as an alternative forage to browsing animals such as goats, which have proved resistant to its harmful traits. The high crude protein content, low fibre and adequate macro-minerals for small ruminants makes L. camara a good ruminant protein supplement in semi-arid areas. In addition to other biological control strategies, the prospects of using goats as a biological management tool is discussed. The research will contribute to the understanding of the control measures of L. camara while improving the productivity of small stock, especially goats. This means that a balanced understanding of its nutritional value as a source of protein and its negative impact on the environment should be considered in developing mitigation strategies to arrest its spread. We, therefore, recommend the use of goats in the control of L. camara; however, further studies are needed to limit its toxic effects, and thus improve its value.
APA, Harvard, Vancouver, ISO, and other styles
15

Gahatraj, S., S. Tiwari, S. Sharma, and L. Kafle. "Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae): A recent threat and future management strategy in Nepal." Agricultural Science and Technology 12, no. 2 (June 2020): 157–64. http://dx.doi.org/10.15547/ast.2020.02.027.

Full text
Abstract:
Abstract. Fall Armyworm (FAW), Spodoptera frugiperda, is an invasive pest of maize including other cultivated crops such as rice, wheat, and many other vegetables. This invasive species was initially noticed in North-America and later reported in many countries of Africa in early 2016. In South Asia, this has been reported for the first time in India followed by Srilanka in 2018 and Bangladesh, China, Taiwan and Nepal in 2019. It is polyphagous in nature and damage has been reported in more than 80 plant species. The loss has to lead up to 50-80% in maize in severe situation. FAW is a distant flyer and can fly more than 100 km in a night and spread well in crop fields. As this pest is already invasive in many states of India and the likelihood of entry and spreading in Nepal is higher because of the open border between the countries and flexible government quarantine policy. The great socio-economic loss has been forecasted once this pest has received invasive status in Nepal. Recently, this crop has been confirmed by Nepal Agricultural Research Council (NARC) in Gaidakot area of Nawalpur district, Nepal and has been noticed in almost all parts of Nepal such as Sidhuli, Chitwan, Nawalparasi, Tanahun and Rupendehi districts. However, this information has not been endorsed by Nepal Plant Protection Office (NPPO), an official invasive species endorsing organization in Nepal. This species is spreading rapidly in maize growing areas and significant losses have been reported in maize crop by the farmers. The regular scouting, surveillance, and monitoring can be suggested to evaluate the pest status in the crop field. Habitat manipulation with the deployment of deterring crops ‘push’ such as desmodium (Desmodium uncinatum) and pest-attracting crop ‘pull’ such as Napier (Pennisetum purpureum) and Sudan grass (Sorghum vulgare sudanense) is suggested in a ‘push-pull strategy’, the most popular and successful method of FAW management in the maize field. Field sanitation, and conserving pest’s natural enemies are other integrated approaches. However, in a commercial maize field, a group of ‘soft’ and selective chemicals have been suggested for immediate control of this pest. This review compiled the recent informations available on FAW and is useful for farmers, researchers and policy makers to draw a roadmap for the future FAW management in Nepal.
APA, Harvard, Vancouver, ISO, and other styles
16

Gagnidze, Ineza. "THE ROLE OF UNIVERSITY TECHNOLOGY TRANSFER OFFICES IN THE INNOVATIVE DEVELOPMENT OF THE ECONOMY OF GEORGIA." Globalization and Business 4, no. 8 (December 27, 2019): 136–42. http://dx.doi.org/10.35945/gb.2019.08.018.

Full text
Abstract:
Facing the 4th and 5th industrial revolutions, worldwide- recognized research centers forecast particularly high rates of economic development. There is no doubt that a small country like Georgia cannot determine trends in the development of the world economy. Therefore, given the above conditions, it is difficult to choose the right vector of development. We believe that for making the right choice several factors should be taken into consideration; in particular, elaboration and implementation of the education programs and development of the sectors that will provide the possibility to adopt and introduce the new technologies created in the developed countries in Georgia should be supported; based on competitive advantages of Georgia production of inelastic demand goods should be focused on. For the implementation of the above-mentioned directions, formation of appropriate entrepreneurial universities should be encouraged, which, in turn, will contribute to the formation of clusters around them, development of regional economy and creation of an entrepreneurial ecosystem. As known, demand for the products that are essential for humans to exist is inelastic. In particular, these are potable water, food, medicines, hygiene products, relax/ recreation, etc. Georgia can produce bio-products in some of the above sectors not only to satisfy the demand on the domestic market, but for export as well. We would like to note that in Georgia, there is a great potential of combining the results of the studies on mineral waters and medicinal plants, which will allow to produce unique, biological medicinal hygienic products, household chemistry, agricultural pesticides and minerals used for soil enrichment and in irrigation systems, etc. It should be noted as well that production and usage of such goods will allow Georgia to care for the health of its population and the environmental conditions and to enter developed markets. Unfortunately, the studies conducted in Georgia show that there is no efficient connection between education and business. This is indicated by GIZ, NGOs, universities and local government officials. Rigid legislative and internal system in state universities, which represents one of the reasons for such a failure, is also highlighted. In addition, we would like to note that in the World Economic Forum reports 2014-2018, ‘inadequately educated workforce’ takes the first position among the factors that are most problematic for doing business. Traditionally, the country has had a poor position in terms of access to training. In order to be able to introduce the innovations, find a new niche in the international markets and become an economic leader in the region, we consider that it is necessary to establish technology transfer offices in the universities functioning in the regions of Georgia. The issue is analyzed based on the best practice of foreign countries, namely: the USA, Germany, France, Italy, UK, South Africa, etc. Due to the above-mentioned factors, it is necessary to form an education system that is directly and systematically linked to the development of the economy. This is ensured by the effective functioning of technology transfer offices in entrepreneurial universities. This approach is fully compatible with the policy of the government of Georgia with special emphasis on green economy and education, which, in our opinion, is the right vector for development.
APA, Harvard, Vancouver, ISO, and other styles
17

Mukherjee, Dhiman. "Food Security Under The Era Of Climate Change Threat." Journal of Advanced Agriculture & Horticulture Research 1, no. 1 (June 25, 2021): 1–4. http://dx.doi.org/10.55124/jahr.v1i1.78.

