Academic literature on the topic 'Intraplaque neovascularization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Intraplaque neovascularization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Intraplaque neovascularization"
Koole, Dave, Jan Heyligers, Frans L. Moll, and Gerard Pasterkamp. "Intraplaque neovascularization and hemorrhage." Journal of Cardiovascular Medicine 13, no. 10 (October 2012): 635–39. http://dx.doi.org/10.2459/jcm.0b013e3283590cd2.
Full textAkkus, Zeynettin, Gerard van Burken, Stijn C. H. van den Oord, Arend F. L. Schinkel, Nico de Jong, Antonius F. W. van der Steen, and Johan G. Bosch. "Carotid Intraplaque Neovascularization Quantification Software (CINQS)." IEEE Journal of Biomedical and Health Informatics 19, no. 1 (January 2015): 332–38. http://dx.doi.org/10.1109/jbhi.2014.2306454.
Full textEvdokimenko, A. N., A. O. Chechetkin, L. D. Druina, and M. M. Tanashyan. "Contrast-enhanced ultrasonography for assessing neovascularization of carotid atherosclerotic plaque." Exosomes, no. 4 (July 31, 2019): 24–31. http://dx.doi.org/10.24075/brsmu.2019.057.
Full textUgusman, Azizah, Nur Syahidah Nor Hisam, Nur Syakirah Othman, Nur Najmi Mohamad Anuar, Adila A. Hamid, Jaya Kumar, Maisarah Md Razmi, and Amilia Aminuddin. "Pharmacological interventions for intraplaque neovascularization in atherosclerosis." Pharmacology & Therapeutics 261 (September 2024): 108685. http://dx.doi.org/10.1016/j.pharmthera.2024.108685.
Full textPerrotta, Paola, Bieke Van der Veken, Pieter Van Der Veken, Isabel Pintelon, Laurence Roosens, Elias Adriaenssens, Vincent Timmerman, Pieter-Jan Guns, Guido R. Y. De Meyer, and Wim Martinet. "Partial Inhibition of Glycolysis Reduces Atherogenesis Independent of Intraplaque Neovascularization in Mice." Arteriosclerosis, Thrombosis, and Vascular Biology 40, no. 5 (May 2020): 1168–81. http://dx.doi.org/10.1161/atvbaha.119.313692.
Full textFilis, Konstantinos, Levon Toufektzian, George Galyfos, Fragiska Sigala, Panagiota Kourkoveli, Sotirios Georgopoulos, Manolis Vavuranakis, Dimitrios Vrachatis, and George Zografos. "Assessment of the vulnerable carotid atherosclerotic plaque using contrast-enhanced ultrasonography." Vascular 25, no. 3 (August 31, 2016): 316–25. http://dx.doi.org/10.1177/1708538116665734.
Full textSchinkel, Arend F. L., Johan G. Bosch, Daniel Staub, Dan Adam, and Steven B. Feinstein. "Contrast-Enhanced Ultrasound to Assess Carotid Intraplaque Neovascularization." Ultrasound in Medicine & Biology 46, no. 3 (March 2020): 466–78. http://dx.doi.org/10.1016/j.ultrasmedbio.2019.10.020.
Full textIchibori, Yasuhiro, Daisaku Nakatani, Yasushi Sakata, Kouichi Tachibana, Takashi Akasaka, Shunsuke Saito, Norihide Fukushima, Yoshiki Sawa, Shinsuke Nanto, and Issei Komuro. "Cardiac Allograft Vasculopathy Progression Associated With Intraplaque Neovascularization." Journal of the American College of Cardiology 61, no. 9 (March 2013): e149. http://dx.doi.org/10.1016/j.jacc.2012.08.1036.
Full textKashiwazaki, Daina, Masaki Koh, Haruto Uchino, Naoki Akioka, Naoya Kuwayama, Kyo Noguchi, and Satoshi Kuroda. "Hypoxia accelerates intraplaque neovascularization derived from endothelial progenitor cells in carotid stenosis." Journal of Neurosurgery 131, no. 3 (September 2019): 884–91. http://dx.doi.org/10.3171/2018.4.jns172876.
