Books on the topic 'Intrinsic geometry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 26 books for your research on the topic 'Intrinsic geometry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Todd, Philip H. Intrinsic geometry ofbiological surface growth. Berlin: Springer-Verlag, 1986.
Find full textTodd, Philip H. Intrinsic Geometry of Biological Surface Growth. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-93320-2.
Full textChandra, Saurabh, ed. SOCRATES (Vol 3, No 2 (2015): Issue- June). 3rd ed. India: SOCRATES : SCHOLARLY RESEARCH JOURNAL, 2015.
Find full textIntrinsic geometry of convex surfaces. Boca Raton, Fla: Chapman & Hall/CRC Press, 2004.
Find full textTodd, Philip H. Intrinsic Geometry of Biological Surface Growth. Springer London, Limited, 2013.
Find full textIntrinsic Geometry Of Biological Surface Growth. Springer, 1986.
Find full textTodd, Philip H. Intrinsic Geometry of Biological Surface Growth. Island Press, 1986.
Find full textIntrinsic geometry of biological surface growth. Berlin: Springer-Verlag, 1986.
Find full textTheory of Complex Finsler Geometry and Geometry of Intrinsic Metrics. World Scientific Publishing Co Pte Ltd, 2016.
Find full textTheory of Complex Finsler Geometry and Geometry of Intrinsic Metrics. World Scientific Publishing Co Pte Ltd, 2016.
Find full textAleksandrov, A. D., and V. A. Zalgaller. Intrinsic Geometry of Spaces (Translations of Mathematical Monographs). American Mathematical Society, 2000.
Find full textRelatively hyperbolic groups: Intrinsic geometry, algebraic properties, and algorithmic problems. Providence, R.I: American Mathematical Society, 2006.
Find full textKutateladze, S. S. A.D. Alexandrov: Selected Works Part II: Intrinsic Geometry of Convex Surfaces. Chapman & Hall/CRC, 2004.
Find full text(Editor), S. S. Kutateladze, and Yu G. Reshetnyak (Editor), eds. A.D. Alexandrov: Selected Works: Intrinsic Geometry of Convex Surfaces - 2 Volume Set (Classics of Soviet Mathematics). CRC, 2005.
Find full textDeruelle, Nathalie, and Jean-Philippe Uzan. Differential geometry. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0004.
Full textKutateladze, S. S. A. D. Alexandrov : Selected Works Part II: Intrinsic Geometry of Convex Surfaces. Taylor & Francis Group, 2005.
Find full textKutateladze, S. S., S. S. Kutateladze, and A. D. Aleksandrov. A. D. Alexandrov Selected Works Pt. II: Intrinsic Geometry of Convex Surfaces. Taylor & Francis Group, 2005.
Find full textKutateladze, S. S. A. D. Alexandrov : Selected Works Part II: Intrinsic Geometry of Convex Surfaces. Taylor & Francis Group, 2005.
Find full textKutateladze, S. S. A. D. Alexandrov : Selected Works Part II: Intrinsic Geometry of Convex Surfaces. Taylor & Francis Group, 2005.
Find full textKutateladze, S. S. A. D. Alexandrov : Selected Works Part II: Intrinsic Geometry of Convex Surfaces. Taylor & Francis Group, 2005.
Find full textDeruelle, Nathalie, and Jean-Philippe Uzan. Vector geometry. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0002.
Full textLezioni di geometria intrinseca. Napoli: Presso l'Autore-Editore, 1991.
Find full textLezioni Di Geometria Intrinseca. Creative Media Partners, LLC, 2022.
Find full textValenzuela, S. O. Introduction. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0011.
Full textCorfield, David. Modal Homotopy Type Theory. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198853404.001.0001.
Full textAwodey, Steve. Structuralism, Invariance, and Univalence. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198748991.003.0004.
Full text