Full text
Abstract:
Agriculture production is directly dependent on climate change and weather. Possible changes in temperature, precipitation and CO2 concentration are expected to significantly impact crop growth and ultimately we lose our crop productivity and indirectly affect the sustainable food availability issue. The overall impact of climate change on worldwide food production is considered to be low to moderate with successful adaptation and adequate irrigation. Climate change has a serious impact on the availability of various resources on the earth especially water, which sustains life on this planet. The global food security situation and outlook remains delicately imbalanced amid surplus food production and the prevalence of hunger, due to the complex interplay of social, economic, and ecological factors that mediate food security outcomes at various human and institutional scales. Weather aberration poses complex challenges in terms of increased variability and risk for food producers and the energy and water sectors. Changes in the biosphere, biodiversity and natural resources are adversely affecting human health and quality of life. Throughout the 21st century, India is projected to experience warming above global level. India will also begin to experience more seasonal variation in temperature with more warming in the winters than summers. Longevity of heat waves across India has extended in recent years with warmer night temperatures and hotter days, and this trend is expected to continue. Strategic research priorities are outlined for a range of sectors that underpin global food security, including: agriculture, ecosystem services from agriculture, climate change, international trade, water management solutions, the water-energy-food security nexus, service delivery to smallholders and women farmers, and better governance models and regional priority setting. There is a need to look beyond agriculture and invest in affordable and suitable farm technologies if the problem of food insecurity is to be addressed in a sustainable manner. Introduction Globally, agriculture is one of the most vulnerable sectors to climate change. This vulnerability is relatively higher in India in view of the large population depending on agriculture and poor coping capabilities of small and marginal farmers. Impacts of climate change pose a serious threat to food security. “Food security exists when all people, at all times, have physical and economic access to sufficient, safe and nutritious food that meets their dietary needs and food preferences for an active and healthy life” (World Food Summit, 1996). This definition gives rise to four dimensions of food security: availability of food, accessibility (economically and physically), utilization (the way it is used and assimilated by the human body) and stability of these three dimensions. According to the United Nations, in 2015, there are still 836 million people in the world living in extreme poverty (less than USD1.25/day) (UN, 2015). And according to the International Fund for Agricultural Development (IFAD), at least 70 percent of the very poor live in rural areas, most of them depending partly (or completely) on agriculture for their livelihoods. It is estimated that 500 million smallholder farms in the developing world are supporting almost 2 billion people, and in Asia and sub-Saharan Africa these small farms produce about 80 percent of the food consumed. Climate change threatens to reverse the progress made so far in the fight against hunger and malnutrition. As highlighted by the assessment report of the Intergovernmental Panel on Climate change (IPCC), climate change augments and intensifies risks to food security for the most vulnerable countries and populations. Few of the major risks induced by climate change, as identified by IPCC have direct consequences for food security (IPCC, 2007). These are mainly to loss of rural livelihoods and income, loss of marine and coastal ecosystems, livelihoods loss of terrestrial and inland water ecosystems and food insecurity (breakdown of food systems). Rural farmers, whose livelihood depends on the use of natural resources, are likely to bear the brunt of adverse impacts. Most of the crop simulation model runs and experiments under elevated temperature and carbon dioxide indicate that by 2030, a 3-7% decline in the yield of principal cereal crops like rice and wheat is likely in India by adoption of current production technologies. Global warming impacts growth, reproduction and yields of food and horticulture crops, increases crop water requirement, causes more soil erosion, increases thermal stress on animals leading to decreased milk yields and change the distribution and breeding season of fisheries. Fast changing climatic conditions, shrinking land, water and other natural resources with rapid growing population around the globe has put many challenges before us (Mukherjee, 2014). Food is going to be second most challenging issue for mankind in time to come. India will also begin to experience more seasonal variation in temperature with more warming in the winters than summers (Christensen et al., 2007). Climate change is posing a great threat to agriculture and food security in India and it's subcontinent. Water is the most critical agricultural input in India, as 55% of the total cultivated areas do not have irrigation facilities. Currently we are able to secure food supplies under these varying conditions. Under the threat of climate variability, our food grain production system becomes quite comfortable and easily accessible for local people. India's food grain production is estimated to rise 2 per cent in 2020-21 crop years to an all-time high of 303.34 million tonnes on better output of rice, wheat, pulse and coarse cereals amid good monsoon rains last year. In the 2019-20 crop year, the country's food grain output (comprising wheat, rice, pulses and coarse cereals) stood at a record 297.5 million tonnes (MT). Releasing the second advance estimates for 2020-21 crop year, the agriculture ministry said foodgrain production is projected at a record 303.34 MT. As per the data, rice production is pegged at record 120.32 MT as against 118.87 MT in the previous year. Wheat production is estimated to rise to a record 109.24 MT in 2020-21 from 107.86 MT in the previous year, while output of coarse cereals is likely to increase to 49.36 MT from 47.75 MT. Pulses output is seen at 24.42 MT, up from 23.03 MT in 2019-20 crop year. In the non-foodgrain category, the production of oilseeds is estimated at 37.31 MT in 2020-21 as against 33.22 MT in the previous year. Sugarcane production is pegged at 397.66 MT from 370.50 MT in the previous year, while cotton output is expected to be higher at 36.54 million bales (170 kg each) from 36.07. This production figure seem to be sufficient for current population, but we need to improve more and more with vertical farming and advance agronomic and crop improvement tools for future burgeoning population figure under the milieu of climate change issue. Our rural mass and tribal people have very limited resources and they sometime complete depend on forest microhabitat. To order to ensure food and nutritional security for growing population, a new strategy needs to be initiated for growing of crops in changing climatic condition. The country has a large pool of underutilized or underexploited fruit or cereals crops which have enormous potential for contributing to food security, nutrition, health, ecosystem sustainability under the changing climatic conditions, since they require little input, as they have inherent capabilities to withstand biotic and abiotic stress. Apart from the impacts on agronomic conditions of crop productions, climate change also affects the economy, food systems and wellbeing of the consumers (Abbade, 2017). Crop nutritional quality become very challenging, as we noticed that, zinc and iron deficiency is a serious global health problem in humans depending on cereal-diet and is largely prevalent in low-income countries like Sub-Saharan Africa, and South and South-east Asia. We report inefficiency of modern-bred cultivars of rice and wheat to sequester those essential nutrients in grains as the reason for such deficiency and prevalence (Debnath et al., 2021). Keeping in mind the crop yield and nutritional quality become very daunting task to our food security issue and this can overcome with the proper and time bound research in cognizance with the environment. Threat and challenges In recent years, climate change has become a debatable issue worldwide. South Asia will be one of the most adversely affected regions in terms of impacts of climate change on agricultural yield, economic activity and trading policies. Addressing climate change is central for global future food security and poverty alleviation. The approach would need to implement strategies linked with developmental plans to enhance its adaptive capacity in terms of climate resilience and mitigation. Over time, there has been a visible shift in the global climate change initiative towards adaptation. Adaptation can complement mitigation as a cost-effective strategy to reduce climate change risks. The impact of climate change is projected to have different effects across societies and countries. Mitigation and adaptation actions can, if appropriately designed, advance sustainable development and equity both within and across countries and between generations. One approach to balancing the attention on adaptation and mitigation strategies is to compare the costs and benefits of both the strategies. The most imminent change is the increase in the atmospheric temperatures due to increase levels of GHGs (Green House Gases) i.e. carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and chlorofluorocarbons (CFCs) etc into the atmosphere. The global mean annual temperatures at the end of the 20th century were almost 0.7 degree centigrade above than those recorded at the end of the 19th century and likely to increase further by 1.8- 6.4ºC by 2100 AD. The quantity of rainfall and its distribution will be affected to a great extent resulting in more flooding. The changes in soil properties such as loss of organic matter, leaching of soil nutrients, salinization and erosion are a likely outcome of climate change in many cases. Water crisis can be a serious problem with the anticipated global warming and climate change. With increasing exploitation of natural resources and environmental pollution, the atmospheric temperature is expected to rise by 3-5 0C in next 75-100 years (www.ipcc.ch/sr15/chapter/chapter-1). If it happens most of the rivers originating from the Himalayas may dry up and cause severe shortage of water for irrigation, suppressing agriculture production by 40-50%. There has been considerable concern in recent years about climatic changes caused by human activities and their effects on agriculture. Surface climate is always changing, but at the beginning of industrial revolution these changes have been more noticeable due to interference of human beings activity. Studies of climate change impacts on agriculture initially focused on increasing temperature. Many researchers, including reported that changes in temperature, radiation and precipitation need to be studied in order to evaluate the impact of climate change. Temperature changes can affect crop productivity. Higher temperatures may increase plant carboxilation and stimulate higher photosynthesis, respiration, and transpiration rates. Meanwhile, flowering may also be partially triggered by higher temperatures, while low temperatures may reduce energy use and increased sugar storage. Changes in temperature can also affect air vapor pressure deficits, thus impacting the water use in agricultural landscapes. This coupling affects transpiration and can cause significant shifts in temperature and water loss (Mukherjee, 2017). In chickpea and other pulse crop this increase in temperature due to climate change affects to a greater extent flower numbers, pod production, pollen viability, and pistilfunction are reduced and flower and pod abortion increased under terminal heat stress which ultimately leads to hamper its productivity on large scale. There is probability of 10-40% loss in crop production in India with the expected temperature increase by 2080-2100. Rice yields in northern India during last three decades are showing a decreasing trend (Aggarwal et al., 2000). Further, the IPCC (2007) report also projected that cereal yields in seasonally dry and tropical regions like India are likely to decrease for even small local temperature increases. wheat production will be reduced by 4-5 million tonnes with the rise of every 10C temperature throughout the growing period that coincides in India with 2020-30. However, grain yield of rice declined by 10% for each 1ºC increase in growing season. A 1ºC increase in temperature may reduce rapeseed mustard yield by 3-7%. Thus a productivity of 2050-2562 kg/ha for rapeseed mustard would have to be achieved by 2030 under the changing scenario of climate, decreasing and degrading land and water resources, costly inputs, government priority of food crops and other policy imperatives from the present level of nearly 1200 kg/ha. Diseases and pest infestation In future, plant protection will assume even more significance given the daunting task before us to feed the growing population under the era of shifting climate pattern, as it directly influence pest life cycle in crop calendar (Mukherjee, 2019). Every year, about USD 8.5 billion worth of crops are lost in India because of disease and insects pests and another 2.5 billion worth of food grains in storages. In the scenario of climate change, experts believe that these losses could rise as high as four folds. Global warming and climate change would lead to emergence of more aggressive pests and diseases which can cause epidemics resulting in heavy losses (Mesterhazy et al., 2020). The range of many insects will change or expand and new combinations of diseases and pests may emerge. The well-known interaction between host × pathogen × environment for plant disease epidemic development and weather based disease management strategies have been routinely exploited by plant pathologists. However, the impact of inter annual climatic variation resulting in the abundance of pathogen populations and realistic assessment of climatic change impacts on host-pathogen interactions are still scarce and there are only handful of studies. Further emerging of new disease with climate alteration in grain crop such as wheat blast, become challenging for growers and hamper food chain availability (Mukherjee et al., 2019). Temperature increase associated with climatic changes could result in following changes in plant diseases: Extension of geographical range of pathogens Changes in population growth rates of pathogens Changes in relative abundance and effectiveness of bio control agents Changes in pathogen × host × environment interactions Loss of resistance in cultivars containing temperature-sensitive genes Emergence of new diseases/and pathogen forms Increased risk of invasion by migrant diseases Reduced efficacy of integrated disease management practices These changes will have major implications for food and nutritional security, particularly in the developing countries of the dry-tropics, where the need to increase and sustain food production is most urgent. The current knowledge on the main potential effects of climate change on plant patho systems has been recently summarized by Pautasso et al. (2012). Their overview suggests that maintaining plant health across diversified environments is a key requirement for climate change mitigation as well as the conservation of biodiversity and provisions of ecosystem services under global change. Changing in weed flora pattern under different cropping system become very challenging to the food growers, and threat to our food security issue. It has been estimated that the potential losses due to weeds in different field crops would be around 180 million tonnes valued Rs 1,05,000 crores annually. In addition to the direct effect on crop yield, weeds result in considerable reduction in the efficiency of inputs used and food quality. Increasing atmospheric CO2 and temperature have the potential to directly affect weed physiology and crop-weed interactions vis-à-vis their response to weed control methods. Many of the world’s major weeds are C4 plants and major crops are C3 plants (Mandal and Mukherjee, 2018). The differential effects of CO2 on C3 and C4 plants may have implications on crop-weed interactions. Weed species have a greater genetic diversity than most crops and therefore, under the changing scenario of resources (eg., light, moisture, nutrients, CO2), weeds will have the greater capacity for growth and reproductive response than most crops. Differential response to seed emergence with temperature could also influence species establishment and subsequent weed-crop competition. Increasing temperature might allow some sleeper weeds to become invasive (Mukherjeee, 2020; Science Daily, 2009). Studies suggest that proper weed management techniques if adopted can result in an additional production of 103 million tonnes of food grains, 15 million tonnes of pulses,10 million tonnes of oilseeds, and 52 million tonnes of commercial crops per annum, which in few cases are even equivalent to the existing annual production (Rao and Chauhan, 2015). There is tremendous scope to increase agricultural productivity by adopting improved weed management technologies that have been developed in the country. Conclusion The greatest challenge before us is to enhance the production of required amount of food items viz., cereals, pulses, oilseeds, vegetable, underutilized fruit etc to keep pace with population growth through employing suitable crop cultivars, biotechnological approaches, conserving natural resources and protecting crops from weeds, insects pests and diseases eco-friendly with climate change. Research is a continuous process that has to be pursued vigorously and incessantly in the critical areas viz., evolvement of new genotype, land development and reclamation, soil and moisture conservation, soil health care, seeds and planting material, enhancing fertilizer and water use efficiencies, conservation agriculture, eco-friendly plant protection measures etc. Due to complexity of crop environment interaction under different climate situation, a multidisciplinary approach to the problem is required in which plant breeders, agronomists, crop physiologists and agrometeorologists need to interact for finding long term solutions in sustaining crop production. References: Abbade, E. B. 2017. Availability, access and utilization: Identifying the main fragilities for promoting food security in developing countries. World Journal of Science, Technology and Sustainable Development, 14(4): 322–335. doi:10.1108/WJSTSD-05-2016-0033 Aggrawal, P.K., Bandyopadhyay, S. and Pathak, S. 2020. Analysis of yield trends of the Rice-Wheat system in north-western India. Outlook on Agriculture, 29(4):259-268. Christensen, J.H., Hewitson, B., Busuioc, A., Chen, A. and Gao, X, 2007. Regional Climate Projections. In: Climate Change 2007: The Physical Science Basis. Cambridge University Press. Cambridge, United Kingdom. Debnath, S., Mandal, B., Saha, S., Sarkar, D., Batabyal, K., Murmu, S., Patra, B.C., Mukherjee, and Biswas, T. 2021. Are the modern-bred rice and wheat cultivars in India inefficient in zinc and iron sequestration?. Environmental and Experimental Botany,189:1-7. (https://doi.org/10.1016/j.envexpbot.2021.104535) 2007. Climate Change 2007- Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 976pp. Mandal, B and Mukherjee, D. 2018. Influenced of different weed management Practices for Higher Productivity of Jute (Corchorus olitorius) in West Bengal. International Journal of Bioresource Science, 5 (1): 21-26. Mesterhazy, A., Olah, J. and Popp, J. 2020. Losses in the grain supply chain: causes and solutions. Sustainability, 12, 2342; doi:10.3390/su12062342. Mukherjee D. 2019. Effect of various crop establishment methods and weed management practices on growth and yield of rice. Journal of Cereal Research, 11(3): 300-303. http://doi.org/10.25174/2249-4065/2019/95811. Mukherjee, D. 2014. Climate change and its impact on Indian agriculture. In : Plant Disease Management and Microbes (eds. Nehra, S.). Aavishkar Publishers, Jaipur, India. Pp 193-206. Mukherjee, D. 2017. Rising weed problems and their effects on production potential of various crops under changing climate situation of hill. Indian Horticulture Journal, 7(1): 85-89. Mukherjee, D., Mahapatra, S., Singh, D.P., Kumar, S., Kashyap , P.L. and Singh, G.P. 2019. Threat assessment of wheat blast like disease in the West Bengal". 4th International Group Meeting on Wheat production enhancement through climate smart practices. at CSK HPKV, Palampur, HP, India, February, 14-16, 2019. Organized by CSK HPKV, Palampur and Society of Advancement of Wheat and Barley Research (SAWBAR). Journal of Cereal Research, 11 (1): 78. Mukherjee, D. 2020. Herbicide combinations effect on weeds and yield of wheat in North-Eastern plain. Indian Journal of Weed Science, 52 (2): 116–122. Pautasso, M. 2012. Observed impacts of climate change on terrestrial birds in Europe: an overview. Italian Journal of Zoology, 38:56-74. .Doi:10.1080/11250003.2011.627381 Rao, A.N. and Chauhan, B.S. 2015. Weeds and weed management in India -A Review. 25 Asian Pacific Weed Science Society Conference, at Hyderabad, India, Volume: 1 (A.N. Rao and N.T. Yaduraju (eds.). pp 87-118.
APA, Harvard, Vancouver, ISO, and other styles
18

