Academic literature on the topic 'Invariant Object Recognition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Invariant Object Recognition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Invariant Object Recognition"
Wood, Justin N., and Samantha M. W. Wood. "The development of newborn object recognition in fast and slow visual worlds." Proceedings of the Royal Society B: Biological Sciences 283, no. 1829 (April 27, 2016): 20160166. http://dx.doi.org/10.1098/rspb.2016.0166.
Full textIsik, Leyla, Ethan M. Meyers, Joel Z. Leibo, and Tomaso Poggio. "The dynamics of invariant object recognition in the human visual system." Journal of Neurophysiology 111, no. 1 (January 1, 2014): 91–102. http://dx.doi.org/10.1152/jn.00394.2013.
Full textDiCarlo, James J., and David D. Cox. "Untangling invariant object recognition." Trends in Cognitive Sciences 11, no. 8 (August 2007): 333–41. http://dx.doi.org/10.1016/j.tics.2007.06.010.
Full textStejskal, Tomáš. "2D-Shape Analysis Using Shape Invariants." Applied Mechanics and Materials 613 (August 2014): 452–57. http://dx.doi.org/10.4028/www.scientific.net/amm.613.452.
Full textSchurgin, Mark, and Jonathan Flombaum. "Invariant object recognition enhanced by object persistence." Journal of Vision 15, no. 12 (September 1, 2015): 239. http://dx.doi.org/10.1167/15.12.239.
Full textCox, David D., Philip Meier, Nadja Oertelt, and James J. DiCarlo. "'Breaking' position-invariant object recognition." Nature Neuroscience 8, no. 9 (August 7, 2005): 1145–47. http://dx.doi.org/10.1038/nn1519.
Full textRolls, Edmund T., and Simon M. Stringer. "Invariant visual object recognition: A model, with lighting invariance." Journal of Physiology-Paris 100, no. 1-3 (July 2006): 43–62. http://dx.doi.org/10.1016/j.jphysparis.2006.09.004.
Full textCHAN, LAI-WAN. "NEURAL NETWORKS FOR COLLECTIVE TRANSLATIONAL INVARIANT OBJECT RECOGNITION." International Journal of Pattern Recognition and Artificial Intelligence 06, no. 01 (April 1992): 143–56. http://dx.doi.org/10.1142/s0218001492000084.
Full textSufi karimi, Hiwa, and Karim Mohammadi. "Rotational invariant biologically inspired object recognition." IET Image Processing 14, no. 15 (December 2020): 3762–73. http://dx.doi.org/10.1049/iet-ipr.2019.1621.
Full textKim, Kye-Kyung, Jae-Hong Kim, and Jae-Yun Lee. "Illumination and Rotation Invariant Object Recognition." Journal of the Korea Contents Association 12, no. 11 (November 28, 2012): 1–8. http://dx.doi.org/10.5392/jkca.2012.12.11.001.
Full textDissertations / Theses on the topic "Invariant Object Recognition"
Srestasathiern, Panu. "View Invariant Planar-Object Recognition." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1420564069.
Full textTonge, Ashwini Kishor. "Object Recognition Using Scale-Invariant Chordiogram." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc984116/.
Full textDahmen, Jörg. "Invariant image object recognition using Gaussian mixture densities." [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=964586940.
Full textBooth, Michael C. A. "Temporal lobe mechanisms for view-invariant object recognition." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299094.
Full textHsu, Tao-i. "Affine invariant object recognition by voting match techniques." Thesis, Monterey, California. Naval Postgraduate School, 1988. http://hdl.handle.net/10945/22865.
Full textThis thesis begins with a general survey of different model based systems for object recognition. The advantage and disadvantage of those systems are discussed. A system is then selected for study because of its effective Affine invariant matching [Ref. 1] characteristic. This system involves two separate phases, the modeling and the recognition. One is done off-line and the other is done on-line. A Hashing technique is implemented to achieve fast accessing and voting. Different test data sets are used in experiments to illustrate the recognition capabilities of this system. This demonstrates the capabilities of partial match, recognizing objects under similarity transformation applied to the models, and the results of noise perturbation. The testing results are discussed, and related experiences and recommendations are presented.
http://archive.org/details/affineinvarianto00hsut
Captain, Taiwan Republic of China Army
Robinson, Leigh. "Invariant object recognition : biologically plausible and machine learning approaches." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/83167/.