Full textKoganti, S., A. Karanasos, S. Tu, R. D. Rakhit, and E. Regar. "Visualization of extensive intraplaque neovascularization by optical coherence tomography." Hellenic Journal of Cardiology 58, no. 1 (January 2017): 87–88. http://dx.doi.org/10.1016/j.hjc.2017.01.011.
Full textDissertations / Theses on the topic "Intraplaque neovascularization"
Piechel, Lise. "Rôle du récepteur nucléaire Rev-erbα dans le contrôle de la fonction des cellules musculaires lisses au cours de l'athérosclérose." Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILS078.
Full textCardiovascular disease, mainly caused by atherosclerosis, remains the leading cause of death worldwide. Atherosclerosis is a chronic inflammatory disease of the vascular wall caused by the internalization of lipids into the subendothelial space. This abnormal accumulation triggers leukocyte infiltration and smooth muscle cell (SMC) activation. More than vascular occlusion, plaque instability and rupture are considered to be the most deleterious events at the origin of myocardial infarction, for exemple. The two main processes responsible for plaque instability are vascular calcification and intraplaque neovascularization. Vascular calcification is the mineralization of atherosclerotic plaque in the form of micro-calcifications and macro-calcifications. While the latter is considered stabilizing, it also reduces vascular elasticity and contributes to hypertension, aortic stenosis, and plaque vulnerability. Intraplaque neovascularization results from the formation of intraplaque hypoxic zones, leading to the formation of immature, permeable neovessels. Intraplaque angiogenesis promotes plaque progression and increases the risk of rupture. Our aim is to identify the mechanisms responsible for these two phenomena. Understanding the underlying mechanisms may provide new therapeutic targets.Using a multi-omics approach, we identified the nuclear receptor Rev-erbα as a key factor deregulated in cells from diabetic patients at high cardiovascular risk compared to cells from diabetic patients at low cardiovascular risk. Rev-erbα is a natural or synthetic ligand-activated transcription inhibitor involved in the regulation of lipid metabolism and inflammatory response. Furthermore, laser microdissection experiments performed on human endarterectomies show that REV-ERBα expression is lower in calcified and vascularized areas, suggesting a protective role for REV-ERBα.In an 18-month-old LDLr-/- mouse model, deletion of Rev-erbα accelerates plaque progression and complexity. Furthermore, transcriptomic analysis of aortas from these mice revealed that genes associated with vascular calcification and intraplaque angiogenesis pathways are enriched when Rev-erbα is deleted, suggesting that Rev-erbα protects against atherosclerosis, vascular calcification and neovascularization. Rev-erbα deficiency promotes the development of atherosclerosis, increases calcium deposition and induces osteoblastic differentiation of SMC. This effect on osteoblastic differentiation of SMC is enhanced in the presence of pro-inflammatory cytokines in vitro. Transcriptomic analyses performed on differentiating SMC allowed us to identify the hyaluronidase Cemip as an important factor in the role of Rev-erbα in osteoblastic differentiation. Furthermore, 3DISCO analysis of brachiocephalic arteries shows that the absence of Rev-erbα promotes the development of a more complex and immature intraplaque vascular network than in control mice. At the molecular level, Rev-erbα appears to control the expression and secretion of pro-angiogenic factors in a cell-specific manner.In conclusion, Rev-erbα appears to be a key regulator of vascular calcification and secretion of pro-angiogenic factors by plaque cells. These results identify Rev-erbα as a promising new therapeutic target for reducing residual cardiovascular risk in patients at very high cardiovascular risk
Bellengier, Cécilia. "Identification du rôle du récepteur nucléaire Rev-erb-α dans la néovascularisation de la plaque d'athérosclérose." Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILS081.