Jubase, Nolwethu, Ross T. Shackleton, and John Measey. "Motivations and contributions of volunteer groups in the management of invasive alien plants in South Africa’s Western Cape province." Bothalia, African Biodiversity & Conservation 51, no. 2 (July 8, 2021). http://dx.doi.org/10.38201/btha.abc.v51.i2.3.

Full text
Abstract:
Background: Research and management of biological invasions traditionally focuses on state operated large scale control initiatives, with little emphasis on volunteers. Volunteering can, however, contribute to detection, eradication and containment of invasive alien plant species (IAPS). Understanding the extent of involvement of volunteers in invasive alien species management is important. Similarly, understanding volunteers’ motivations to volunteering is important to improve the success of invasive alien species management. Objective: In this study we aimed to: 1) identify volunteer groups controlling IAPS in the Western Cape province of South Africa, 2) understand their practices and contributions towards detecting and controlling IAPS, 3) examine volunteer’s motivations for controlling IAPS, and, 4) identify the challenges individual volunteers and groups face. Methods: The data were collected using online questionnaires. Results: In total, we identified 52 volunteer groups. We broadly estimate that these groups clear nearly 8000 ha of land with estimated labour costs of ZAR 6.5 million annually (equivalent to USD 0.38 million) when aligned with formal state management cost estimates. Most volunteer groups raise their own funds to facilitate their work, however, many suggest support from government entities, landowners and Non-Government Organisations would help. Most volunteers (82%) detect and report invasive species to their team leaders, citizen science platforms and relevant authorities. Volunteers themselves gain physical and psychological fulfilment and build their social capital by meeting new people. Conclusion: Our findings point to the valuable contribution of these groups, but also the need for better co-ordination and engagement between volunteer groups and mandated authorities on science, policy and management.
APA, Harvard, Vancouver, ISO, and other styles
19

Moshobane, Moleseng C., Mukundi Mukundamago, Samuel Adu-Acheampong, and Ross Shackleton. "Development of alien and invasive taxa lists for regulation of biological invasions in South Africa." Bothalia 49, no. 1 (August 21, 2019). http://dx.doi.org/10.4102/abc.v49i1.2361.

Full text
Abstract:
Background: Lists are fundamental for guiding policy and management of biological invasions. The process of developing regulatory lists of alien and invasive taxa should be based on scientific evidence through an objective, transparent and consistent process.Objectives: In this study, we review the development of the lists for the alien and invasive species regulations in terms of section 97(1) of the National Environmental Management: Biodiversity Act, 2004 (NEM:BA) (Act No. 10 of 2004).Method: Lists published in the National Government Gazette were compared and assessed for changes in the taxa listed and their status between 2009 and 2016. Minutes from expert workshops convened to inform the listing were reviewed. Relevant information such as the criteria for listing taxa was extracted from minutes of the workshops.Results: Three draft versions were produced and published in the Government Gazette for public comment before the final list was published in August 2014 and promulgated in October 2014. The list is to be reviewed regularly and additional species can be added, and the status of species can be changed as additional evidence of threat levels is available – and was even amended in May 2015. The various stakeholders involved in the listing process were academics, conservation experts, managers and the general public through an inclusive process which included participation workshops or through public comment. A scoring tool based on the likelihood of invasion versus the impact of invasion was recommended for evaluating the risk of a species, but was rarely used. A number of issues relating to conflicts and approaches for listing were faced during development of lists.Conclusion: We conclude with some recommendations for future refinements in the listing process, including improving transparency and participation as well as developing standardised approaches for listing.
APA, Harvard, Vancouver, ISO, and other styles
20

Davies, Sarah J., Jonathan A. Bell, Dean Impson, Clova Mabin, Marco Meyer, Chandre Rhoda, Louise Stafford, et al. "Coordinating invasive alien species management in a biodiversity hotspot: The CAPE Invasive Alien Animals Working Group." Bothalia, African Biodiversity & Conservation 50, no. 1 (August 19, 2020). http://dx.doi.org/10.38201/btha.abc.v50.i1.10.