Full textAllan, Moray. "Sprite learning and object category recognition using invariant features." Thesis, University of Edinburgh, 2007. http://hdl.handle.net/1842/2430.
Full textBone, Peter. "Fully invariant object recognition and tracking from cluttered scenes." Thesis, University of Sussex, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444109.
Full textBanarse, D. S. "A generic neural network architecture for deformation invariant object recognition." Thesis, Bangor University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362146.
Full textSim, Hak Chuah. "Invariant object matching with a modified dynamic link network." Thesis, University of Southampton, 1999. https://eprints.soton.ac.uk/256269/.
Full textBooks on the topic "Invariant Object Recognition"
Object recognition through invariant indexing. Oxford: Oxford University Press, 1995.
Find full textLamdan, Yehezkel. Object recognition by affine invariant matching. New York: Courant Institute of Mathematical Sciences, New York University, 1988.
Find full textGrace, Alan Edward. Adaptive segmentation for aspect invariant object recognition. Birmingham: Universityof Birmingham, 1993.
Find full textHsu, Tao-i. Affine invariant object recognition by voting match techniques. Monterey, Calif: Naval Postgraduate School, 1988.
Find full textKyrki, Ville. Local and global feature extraction for invariant object recognition. Lappeenranta, Finland: Lappeenranta University of Technology, 2002.
Find full textSoucek, Branko. Fast learning and invariant object recognition: The sixth-generation breakthrough. New York: Wiley, 1992.
Find full textGroup, IRIS, ed. Fast learning and invariant object recognition: The sixth-generation breakthrough. New York: Wiley, 1992.
Find full textLee, Raymond Shu Tak. Invariant object recognition based on elastic graph matching: Theory and applications. Amsterdam: IOS Press, 2003.
Find full textReiss, Thomas H. Recognizing planar objects using invariant image features. Berlin: Springer-Verlag, 1993.
Find full textRothwell, C. a. Object Recognition Through Invariant Indexing. Oxford University Press, 1995.
Find full textBook chapters on the topic "Invariant Object Recognition"
Rodrigues, João, and J. M. Hans du Buf. "Invariant Multi-scale Object Categorisation and Recognition." In Pattern Recognition and Image Analysis, 459–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72847-4_59.
Full textBart, Evgeniy, Evgeny Byvatov, and Shimon Ullman. "View-Invariant Recognition Using Corresponding Object Fragments." In Lecture Notes in Computer Science, 152–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24671-8_12.
Full textBen-Arie, Jezekiel, and Zhiqian Wang. "Gabor kernels for affine—invariant object recognition." In Gabor Analysis and Algorithms, 409–26. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-2016-9_14.
Full textVillamizar, Michael, Alberto Sanfeliu, and Juan Andrade-Cetto. "Orientation Invariant Features for Multiclass Object Recognition." In Lecture Notes in Computer Science, 655–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11892755_68.
Full textWechsler, Harry. "Network Representations and Match Filters for Invariant Object Recognition." In Pattern Recognition Theory and Applications, 269–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83069-3_21.
Full textYang, Mingqiang, Kidiyo Kpalma, and Joseph Ronsin. "Shape-Based Invariant Feature Extraction for Object Recognition." In Advances in Reasoning-Based Image Processing Intelligent Systems, 255–314. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24693-7_9.
Full textLi, Zhenxiao, and Liqing Zhang. "Affine Invariant Topic Model for Generic Object Recognition." In Advances in Neural Networks - ISNN 2010, 152–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13318-3_20.
Full textTeo, Choon Hui, and Yong Haur Tay. "Invariant Object Recognition Using Circular Pairwise Convolutional Networks." In Lecture Notes in Computer Science, 1232–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-36668-3_167.
Full textChen, Guangyi, Tien Dai Bui, Adam Krzyzak, and Yongjia Zhao. "Invariant Object Recognition Using Radon and Fourier Transforms." In Advances in Neural Networks – ISNN 2013, 650–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39065-4_78.
Full textPatekar, Rahul, and Abhijeet Nandedkar. "Distance Invariant RGB-D Object Recognition Using DSMS System." In Communications in Computer and Information Science, 135–48. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6315-7_11.