Full textDespite decades of lipid-lowering treatments, prevention strategies, and research efforts, cardiovascular diseases, mainly caused by atherosclerosis, remain the leading cause of death worldwide. New therapies are therefore essential to lower the residual cardiovascular risk and prevent atherothrombotic events. More than stenosis of the arterial lumen, it is now accepted that atherosclerotic plaque instability and rupture are the most deleterious events during atherogenesis. Among the processes triggering plaque instability, intraplaque neovascularization has been shown to accelerate lesion growth, induce rupture, and attenuate the benefits of lipid-lowering treatments such as statins in humans. Interestingly, local administration of angiogenesis modulators, via anti-VEGF eluting stents, reduces not only lesion size and the presence of intraplaque neovascularization, but also the occurrence of acute cardiovascular events in humans. This emphasizes the relevance of such therapeutic approaches in preventing plaque instability. However, current angiogenesis inhibitors are used systemically and are associated with major cardiovascular events, arguing for the identification of new pharmacological targets. Using a transcriptomic approach on circulating cells from high- and low-cardiovascular-risk diabetic patients, with microdissection experiments on human endarterectomies, we determined that a low expression of the nuclear receptor and transcription inhibitor REV-ERBα is associated with advanced and vascularized atherosclerotic plaques in humans. This suggests a role for REV-ERB-α not only in preventing plaque instability but also intraplaque neovascularization.Indeed, in 18-month-old LDLr-/- mice fed a chow diet, Rev-erbα deficiency accelerates plaque progression and complexification. Using a whole organ imaging technique on the brachiocephalic artery, we observed that these LDLr-/-Rev-erbα-/- mice exhibit a more developed, complex, and immature intraplaque vessel network than LDLr-/-Rev-erbα+/+ mice. Interestingly, this intraplaque vascular network is also associated with the presence of vasculogenic nuclei. At the molecular level, the Rev-erbα deficiency in our pro-atherogenic model is also correlated with an induction of the pro-angiogenic program, as well as with the expression of genes involved in the selection of the endothelial “tip/stalk-cell” phenotypes and genes associated with the migratory, proliferative and hypoxia-sensing capacities of the endothelial progenitor cells; these cells being respectively involved in vessel formation and growth, and in vasculogenic processes. Indeed, Rev-erbα deficiency not only increases the ex vivo vascular sprouting from VEGF-stimulated aortic rings but also accelerates the in vivo retinal vascular plexus development. In conclusion, we have identified the nuclear receptor Rev-erb-α as an inhibitor of angiogenesis and intraplaque neovascularization in mice and humans. Therefore, REV-ERB-α represents a putative pharmacological target for stabilizing the atherosclerotic plaque to prevent acute cardiovascular events, particularly in high-risk patients
Book chapters on the topic "Intraplaque neovascularization"
Joner, Michael, Maria Isabel Castellanos, Anna Bulin, and Kristin Steigerwald. "Pathology of stable coronary artery disease." In ESC CardioMed, edited by William Wijns, 1315–20. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198784906.003.0325.
Full textJoner, Michael, Maria Isabel Castellanos, Anna Bulin, and Kristin Steigerwald. "Pathology of stable coronary artery disease." In ESC CardioMed, edited by William Wijns, 1315–20. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198784906.003.0325_update_001.
Full textConference papers on the topic "Intraplaque neovascularization"
Akkus, Zeynettin, Guillaume Renaud, Nico de Jong, Antonius F. W. van der Steen, Johan G. Bosch, Stijn C. H. van den Oord, Arend F. L. Schinkel, and Gonzalo Vegas Sanchez-Ferrero. "New quantification methods for carotid intraplaque neovascularization in contrast enhanced ultrasound." In 2013 IEEE International Ultrasonics Symposium (IUS). IEEE, 2013. http://dx.doi.org/10.1109/ultsym.2013.0316.
Full textReports on the topic "Intraplaque neovascularization"
Ugusman, Azizah, Nur Syahidah Nor Hisam, Nur Syakirah Othman, Nur Najmi Mohamad Anuar, Adila A. Hamid, Jaya Kumar, and Amilia Aminuddin. PHARMACOLOGICAL INTERVENTIONS FOR INTRAPLAQUE NEOVASCULARIZATION IN ATHEROSCLEROSIS. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, March 2024. http://dx.doi.org/10.37766/inplasy2024.3.0005.
Full text