Full text
Abstract:
Background: The effectiveness of invasive alien species management in South Africa, and elsewhere, can be mproved by ensuring there are strong links and feedbacks between science and management. The CAPE Invasive Alien Animals Working Group (CAPE IAAWG) was established in 2008 to enhance cooperation among stakeholders such as implementing agencies and researchers, and thereby improve the management of invasive animals in the Greater Cape Floristic Region.Objectives: In this article we highlight where and how the working group has advanced our understanding of research and the implementation of management objectives and consider the working group’s successes and failures.Methods: We analyse the attendance of meetings by different stakeholders and the frequency of discussion topics on meeting agendas throughout the sequence of meetings from 2008 to 2019. We document insights based on published accounts or the experiences of the authors from eight different management projects.Results: Meetings are attended by stakeholders from NGOs, universities, and local, provincial and national government agencies as well as private individuals. Topics of discussion ranged from details of specific alien animal invasions (e.g. the House Crow in Cape Town), to considering the risks posed by broad groups (e.g. earthworms), to specific management techniques (e.g. guidelines for trapping invasive alien birds). Through the eight projects described here the CAPE IAAWG has: (i) contributed to capacity building through funding and advising on post-graduate research projects; (ii) provided ad hoc support to staff of agencies that implement invasive alien animal control; (iii) acted as a focal point for a community of practice that is supportive of decision making and policy development; and (iv) played a vital role in linking research, management and policy in a manner accessible to a broader range of stakeholders. The projects undertaken by the group reveal several lessons for managing invasive animals: (i) the importance of logistics and contract efficiency, (ii) the need for effective stakeholder engagement by the project team, (iii) the need to effectively address conflicts between role players, and (iv) the importance of including ethical and animal rights considerations in the decision making processes.Conclusion: The CAPE IAAWG has been a valuable forum to improve management effectiveness and support implementation decisions. Due to its small cost and time footprint, the working group has remained viable and retained a core of committed members, ensuring ongoing institutional buy-in. The working group will remain successful so long as the group is supported by its members and their organisations.
APA, Harvard, Vancouver, ISO, and other styles
21

Mbopha, Malukhanye S., Christo Marais, Theo Kleynhans, and Karen J. Esler. "Unlocking and securing ecological infrastructure investments: The needs and willingness to invest and institutional support mechanisms used." South African Journal of Science 117, no. 9/10 (September 29, 2021). http://dx.doi.org/10.17159/sajs.2021/8666.

Full text
Abstract:
Ecological infrastructure (EI) is a natural and near-natural functioning ecosystem that delivers a range of essential services to humankind. Examples include mountain catchments, wetlands, coastal dunes, and riparian corridors. In a world where EI is underinvested, rapid degradation and threats such as unsustainable veld-fire regimes, droughts, climate change, and invasive alien plants persist in dominating the ecological landscape. In South Africa, there are government programmes that encourage the restoration, rehabilitation and protection of EI. However, inadequate funding allocations constrain scaling-up and thus necessitate the unlocking of public and private sector investments to augment resources for ecosystem-based management interventions. A systematic literature review was conducted at a global scale to (1) understand the drivers behind EI investments, (2) understand the willingness and desire of private landowners and land users to participate and contribute to EI investments and (3) identify institutional support mechanisms used to encourage investments. Results suggest that the need to invest is driven by growing degradation of EI and the urgency to meet environmental sustainability goals. The willingness to invest is stimulated by the use of economic-based policies and compensatory mechanisms. Public–private partnerships, public policy, and market-based conservation instruments are institutional arrangements executed to protect EI. These include processes and systems used by the institutions to legislate and manage interventions towards fulfilling the conservation objective. Our review contributes to the EI investment research agenda by recommending coordinated efforts to encourage EI investment from both public and private partners. These measures will help to secure financial resources and mobilise investments beyond monetary terms by coordinating planning and developing capacity and reform policies.
APA, Harvard, Vancouver, ISO, and other styles
22

Sieben, Erwin J. J., Şerban Procheş, Aluoneswi C. Mashau, and Moleseng C. Moshobane. "The alignment of projects dealing with wetland restoration and alien control: A challenge for conservation management in South Africa." South African Journal of Science 118, no. 1/2 (January 27, 2022). http://dx.doi.org/10.17159/sajs.2022/11540.

Full text
Abstract:
An inventory of wetland vegetation across the country generated a list of the most common invasive alien plants across South Africa. Many of the plants on that list do not correspond with the priorities in the programmes for alien control across the country, as they are not listed on a government produced list that guides the priorities for alien control. We explore the reasons for this situation. We argue that because wetlands are such important parts of the landscape, invasive aliens in wetlands are of special concern, and there should be more alignment between alien control programmes and wetland rehabilitation programmes. This alignment starts by considering the full number of species that form a threat to wetland habitats, but also considers which pesticides to use, erosion and recolonisation in wetlands, planting indigenous vegetation after aliens have been removed, and strategising by working from upstream to downstream. Existing alien control programmes for specific grasses (some relatively new to the country and in the phase of early detection) and floating aquatic plants may guide how to tackle the invasions of grasses and forbs that have been established in South African wetlands for an extended period of time.
APA, Harvard, Vancouver, ISO, and other styles
23

Reynolds, Jules M. "Community narratives and local impacts of invasion in the Eastern Cape: A critical invasion ethnography of black wattle." Environment and Planning E: Nature and Space, June 3, 2021, 251484862110208. http://dx.doi.org/10.1177/25148486211020855.

Full text
Abstract:
Since 1995, the South African government has spearheaded a national invasive species campaign known as the Working for Water Program with the dual objectives of invasive species eradication and rural development. This national narrative on invasive species reflects a politicized research agenda and a wealth of material resources directed toward eradication, yet does not accurately portray the reality of invasion at the village level. In particular, Acacia mearnsii de Wild, or the black wattle tree, is classified as one of the worst invasive species in South Africa and a primary target for Working for Water, yet represents an important livelihood resource for rural communities and impacts community members differentially. To better understand these local rural realties, I use a critical invasion science approach to interrogate the local experiences and narratives of black wattle invasion in a rural pastoral community in the Eastern Cape. Within this community, local understandings and impacts of black wattle are nuanced, spatially variable, and reflect complex knowledge politics and political economies. As invasion research moves to incorporate the human and local dimension of invasion for improved policy, it is imperative to fully consider this differentiation of perspectives and impacts within the local community.
APA, Harvard, Vancouver, ISO, and other styles
24

Dzerefos, Cathy M., and Ed T. F. Witkowski. "Bridging the knowing–doing gap in South Africa and the role of environmental volunteer groups." Koedoe 58, no. 1 (March 31, 2016). http://dx.doi.org/10.4102/koedoe.v58i1.1394.

Full text
Abstract:
The implementation gap between science, policy and practice has led to loss of biodiversity and ecosystem services throughout Africa and is described in a case study from Limpopo Province, South Africa. In 2006, the South African National Biodiversity Institute first highlighted the Woodbush Granite Grassland (WGG) in the Greater Tzaneen Local Municipality as the only Critically Endangered ecosystem in Limpopo Province. Five years later (2011), the Critically Endangered listing was published in the Government Gazette No. 34809. After repeated and sustained efforts for many years from volunteers of a local environmental group – currently known as the Friends of the Haenertsburg Grassland (FroHG) – in 2015 the intent to formally protect 126 ha was published in the Government Gazette No. 2609. Unfortunately, the proposed protected area accounts for only 66% of the largest remaining fragment of WGG, which excludes an important colony of medicinal plants. Considering that only 6% of the original extent of WGG remains in an untransformed state the whole fragment should be conserved. Non-alignment of municipal spatial priorities, as in the Haenertsburg town plan from 1896, to provincial and national environmental priorities has resulted in numerous incidents that have degraded what little remains of the WGG ecosystem. Failure of the provincial authorities to act timeously to enforce environmental regulations resulted in the FroHG successfully involving national authorities to stop illegal land occupation while another incident involving an illegal fence was resolved 9 years after erection. A strengthened relationship with Lepelle Northern Water has resulted in better planning of activities in relation to an existing pipeline. This case study shows various avenues available to environmental volunteer groups in South Africa and suggests that long-term lobbying can yield positive results.Conservation implications: Formal conservation of WGG through the intended nature reserve proclamation represents application of environmental legislation (notably Listing Notice 3, National Environmental Management Act 107 of 1998: Environmental Impact Assessment Regulations, 2014), scientific recommendations and policy. Better cooperation between provincial administration and FroHG will benefit the protection and management of WGG.
APA, Harvard, Vancouver, ISO, and other styles
25

Munyai, Tendamudzimu. "Data Fitness for Monitoring the Status of Biological Invasions: Lessons from South Africa." Biodiversity Information Science and Standards 3 (October 18, 2019). http://dx.doi.org/10.3897/biss.3.47379.

Full text
Abstract:
In November 2018, South Africa published the first National Status Report on Biological Invasions and Their Management (SANBI and CIB 2018). This report represents a milestone for the Republic of South Africa and the world since it is believed to be the first comprehensive national-scale assessment for biological invasions. Moreover, the report is a formal mechanism to increase the connectivity between research, policy, and implementation, and it will be followed by assessments every three years. Data used in the report originated from a range of data sources, including formal and grey data repositories, atlas data, published scientific papers, theses, inputs from experts and practitioners, and management records from government agencies and Non-Governmental Organizations (NGOs). Several important data gaps were identified during data collection and analysis. These data gaps are largely due to a lack of a central data repository, inconsistent species checklists, data transparency, and data interoperability (due in part to a lack of consistent definitions, taxonomic classification, and use of varying data standards). To address these data gaps, the team identified several forms of databases and requested access to the data. The data received required that the team perform a preliminary validation for metadata and data completeness. Parallel to the process of sourcing and validating the data, the team compiled three comprehensive national alien and invasive species checklists, which were then verified and validated by taxonomists. These processes were followed by adopting and developing metrics to prepare data for analyses. The team identified, notwithstanding the numerous data classification schemes available, A Proposed Unified Framework for Biological Invasions (Blackburn et al. 2011), and the Environmental Impact Classification for Alien Taxa (EICAT) Scheme (Hawkins et al. 2015). These two classifications were used to assess the status of species introduction and impact, respectively. Other metrics that were developed include the confidence level metrics to assign the validated data to the indicators and criteria for reviewing area-based invasive species management plans. Finally, the data were used to assess four aspects of the report: pathways of introduction; status of alien species; status of invaded areas; and effectiveness of control measures and regulations. A total of 21 indicators were developed to assess the status of these aspects. In addition, four high-level indicators (one for each aspect) were developed for use in the national suite of environmental indicators on which the Department of Environmental Affairs reports on a regular basis. The next steps include communicating and interpreting the indicators as part of the final report; developing monitoring and reporting systems in an attempt to fill the data gaps; testing and refining the indicators with stakeholders; continuously validating and verifying the alien and invasive species checklists with a wider network of country experts; and building simulation models to assess the inter-relationship and value of indicators.
APA, Harvard, Vancouver, ISO, and other styles
26

Klopper, Ronell, Pieter Winter, and Marianne Le Roux. "The South African National Plant Checklist: Maintaining the taxonomic backbone for a megadiverse country." Biodiversity Information Science and Standards 5 (September 3, 2021). http://dx.doi.org/10.3897/biss.5.73899.