Full textConference papers on the topic "Invariant Object Recognition"
Jouan, Alexandre, and Henri H. Arsenault. "Invariant principal components for pattern recognition." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.ma1.
Full textSrestasathiern, Panu, and Alper Yilmaz. "View invariant object recognition." In 2008 19th International Conference on Pattern Recognition (ICPR). IEEE, 2008. http://dx.doi.org/10.1109/icpr.2008.4761238.
Full textYu, Francis T. S., Xiaoyang Li, Eddy Tam, and Don A. Gregory. "Joint transformation correlation implementation of the circular harmonic expansion for pattern recognition." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oam.1988.mv7.
Full textLejeune, Claude, Young Sheng, and Henri H. Arsenault. "Optoneural system for invariant pattern recognition." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.mii2.
Full textStiller, Peter F. "Global invariant methods for object recognition." In International Symposium on Optical Science and Technology, edited by Longin J. Latecki, David M. Mount, Angela Y. Wu, and Robert A. Melter. SPIE, 2001. http://dx.doi.org/10.1117/12.447278.
Full textSheng, Yunlong, and Henri H. Arsenault. "Shift invariant Fourier-Mellin features for pattern recognition." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oam.1988.fp6.
Full textLi, Bingcheng. "Mask size independent and orientation invariant object finding." In Automatic Target Recognition XXVIII, edited by Firooz A. Sadjadi and Abhijit Mahalanobis. SPIE, 2018. http://dx.doi.org/10.1117/12.2305571.
Full textRaytchev, Bisser, Tetsuya Mino, Toru Tamaki, and Kazufumi Kaneda. "View-Invariant Object Recognition with Visibility Maps." In 2010 20th International Conference on Pattern Recognition (ICPR). IEEE, 2010. http://dx.doi.org/10.1109/icpr.2010.260.
Full textUrolagin, Siddhaling, K. V. Prema, and N. V. Subba Reddy. "Rotation invariant object recognition using Gabor filters." In 2010 5th International Conference on Industrial and Information Systems (ICIIS). IEEE, 2010. http://dx.doi.org/10.1109/iciinfs.2010.5578669.
Full textGanesharajah, B., S. Mahesan, and U. A. J. Pinidiyaarachchi. "Robust invariant descriptors for visual object recognition." In 2011 IEEE 6th International Conference on Industrial and Information Systems (ICIIS). IEEE, 2011. http://dx.doi.org/10.1109/iciinfs.2011.6038059.
Full textReports on the topic "Invariant Object Recognition"
Nagao, Kenji, and Eric Grimson. Object Recognition by Alignment Using Invariant Projections of Planar Surfaces. Fort Belvoir, VA: Defense Technical Information Center, December 1994. http://dx.doi.org/10.21236/ada279841.
Full textVoils, Danny. Scale Invariant Object Recognition Using Cortical Computational Models and a Robotic Platform. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.632.
Full textKim, Dae-Shik. Predictive Coding Strategies for Invariant Object Recognition and Volitional Motion Control in Neuromorphic Agents. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ada626818.
Full textSerre, Thomas, and Maximilian Riesenhuber. Realistic Modeling of Simple and Complex Cell Tuning in the HMAX Model, and Implications for Invariant Object Recognition in Cortex. Fort Belvoir, VA: Defense Technical Information Center, July 2004. http://dx.doi.org/10.21236/ada459692.
Full textWeiss, Isaac. Geometric Invariants and Object Recognition. Fort Belvoir, VA: Defense Technical Information Center, August 1992. http://dx.doi.org/10.21236/ada255317.
Full textLogothetis, Nikos K., Thomas Vetter, Anya Hurlbert, and Tomaso Poggio. View-Based Models of 3D Object Recognition and Class-Specific Invariance. Fort Belvoir, VA: Defense Technical Information Center, April 1994. http://dx.doi.org/10.21236/ada279858.
Full textKokurina, O. Yu. VIABILITY AND RESILIENCE OF THE MODERN STATE: PATTERNS OF PUBLIC-LEGAL ADMINISTRATION AND REGULATION. Kokurina O.Yu., February 2022. http://dx.doi.org/10.12731/kokurina-21-011-31155.
Full text