Full text
Abstract:
Updated country and regional plant checklists for southern Africa have been available for several decades. These form the backbone of foundational and applied biodiversity-related processes, e.g., herbarium specimen curation, conservation assessments, and biodiversity policy and planning activities. A plant taxonomic backbone for South Africa has been maintained electronically since the 1970s; originally in the custom-built National Herbarium, Pretoria Computerised Information System (PRECIS) database; and currently in the Botanical Database of Southern Africa (BODATSA), using Botanical Research & Herbarium Management System (BRAHMS) software. The BODATSA species table contains ca. 129,000 names of fungi, algae, mosses, lycophytes and ferns, conifers, and flowering plants. Taxonomic backbone data is continuously expanded, updated, and improved following strict policies and standards in an attempt to keep it up-to-date and current. The South African National Plant Checklist (SANPC) Policy stipulates that a single classification is followed for taxonomic groups at the family level and above. Thus a classification system was chosen for each plant group represented in the backbone. For genera and below, the latest published evidence-based classification is followed. Where there are opposing classifications for a group based on similar data, the SANPC Committee decides which classification is most suitable from a southern African perspective. Researchers can also make an appeal to the Committee not to follow the latest publication, if it is controversial. Updating primarily involves keeping track of literature references and the taxon additions, synonymies, and other taxonomic and nomenclatural changes they represent. Attributes affected by such changes are adjusted in the taxon module of BODATSA. Currently the taxonomic backbone for indigenous and naturalised mosses, liverworts, hornworts, ferns and lycophytes, conifers, and flowering plants is actively maintained and updated. Fungal names are not curated in BODATSA, as the Mycology Unit of the Agricultural Research Council (ARC) of South Africa maintains a taxonomic backbone for fungi. In future, all fungal names will be migrated to a separate instance of BRAHMS, and links to the ARC database will be established to update the fungal backbone. Previously algae were not included in BODATSA or the SANPC, but algal names are now being added to the backbone. Only names of green and red algae will be added initially. Maintenance of the names for indigenous taxa in southern Africa was always prioritised in the taxonomic backbone. Recently, the scope was expanded to also focus more on our naturalised flora. For these taxa, expansion involved tagging some existing names as naturalised or invasive and adding others. Thus far this dataset has been managed differently, and we realize that to some extent, this will need to continue going forward since information here are more about presence or absence, and confirmation of naturalised status. BODATSA also houses 1.37 million specimen records for more than 2 million specimens housed in the three herbaria of the South African National Biodiversity Institute (SANBI): Compton Herbarium (NBG & SAM), Cape Town; KwaZulu-Natal Herbarium (NH), Durban; and National Herbarium (PRE), Pretoria. Determinations of specimen records are directly linked to names in the taxonomic backbone. Any changes in the backbone thus filter down to the specimen records and should ideally also be reflected in the physical herbarium collections. Checklists for South Africa and the Flora of southern African region were initially published in hardcopy, with some later made available in pdf format. An official yearly release of the SANPC (currently containing just under 40,000 names for indigenous and naturalised mosses, liverworts, hornworts, lycophytes and ferns, conifers, and flowering plants occurring in South Africa) is now made available online as a downloadable spreadsheet, together with other checklist-related documents. This part of the backbone is also accessible in the searchable online platform, Plants of southern Africa (POSA). In line with global initiatives to mobilise plant biodiversity data, this platform provides specimen record data as well, and will soon link descriptive data from the e-Flora of South Africa project to the backbone (once the National Biodiversity Information System website upgrade is finalised). The SANPC connects with several international initiatives and is utilised to update the taxonomic backbones of, amongst others, the World Flora Online (WFO) Project (including the WFO Plant List) and the African Plants Database. This contribution will briefly outline the history of compiling, updating, and disseminating the taxonomic backbone of southern African plants. It will provide information on current data management processes and procedures. Challenges relating to updating the taxonomic backbone, will be highlighted and discussed.
APA, Harvard, Vancouver, ISO, and other styles
27

Ahmed, Muhammad Z., Cindy L. McKenzie, Alexandra M. Revynthi, Gregory A. Evans, Jason L. Mottern, Catharine M. Mannion, and Lance S. Osborne. "Pest Status, Survey of Natural Enemies, and a Management Plan for the Whitefly Singhiella simplex (Hemiptera: Aleyrodidae) in the United States." Journal of Integrated Pest Management 13, no. 1 (January 1, 2022). http://dx.doi.org/10.1093/jipm/pmac007.

Full text
Abstract:
Abstract The whitefly Singhiella simplex (Singh) is an invasive species that has been causing damage to Ficus hedges and trees for the last decade and a half in Africa, the Caribbean, Europe, the Middle East, and North and South America. This study provides its biology, current pest status, description, dispersal potential, field key, geographical distribution, host plants, scouting techniques, species assemblage, a survey of its natural enemies, and an overview of its management plan. Singhiella simplex has been found in three states in the USA (Arizona, California, and Florida). Its current range is very limited in Arizona and California. However, it is now widely distributed throughout central and south Florida. Several natural enemies, both native and introduced, are present in the field. The parasitoid wasp Baeoentodon balios Wang, Huang, & Polaszek and the predatory beetle Delphastus pallidus (LeConte) are the most dominant among its natural enemies. This study will provide useful information to manage S. simplex effectively.
APA, Harvard, Vancouver, ISO, and other styles
28

DM Jacklin, IC Brink, and SM Jacobs. "A phyto-guide to species selection for optimized South African green infrastructure." Water SA 47, no. 4 October (October 28, 2021). http://dx.doi.org/10.17159/wsa/2021.v47.i4.3875.

Full text
Abstract:
In South Africa, rapid environmental degeneration caused by anthropogenic pollution poses a major ecological engineering problem, demanding proper resource mitigation strategies. For the treatment of polluted water and degraded soil systems, green infrastructure (GI) offers an effective, sustainable and affordable nature-based alternative to grey infrastructure. An additive benefit within GI, plant species provide enormous potential to treatment; however, species vary substantially in their pollutant removal and hydrologic performance. South African civil engineers tasked with designing GI often lack expertise and knowledge of plant behaviour and ecosystem dynamics. Therefore, this paper proposes a decision framework to facilitate selection for designing local GI in the form of a phyto-guide, based on existing recommendations and knowledge of removal processes and plant behaviour. Interdisciplinarity at the core of the phyto-guide relies on continuous specialist collaboration with each selection criteria, whilst efficiency and sustainability are considered equally important contributors to successful GI functioning. The spread of invasive alien plants, whether accidental or deliberate, negatively impacts an ecosystem’s capacity to deliver goods and services. Thus, the desire to optimize GI by incorporating effective phytoremediators cannot be prioritised over conservation concerns. In addition, this paper seeks to advance the GI limitation of relying solely on previously identified phytoremediators, by including evaluation criteria of beneficial plant traits as well as plant distribution, behaviour and diversity into the decision-making process for optimized GI. It is recommended that future research engages in discovering less invasive, naturally occurring local species as potential phytoremediators, inspired by South Africa’s rich biodiversity and endemism, as well as conveying the importance of consultation with engineers and ecologists for optimized GI.
APA, Harvard, Vancouver, ISO, and other styles
29

DM Jacklin, IC Brink, and SM Jacobs. "Exploring the use of indigenous Western Cape plants as potential water and soil pollutant phytoremediators with a focus on green infrastructure." Water SA 47, no. 3 July (July 29, 2021). http://dx.doi.org/10.17159/wsa/2021.v47.i3.11860.

Full text
Abstract:
Urban water managers, engineers and conservation ecologists in the Western Cape (WC) Province of South Africa are faced with a major environmental and human health challenge, with urbanisation, industrialisation, population growth and agricultural development placing pressure on the limited water and soil resources. In addressing this resource degradation an effective, affordable and sustainable solution is required. The implementation of ‘green infrastructure’ (GI), such as phytoremediation, involves the use of plants to hinder pollutant transport and attenuate runoff flow, protecting the health of the human population and the environment. However, care must be taken when selecting plant species due to possible invasive behaviour, affecting ecosystem dynamics. As a result of the need for resource remediation in both urban and rural areas, the use of non-invasive indigenous species is vital to an efficient and sustainable technology, as urban areas are often the initial sites for introduction from which invasions spread. This paper proposes indigenous WC species for potential use in GI, identified from global bioremediation literature, as an aid to the practicing civil engineer and water manager responsible for the design and management of the phytotechnology. These indigenous species offer potential as phytoremediators in local GI, as well as suggest the types of plants that should be investigated further as alternatives to effective exotics. The investigation returned 56 non-invasive WC plant species likely to aid resource remediation without jeopardising the conservation and biodiversity of the administered area. The selected vegetation is potentially capable of increasing heterogeneity and adjusting to the dynamic biogeographic conditions of the recipient habitat. Thus, distinct species capable of remediating a wide range of environmental contaminants for GI, into the diverse habitats of the WC, at a fraction of the cost of conventional techniques, are promoted.
APA, Harvard, Vancouver, ISO, and other styles
30

Moodley, Desika, Elena Angulo, Ross N. Cuthbert, Brian Leung, Anna Turbelin, Ana Novoa, Melina Kourantidou, et al. "Surprisingly high economic costs of biological invasions in protected areas." Biological Invasions, February 4, 2022. http://dx.doi.org/10.1007/s10530-022-02732-7.

Full text
Abstract:
AbstractBiological invasions are one of the main threats to biodiversity within protected areas (PAs) worldwide. Meanwhile, the resilience of PAs to invasions remains largely unknown. Consequently, providing a better understanding of how they are impacted by invasions is critical for informing policy responses and optimally allocating resources to prevention and control strategies. Here we use the InvaCost database to address this gap from three perspectives: (i) characterizing the total reported costs of invasive alien species (IAS) in PAs; (ii) comparing mean observed costs of IAS in PAs and non-PAs; and (iii) evaluating factors affecting mean observed costs of IAS in PAs. Our results first show that, overall, the reported economic costs of IAS in PAs amounted to US$ 22.24 billion between 1975 and 2020, of which US$ 930.61 million were observed costs (already incurred) and US$ 21.31 billion were potential costs (extrapolated or predicted). Expectedly, most of the observed costs were reported for management (73%) but damages were still much higher than expected for PAs (24%); in addition, the vast majority of management costs were reported for reactive, post-invasion actions (84% of management costs, focused on eradication and control). Second, differences between costs in PAs and non-PAs varied among continents and environments. We found significantly higher IAS costs in terrestrial PA environments compared to non-PAs, while regionally, Europe incurred higher costs in PAs and Africa and Temperate Asia incurred higher costs in non-PAs. Third, characterization of drivers of IAS costs within PAs showed an effect of environments (higher costs in terrestrial environments), continents (higher in Africa and South America), taxa (higher in invertebrates and vertebrates than plants) and Human Development Index (higher in more developed countries). Globally, our findings indicate that, counterintuitively, PAs are subject to very high costs from biological invasions. This highlights the need for more resources to be invested in the management of IAS to achieve the role of PAs in ensuring the long term conservation of nature. Accordingly, more spatially-balanced and integrative studies involving both scientists and stakeholders are required.
APA, Harvard, Vancouver, ISO, and other styles
31

Almila, Anna-Mari. "Fabricating Effervescence." M/C Journal 24, no. 1 (March 15, 2021). http://dx.doi.org/10.5204/mcj.2741.

Full text
Abstract:
Introduction In November 2020, upon learning that the company’s Covid-19 vaccine trial had been successful, the head of Pfizer’s Vaccine Research and Development, Kathrin Jansen, celebrated with champagne – “some really good stuff” (Cohen). Bubbles seem to go naturally with celebration, and champagne is fundamentally associated with bubbles. Yet, until the late-seventeenth century, champagne was a still wine, and it only reached the familiar levels of bubbliness in the late-nineteenth century (Harding). During this period and on into the early twentieth century, “champagne” was in many ways created, defined, and defended. A “champagne bubble” was created, within which the “nature” of champagne was contested and constructed. Champagne today is the result of hundreds of years of labour by many sorts of bubble-makers: those who make the bubbly drink, and those who construct, maintain, and defend the champagne bubble. In this article, I explore some elements of the champagne bubble, in order to understand both its fragility and rigidity over the years and today. Creating the Champagne Bubble – the Labour of Centuries It is difficult to separate the physical from the mythical as regards champagne. Therefore the categorisations below are always overlapping, and embedded in legal, political, economic, and socio-cultural factors. Just as assemblage – the mixing of wine from different grapes – is an essential element of champagne wine, the champagne bubble may be called heterogeneous assemblage. Indeed, the champagne bubble, as we will see below, is a myriad of different sorts of bubbles, such as terroir, appellation, myth and brand. And just as any assemblage, its heterogeneous elements exist and operate in relation to each other. Therefore the “champagne bubble” discussed here is both one and many, all of its elements fundamentally interconnected, constituting that “one” known as “champagne”. It is not my intention to be comprehensive of all the elements, historical and contemporary. Indeed, that would not be possible within such a short article. Instead, I seek to demonstrate some of the complexity of the champagne bubble, noting the elaborate labour that has gone into its creation. The Physical Champagne and Champagne – from Soil to Bubbles Champagne means both a legally protected geographical area (Champagne), and the wine (here: champagne) produced in this area from grapes defined as acceptable: most importantly pinot noir, pinot meunier (“black” grapes), and chardonnay (“white” grape). The method of production, too, is regulated and legally protected: méthode champenoise. Although the same method is used in numerous locations, these must be called something different: metodo classico (Italy), método tradicional (Spain), Methode Cap Classique (South Africa). The geographical area of Champagne was first legally defined in 1908, when it only included the areas of Marne and Aisne, leaving out, most importantly, the area of Aube. This decision led to severe unrest and riots, as the Aube vignerons revolted in 1911, forcing the inclusion of “zone 2”: Aube, Haute-Marne, and Seine-et-Marne (Guy). Behind these regulations was a surge in fraudulent production in the early twentieth century, as well as falling wine prices resulting from increasing supply of cheap wines (Colman 18). These first appellations d’origine had many consequences – they proved financially beneficial for the “zone 1”, but less so for the “zone 2”. When both these areas were brought under the same appellation in 1927, the financial benefits were more limited – but this may have been due to the Great Depression triggered in 1929 (Haeck et al.). It is a long-standing belief that the soil and climate of Champagne are key contributors to the quality of champagne wines, said to be due to “conditions … most suitable for making this type of wine” (Simon 11). Already in the end of the nineteenth century, the editor of Vigneron champenois attributed champagne’s quality to “a fortunate combination of … chalky soil … [and] unrivalled exposure [to the sun]” (Guy 119) among other things. Factors such as soil and climate, commonly included in and expressed through the idea of terroir, undoubtedly influence grapes and wines made thereof, but the extent remains unproven. Indeed, terroir itself is a very contested concept (Teil; Inglis and Almila). It is also the case that climate change has had, and will continue to have, devastating effects on wine production in many areas, while benefiting others. The highly successful English sparkling wine production, drawing upon know-how from the Champagne area, has been enabled by the warming climate (Inglis), while Champagne itself is at risk of becoming too hot (Robinson). Champagne is made through a process more complicated than most wines. I present here the bare bones of it, to illustrate the many challenges that had to be overcome to enable its production in the scale we see today. Freshly picked grapes are first pressed and the juice is fermented. Grape juice contains natural yeasts and therefore will ferment spontaneously, but fermentation can also be started with artificial yeasts. In fermentation, alcohol and carbon dioxide (CO2) are formed, but the latter usually escapes the liquid. The secret of champagne is its second fermentation, which happens in bottles, after wines from different grapes and/or vineyards have been blended for desired characteristics (assemblage). For the second fermentation, yeast and sugar are added. As the fermentation happens inside a bottle, the CO2 that is created does not escape, but dissolves into the wine. The average pressure inside a champagne bottle in serving temperature is around 5 bar – 5 times the pressure outside the bottle (Liger-Belair et al.). The obvious challenge this method poses has to do with managing the pressure. Exploding bottles used to be a common problem, and the manner of sealing bottles was not very developed, either. Seventeenth-century developments in bottle-making, and using corks to seal bottles, enabled sparkling wines to be produced in the first place (Leszczyńska; Phillips 137). Still today, champagne comes in heavy-bottomed bottles, sealed with characteristically shaped cork, which is secured with a wire cage known as muselet. Scientific innovations, such as calculating the ideal amount of sugar for the second fermentation in 1836, also helped to control the amount of gas formed during the second fermentation, thus making the behaviour of the wine more predictable (Leszczyńska 265). Champagne is characteristically a “manufactured” wine, as it involves several steps of interference, from assemblage to dosage – sugar added for flavour to most champagnes after the second fermentation (although there are also zero dosage champagnes). This lends champagne particularly suitable for branding, as it is possible to make the wine taste the same year after year, harvest after harvest, and thus create a distinctive and recognisable house style. It is also possible to make champagnes for different tastes. During the nineteenth century, champagnes of different dosage were made for different markets – the driest for the British, the sweetest for the Russians (Harding). Bubbles are probably the most striking characteristic of champagne, and they are enabled by the complicated factors described above. But they are also formed when the champagne is poured in a glass. Natural impurities on the surface of the glass provide channels through which the gas pockets trapped in the wine can release themselves, forming strains of rising bubbles (Liger-Belair et al.). Champagne glasses have for centuries differed from other wine glasses, often for aesthetic reasons (Harding). The bubbles seem to do more than give people aesthetic pleasure and sensory experiences. It is often claimed that champagne makes you drunk faster than other drinks would, and there is, indeed, some (limited) research showing that this may well be the case (Roberts and Robinson; Ridout et al.). The Mythical Champagne – from Dom Pérignon to Modern Wonders Just as the bubbles in a champagne glass are influenced by numerous forces, so the metaphorical champagne bubble is subject to complex influences. Myth-creation is one of the most significant of these. The origin of champagne as sparkling wine is embedded in the myth of Dom Pérignon of Hautvillers monastery (1638–1715), who according to the legend would have accidentally developed the bubbles, and then enthusiastically exclaimed “I am drinking the stars!” (Phillips 138). In reality, bubbles are a natural phenomenon provoked by winter temperatures deactivating the fermenting yeasts, and spring again reactivating them. The myth of Dom Pérignon was first established in the nineteenth century and quickly embraced by the champagne industry. In 1937, Moët et Chandon launched a premium champagne called Dom Pérignon, which enjoys high reputation until this day (Phillips). The champagne industry has been active in managing associations connected with champagne since the nineteenth century. Sparkling champagnes had already enjoyed fashionability in the later seventeenth and early eighteenth century, both in the French Court, and amongst the British higher classes. In the second half of the nineteenth century, champagne found ever increasing markets abroad, and the clientele was not aristocratic anymore. Before the 1860s, champagne’s association was with high status celebration, as well as sexual activity and seduction (Harding; Rokka). As the century went on, and champagne sales radically increased, associations with “modernity” were added: “hot-air balloons, towering steamships, transcontinental trains, cars, sports, and other ‘modern’ wonders were often featured in quickly proliferating champagne advertising” (Rokka 280). During this time, champagne grew both drier and more sparkling, following consumer tastes (Harding). Champagne’s most important markets in later nineteenth century included the UK, where the growing middle classes consumed champagne for both celebration and hospitality (Harding), the US, where (upper) middle-class women were served champagne in new kinds of consumer environments (Smith; Remus), and Russia, where the upper classes enjoyed sweeter champagne – until the Revolution (Phillips 296). The champagne industry quickly embraced the new middle classes in possession of increasing wealth, as well as new methods of advertising and marketing. What is remarkable is that they managed to integrate enormously varied cultural thematics and still retain associations with aristocracy and luxury, while producing and selling wine in industrial scale (Harding; Rokka). This is still true today: champagne retains a reputation of prestige, despite large-scale branding, production, and marketing. Maintaining and Defending the Bubble: Formulas, Rappers, and the Absolutely Fabulous Tipplers The falling wine prices and increasing counterfeit wines coincided with Europe’s phylloxera crisis – the pest accidentally brought over from North America that almost wiped out all Europe’s vineyards. The pest moved through Champagne in the 1890s, killing vines and devastating vignerons (Campbell). The Syndicat du Commerce des vins de Champagne had already been formed in 1882 (Rokka 280). Now unions were formed to fight phylloxera, such as the Association Viticole Champenoise in 1898. The 1904 Fédération Syndicale des Vignerons was formed to lobby the government to protect the name of Champagne (Leszczyńska 266) – successfully, as we have seen above. The financial benefits from appellations were certainly welcome, but short-lived. World War I treated Champagne harshly, with battle lines stuck through the area for years (Guy 187). The battle went on also in the lobbying front. In 1935, a new appellation regime was brought into law, which came to be the basis for all European systems, and the Comité National des appellations d'origine (CNAO) was founded (Colman 1922). Champagne’s protection became increasingly international, and continues to be so today under EU law and trade deals (European Commission). The post-war recovery of champagne relied on strategies used already in the “golden years” – marketing and lobbying. Advertising continued to embrace “luxury, celebration, transport (extending from air travel to the increasingly popular automobile), modernity, sports” (Guy 188). Such advertisement must have responded accurately to the mood of post-war, pre-depression Europe. Even in the prohibition US it was known that the “frivolous” French women might go as far as bathe in champagne, like the popular actress Mistinguett (Young 63). Curiously, in the 1930s Soviet Russia, “champagne” (not produced in Champagne) was declared a sign of good living, symbolising the standard of living that any Soviet worker had access to (at least in theory) (Gronow). Today, the reputation of champagne is fiercely defended in legal terms. This is not only in terms of protection against other sparkling wine making areas, but also in terms of exploitation of champagne’s reputation by actors in other commercial fields, and even against mass market products containing genuine champagne (Mahy and d’Ath; Schneider and Nam). At the same time, champagne has been widely “democratised” by mass production, enabled partly by increasing mechanisation and scientification of champagne production from the 1950s onwards (Leszczyńska 266). Yet champagne retains its association with prestige, luxury, and even royalty. This has required some serious adaptation and flexibility. In what follows, I look into three cultural phenomena that illuminate processes of such adaptation: Formula One (F1) champagne spraying, the 1990s sitcom Absolutely Fabulous, and the Cristal racism scandal in 2006. The first champagne bottle is said to have been presented to F1 grand prix winner in Champagne in 1950 (Wheels24). Such a gesture would have been fully in line with champagne’s association with cars, sport, and modernity. But what about the spraying? Surely that is not in line with the prestige of the wine? The first spraying is attributed to Jo Siffert in 1966 and Dan Gurney in 1967, the former described as accidental, the latter as a spontaneous gesture of celebration (Wheels24; Dobie). Moët had become the official supplier of F1 champagnes in 1966, and there are no signs that the new custom would have been problematic for them, as their sponsorship continued until 1999, after which Mumm sponsored the sport for 15 years. Today, the champagne to be popped and sprayed is Chanson, in special bottles “coated in the same carbon fibre that F1 cars are made of” (Wheels24). Such an iconic status has the spraying gained that it features in practically all TV broadcasts concerning F1, although non-alcoholic substitute is used in countries where sale of alcohol is banned (Barker et al., “Quantifying”; Barker et al., “Alcohol”). As disturbing as the champagne spraying might look for a wine snob, it is perfectly in line with champagne’s marketing history and entrepreneurial spirit shown since the nineteenth century. Nor is it unheard of to let champagne spray. The “art” of sabrage, opening champagne bottle with a sable, associated with glamour, spectacle, and myth – its origin is attributed to Napoleon and his officers – is perfectly acceptable even for the snob. Sparkling champagne was always bound up with joy and celebration, not a solemn drink, and the champagne bubble was able to accommodate middle classes as well as aristocrats. This brings us to our second example, the British sitcom Absolutely Fabulous. The show, first released in 1992, featured two women, “Eddy” (Jennifer Saunders) and “Patsy” (Joanna Lumley), who spent their time happily smoking, taking drugs, and drinking large quantities of “Bolly” (among other things). Bollinger champagne may have initially experienced “a bit of a shock” for being thus addressed, but soon came to see the benefits of fame (French). In 2005, they hired PR support to make better use of the brand’s “Ab Fab” recognisability, and to improve its prestige reputation in order to justify their higher price range (Cann). Saunders and Lumley were warmly welcomed by the Bollinger house when filming for their champagne tour Absolutely Champers (2017). It is befitting indeed that such controversial fame came from the UK, the first country to discover sparkling champagne outside France (Simon 48), and where the aspirational middle classes were keen to consume it already in the nineteenth century (Harding). More controversial still is the case of Cristal (made by Louis Roederer) and the US rap world. Enthusiastically embraced by the “bling-bling” world of (black) rappers, champagne seems to fit their ethos well. Cristal was long favoured as both a drink and a word in rap lyrics. But in 2006, the newly appointed managing director at the family owned Roederer, Frédéric Rouzaud, made comments considered racist by many (Woodland). Rouzard told in an interview with The Economist that the house observed the Cristal-rap association “with curiosity and serenity”. He reportedly continued: “but what can we do? We can’t forbid people from buying it. I’m sure Dom Pérignon or Krug would be delighted to have their business”. It was indeed those two brands that the rapper Jay-Z replaced Cristal with, when calling for a boycott on Cristal. It would be easy to dismiss Rouzard’s comments as snobbery, or indeed as racism, but they merit some more reflection. Cristal is the premium wine of a house that otherwise does not enjoy high recognisability. While champagne’s history involves embracing new sorts of clientele, and marketing flexibly to as many consumer groups as possible (Rokka), this was the first spectacular crossing of racial boundaries. It was always the case that different houses and their different champagnes were targeted at different clienteles, and it is apparent that Cristal was not targeted at black rap artists. Whereas Bollinger was able to turn into a victory the questionable fame brought by the white middle-class association of Absolutely Fabulous, the more prestigious Cristal considered the attention of the black rapper world more threatening and acted accordingly. They sought to defend their own brand bubble, not the larger champagne bubble. Cristal’s reputation seems to have suffered little – its 2008 vintage, launched in 2018, was the most traded wine of that year (Schultz). Jay-Z’s purchase of his own champagne brand (Armand de Brignac, nicknamed Ace of Spades) has been less successful reputation-wise (Greenburg). It is difficult to break the champagne bubble, and it may be equally difficult to break into it. Conclusion In this article, I have looked into the various dilemmas the “bubble-makers” of Champagne encountered when fabricating what is today known as “champagne”. There have been moments of threat to the bubble they formed, such as in the turn of nineteenth and twentieth centuries, and eras of incomparable success, such as from the 1860s to 1880s. The discussion has demonstrated the remarkable flexibility with which the makers and defenders of champagne have responded to challenges, and dealt with material, socio-cultural, economic, and other problems. It feels appropriate to end with a note on the current challenge the champagne industry faces: Covid-19. The pandemic hit champagne sales exceptionally hard, leaving around 100 million bottles unsold (Micallef). This was not very surprising, given the closure of champagne-selling venues, banning of public and private celebrations, and a general mood not particularly prone to (or even likely to frown upon) such light-hearted matters as glamour and champagne. Champagne has survived many dramatic drops in sales during the twentieth century, such as the Great Depression of the 1930s, and the post-financial crisis collapse in 2009. Yet they seem to be able to make astonishing recoveries. Already, there are indicators that many people consumed more champagne during the festive end-of-year season than in previous years (Smithers). For the moment, it looks like the champagne bubble, despite its seeming fragility, is practically indestructible, no matter how much its elements may suffer under various pressures and challenges. References Barker, Alexander, Magdalena Opazo-Breton, Emily Thomson, John Britton, Bruce Granti-Braham, and Rachael L. Murray. “Quantifying Alcohol Audio-Visual Content in UK Broadcasts of the 2018 Formula 1 Championship: A Content Analysis and Population Exposure.” BMJ Open 10 (2020): e037035. <https://bmjopen.bmj.com/content/10/8/e037035>. Barker, Alexander B., John Britton, Bruce Grant-Braham, and Rachael L. Murray. “Alcohol Audio-Visual Content in Formula 1 Television Broadcasting.” BMC Public Health 18 (2018): 1155. <https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-018-6068-3>. Campbell, Christy. Phylloxera: How Wine Was Saved for the World. London: Harper, 2004. Cann, Richard. “Bolllinger Signs Agency to Reclaim Ab Fab Status.” PR Week 4 Mar. 2005. 4 Mar. 2021 <https://www.prweek.com/article/472221/bollinger-signs-agency-reclaim-ab-fab-status>. Cohen, Jon. “Champagne and Questions Greet First Data Showing That a COVID-19 Vaccine Works.” Science 9 Nov. 2020. 4 Mar. 2021 <https://www.sciencemag.org/news/2020/11/champagne-and-questions-greet-first-data-showing-covid-19-vaccine-works>. Colman, Tyler. Wine Politics: How Governments, Environmentalists, Mobsters, and Critics Influence the Wines We Drink. Berkeley: University of California Press, 2008. Dobie, Stephen. “The Story of Motorsport’s First Ever Champagne Spray.” TopGear 15 Jan. 2018. 4 Mar. 2021 <https://www.topgear.com/car-news/motorsport/story-motorsports-first-ever-champagne-spray>. European Commission. “Wine.” 4 Mar. 2021 <https://ec.europa.eu/info/food-farming-fisheries/plants-and-plant-products/plant-products/wine_en#:~:text=Related%20links-,Overview,consumption%20and%2070%25%20of%20exports>. French, Phoebe. “Joanna Lumley and Jennifer Saunders to Star in Absolutely Champers.” The Drinks Business 20 Dec. 2017. 4 Mar. 2021 <https://www.thedrinksbusiness.com/2017/12/joanna-lumley-and-jennifer-saunders-to-star-in-absolutely-champers/>. Greenburg, Zack O. “The Real Story behind Jay Z's Champagne Deal.” Forbes 6 Nov. 2014. 4 Mar. 2021 <https://www.forbes.com/sites/zackomalleygreenburg/2014/11/06/why-jay-zs-champagne-news-isnt-so-new/?sh=6e4eb8f07528>. Gronow, Jukka. “Caviar with Champagne Good Life and Common Luxury in Stalin's Soviet Union.” Suomen Antropologi 4 (1998). Guy, Colleen M. When Champagne Became French: Wine and the Making of a National Identity. London: Johns Hopkins University Press, 2003. Haeck, Catherine, Giulia Meloni, and Johan Swinnen. “The Value of Terroir: A Historical Analysis of the Bordeaux and Champagne Geographical Indications.” Applied Economic Perspectives and Policy 41.4 (2019): 598–619. <https://onlinelibrary.wiley.com/doi/abs/10.1093/aepp/ppz026>. Harding, Graham. “The Making of Modern Champagne: How and Why the Taste for and the Taste of Champagne Changed in Nineteenth Century Britain.” Consumption Markets & Culture 42.1 (2021): 6-29. <https://www.tandfonline.com/doi/abs/10.1080/10253866.2020.1713765?journalCode=gcmc20>. Inglis, David. “Wine Globalization: Longer-Term Dynamics and Contemporary Patterns.” The Globalization of Wine. Eds. David Inglis and Anna-Mari Almila. London: Bloomsbury, 2019. 21-46. Inglis, David, and Anna-Mari Almila. “Introduction: The Travels and Tendencies of Wine.” The Globalization of Wine. Eds. David Inglis and Anna-Mari Almila. London: Bloomsbury, 2019. 1-20. Leszczyńska, D. “A Cluster and Its Trajectory: Evidence from the History of the French Champagne Production Cluster.” Labor History 57.2 (2016): 258-276. <https://www.tandfonline.com/doi/abs/10.1080/0023656X.2016.1161140>. Liger-Belair, Gérard, Guillaume Polidori, and Philippe Jeandet. “Recent Advances in the Science of Champagne Bubbles.” Chemical Society Reviews 37 (2008): 2490–2511. <https://pubs.rsc.org/en/content/articlelanding/2008/cs/b717798b#!divAbstract>. Mahy, Aude, and Florence d’Ath. “The Case of the ‘Champagner Sorbet’ – Unlawful Exploitation or Legitimate Use of the Protected Name ‘Champagne’?” EFFL 1 (2017): 43-48. <https://www.jstor.org/stable/26451418?seq=1>. Micallef, Joseph V. “How Champagne Is Bouncing Back after the COVID-19 Pandemic.” Forbes 15 Nov. 2020. 4 Mar. 2021 <https://www.forbes.com/sites/joemicallef/2020/11/15/how-champagne-is-bouncing-back-after-the-covid-19-pandemic/?sh=3300e4125784>. Phillips, Rod. A Short History of Wine. London: Penguin, 2000. Remus, Emily A. “Tippling Ladies and the Making of Consumer Culture: Gender and Public Space in ‘Fin-de- Siècle’ Chicago.” The Journal of American History 101.3 (2014): 751-77. <https://academic.oup.com/jah/article/101/3/751/796447?login=true>. Ridout, Fran, Stuart Gould, Carlo Nunes, and Ian Hindmarch. “The Effects of Carbon Dioxide in Champagne on Psychometric Performance and Blood-Alcohol Concentration.” Alcohol and Alcoholism 38.4 (2003): 381-85. <https://academic.oup.com/alcalc/article/38/4/381/232628>. Roberts, C., and S.P. Robinson. “Alcohol Concentration and Carbonation of Drinks: The Effect on Blood Alcohol Levels.” Journal of Forensic and Legal Medicine 14.7 (2007): 398-405. <https://pubmed.ncbi.nlm.nih.gov/17720590/>. Robinson, Frances. “Champagne Will Be Too Hot for Champagne Research Warns.” Decanter. 12 Jan. 2004. 4 Mar. 2021 <https://www.decanter.com/wine-news/champagne-will-be-too-hot-for-champagne-research-warns-103258/>. Rokka, Joonas. “Champagne: Marketplace Icon.” Consumption Markets & Culture 20.3 (2017): 275-283. <https://www.tandfonline.com/doi/abs/10.1080/10253866.2016.1177990?journalCode=gcmc20>. Schneider, Marius, and Nora Ho Tu Nam. “Champagne Makes the Dough Sour: EUIPO Board of Appeal Allows Opposition against Registration of Champagnola Trade Mark Based on Evocation of Champagne PDO.” Journal of Intellectual Property Law & Practice 15.9 (2020): 675-676. <https://academic.oup.com/jiplp/article/15/9/675/5905791>. Schultz, Abby. “20 Minutes With: Frédéric Rouzaud on Cristal, Biodynamics, and Zero Dosage.” Penta. 31 Dec. 2018. 4 Mar. 2021 <https://www.barrons.com/articles/20-minutes-with-frederic-rouzaud-on-cristal-biodynamics-and-zero-dosage-01546280265>. Simon, André L. The History of Champagne. London: Octobus, 1972. Smith, Andrew F. Drinking History: Fifteen Turning Points in the Making of American Beverages. New York: Columbia University Press, 2013. Smithers, Rebecca. “Britons Turn to Luxury Food and Drink to See Out Dismal 2020 in Style.” The Guardian 28 Dec. 2020. 4 Mar. 2021 <https://www.theguardian.com/business/2020/dec/28/britons-turn-luxury-food-drink-see-out-dismal-2020-style?CMP=Share_AndroidApp_Gmail>. Teil, Geneviève. “No Such Thing as Terroir? Objectivities and the Regimes of Existence of Objects.” Science, Technology & Human Values 37.5 (2012): 478-505. <https://journals.sagepub.com/doi/abs/10.1177/0162243911423843>. Wheels24. “Champagne Returns to F1 podium.” 2 Aug. 2017. 4 Mar. 2021 <https://www.news24.com/wheels/FormulaOne/champagne-returns-to-f1-podium-20170802>. Woodland, Richard. “Rapper Jay-Z Boycotts ‘Racist’ Cristal.” Decanter 16 June 2006. 4 Mar. 2021 <https://www.decanter.com/wine-news/rapper-jay-z-boycotts-racist-cristal-94054/>. Young, Robert K. “Out of the Ashes: The American Press and France's Postwar Recovery in the 1920s.” Historical Reflections / Réflexions Historiques 28.1 (2002): 51-72. <https://www.jstor.org/stable/41299224?seq=1>.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography