Academic literature on the topic 'Intracontinental magmatism'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Intracontinental magmatism.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Intracontinental magmatism"

1

Huo, Hailong, Da Zhang, Zhengle Chen, Yongjun Di, Xiaolong He, Ning Li, and Bojie Hu. "Geochemistry and Zircon U–Pb Geochronology of the Zhuxi Granites in the Jingdezhen Area, Jiangxi Province, China: Implications for the Mesozoic Tectonic Development of South China." Minerals 12, no. 3 (February 24, 2022): 283. http://dx.doi.org/10.3390/min12030283.

Full text
Abstract:
Mesozoic granitic magmatism in Northeastern Jiangxi, China is of tectonic significance for the evolution of the South China Block. Whole-rock geochemical and zircon U–Pb geochronological and Lu–Hf isotopic data for Mesozoic Zhuxi granites in the Jingdezhen area of Northeastern Jiangxi were presented. The Zhuxi granites are composed of granodiorite, biotite granite, and two-mica granite. Zircon LA–ICP–MS U–Pb isotopic analyses indicated emplacement at 159–147 Ma. The granites are characterized by a strongly peraluminous nature with high A/CNK values (>1.1), high SiO2 (66.09–74.46 wt.%) and K2O (3.50–5.52 wt.%) contents, depletion in Ba, Nb, Ce, Sr, and Ti, moderately negative Eu anomalies (Eu/Eu* = 0.40–0.63), enrichment in LREE, and depletion in HREE ((La/Yb)N > 7.43). The A/CNK > 1.1, widespread aluminum-rich minerals (e.g., muscovite and tourmaline), indicating they are S–type granites and belong to muscovite–bearing peraluminous granites (MPG). The Zhuxi granites exhibited negative εHf(t) values (−9.9 to −3.7) and the TDM2 model ages of 1840–1442 Ma indicated derivation from ancient crustal sources. The magma is possibly caused by the subsequent process of intracontinental subduction. It is inferred that the Mesozoic magmatism in Northeastern Jiangxi was associated with oceanic–continental convergence of the Paleo–Pacific and Eurasian plates as well as the intracontinental subduction of the Yangtze and Cathaysia blocks. The Zhuxi granites highlight the primary role of oceanic–continental convergence and intracontinental subduction in early Yanshanian granitoid magmatism in South China.
APA, Harvard, Vancouver, ISO, and other styles
2

Mao, Jianren, Kuiyuan Tao, Zhuliang Yang, Yunhe Zhu, and Huaimin Xue. "Geodynamic background of the mesozoic intracontinental magmatism in Southeast China." Chinese Journal of Geochemistry 16, no. 3 (July 1997): 230–39. http://dx.doi.org/10.1007/bf02870906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gvirtzman, Zohar, and Zvi Garfunkel. "Vertical movements following intracontinental magmatism: An example from southern Israel." Journal of Geophysical Research: Solid Earth 102, B2 (February 10, 1997): 2645–58. http://dx.doi.org/10.1029/96jb02567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yu, JinHai, Qian Liu, XiuMian Hu, Qin Wang, and Suzanne Y. O’Reilly. "Late Paleozoic magmatism in South China: Oceanic subduction or intracontinental orogeny?" Chinese Science Bulletin 58, no. 7 (November 16, 2012): 788–95. http://dx.doi.org/10.1007/s11434-012-5376-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ashwal, Lewis D., Madelein Patzelt, Mark D. Schmitz, and Kevin Burke. "Isotopic evidence for a lithospheric origin of alkaline rocks and carbonatites: an example from southern Africa." Canadian Journal of Earth Sciences 53, no. 11 (November 2016): 1216–26. http://dx.doi.org/10.1139/cjes-2015-0145.

Full text
Abstract:
Alkaline rocks and carbonatites, including nepheline syenites, are well established as mantle-derived magmatic products, but the nature and location of their mantle sources is debated. Some workers have used isotopic compositions to infer mixed mantle plume type sources such as EM1, HIMU, and FOZO, implying derivation from the subcontinental asthenosphere. Other models favour an entirely lithospheric source, whereby the magmas, originally formed during intracontinental rifting, became deformed and subducted into the mantle lithosphere during later continental collisions, and constituted part of a source component for later rift-related alkaline and carbonatite magmatism. We tested this model using Sr, Nd, and Hf isotopic compositions of deformed and undeformed nepheline syenites and carbonatites from three occurrences in southern Africa, representing emplacement over a ∼1 Ga time span. These include Bull’s Run, South Africa (1134 Ma); Tambani, Malawi (726 Ma); and the Chilwa Alkaline Province, Malawi (130 Ma). Mixing modelling indicates that the isotopic compositions of the early Cretaceous Chilwa samples can be accounted for if their source consisted of a blend of ∼99% depleted subcontinental mantle lithosphere and ∼0.5%–1% of a subducted component similar to the Neoproterozoic Bull’s Run nepheline syenites. We do not consider the Bull’s Run material specifically as the component involved in the Chilwa source, but our model illustrates an example of how recycled, older, alkaline magmatic rocks can contribute to the mantle sources of younger alkaline rock and carbonatite magmatism. This model accounts for the observation of recurrent alkaline rock and carbonatite magmatism over hundreds of millions of years in spatially restricted areas like southern Africa. Carbonatite and related alkaline magmatic rocks, therefore, need not owe their origin to deep, sublithospheric melting processes.
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, C. T. A. "Chemical modification of lithosphere and the origin of intracontinental magmatism and deformation." Geochimica et Cosmochimica Acta 70, no. 18 (August 2006): A346. http://dx.doi.org/10.1016/j.gca.2006.06.701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Aitken, Alan R. A., R. Hugh Smithies, Mike C. Dentith, Aurore Joly, Shane Evans, and Heather M. Howard. "Magmatism-dominated intracontinental rifting in the Mesoproterozoic: The Ngaanyatjarra Rift, central Australia." Gondwana Research 24, no. 3-4 (November 2013): 886–901. http://dx.doi.org/10.1016/j.gr.2012.10.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ouyang, Hegen, Jingwen Mao, Zhenhua Zhou, and Huiming Su. "Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing'an Range, northeastern China." Gondwana Research 27, no. 3 (April 2015): 1153–72. http://dx.doi.org/10.1016/j.gr.2014.08.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Xu, Wenjing, and Xisheng Xu. "Early Paleozoic intracontinental felsic magmatism in the South China Block: Petrogenesis and geodynamics." Lithos 234-235 (October 2015): 79–92. http://dx.doi.org/10.1016/j.lithos.2015.08.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

BRIAND, BERNARD, JEAN-LUC BOUCHARDON, PAUL CAPIEZ, and MICHEL PIBOULE. "Felsic (A-type)–basic (plume-induced) Early Palaeozoic bimodal magmatism in the Maures Massif (southeastern France)." Geological Magazine 139, no. 3 (May 2002): 291–311. http://dx.doi.org/10.1017/s0016756802006477.

Full text
Abstract:
The Maures Massif forms an important piece of the southernmost part of the Variscan belt of western Europe. This massif exhibits high-grade bimodal felsic–basic volcanic complexes, a distinctive lithological feature documented elsewhere in similar domains of the European Variscides and referred to the Cambro-Ordovician extensional episode. Two major alkalic and tholeiitic compositional groups and subordinate transitional metabasites have been identified, occurring at several distinct horizons or in bimodal complexes. This chemical diversity is interpreted in terms of variable degrees of partial melting of progressively depleted mantle source(s), which experienced melting at different depths, from garnet to spinel stability domains, during a progressive mantle upwelling associated with intracontinental rifting. This setting is reinforced by the presence of metabasites with compositions similar to continental flood basalts, showing slightly humped REE patterns, and interpreted as resulting from the melting of a partially depleted source at a relatively low degree of melting, in the garnet–spinel transition zone. The metafelsites from the tholeiitic bimodal complex exhibit the distinctive major and trace element characteristics of A-type rhyolites. Their elemental variations are consistent with fractional crystallization of major and accessory phases, but some discontinuous REE profiles result from a hydrothermal fractionation mechanism. The modelling of common anhydrous fractionating assemblages suggests that these A-type compositions may be derived from the associated tholeiites by extensive degrees of fractionation (90 %) with some continental crust involvement, or by anhydrous partial melting (∼30 %) of an underplated mafic parent of tholeiitic composition. The bimodal character of the Late Cambrian Maures magmatism, together with the chemistry of the various metabasites and metafelsites, suggests plume-induced intracontinental magmatic activity, resulting in lithospheric thinning prior to the onset of rifting and break-up of the Palaeozoic continental lithosphere, at this northern margin of Gondwana.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Intracontinental magmatism"

1

Siqueira, Luzia Helena. "Granito São Domingos : registro de magmatismo pós-tectônico do orógeno intracontinental aguapeí - SW do Cráton Amazônico." Universidade Federal de Mato Grosso, 2015. http://ri.ufmt.br/handle/1/114.

Full text
Abstract:
Submitted by Jordan (jordanbiblio@gmail.com) on 2016-10-20T13:16:35Z No. of bitstreams: 1 DISS_2015_Luzia Helena Siqueira.pdf: 3499968 bytes, checksum: 289d2c36c60121c189c7a71a65733fce (MD5)
Approved for entry into archive by Jordan (jordanbiblio@gmail.com) on 2016-10-20T13:16:58Z (GMT) No. of bitstreams: 1 DISS_2015_Luzia Helena Siqueira.pdf: 3499968 bytes, checksum: 289d2c36c60121c189c7a71a65733fce (MD5)
Made available in DSpace on 2016-10-20T13:16:59Z (GMT). No. of bitstreams: 1 DISS_2015_Luzia Helena Siqueira.pdf: 3499968 bytes, checksum: 289d2c36c60121c189c7a71a65733fce (MD5) Previous issue date: 2015-07-31
O Granito São Domingos corresponde a um dos corpos da Suíte Intrusiva Guapé, localizado na Faixa Móvel Aguapeí, relacionado à Orogenia Sunsás, SW do Cráton Amazônico. Trata-se de um corpo com dimensões batolíticas de 150 Km² de área aflorante, levemente alongado segundo direção NE e localizado ao norte do distrito São Domingos, município de Jaurú, estado de Mato Grosso. Constitui-se de rochas holo a leucocráticas, de cor rosa-claro a cinza-rosado, isotrópicas, equi a inequigranulares, por vezes, porfiríticas e pegmatíticas, classificadas como Muscovita biotita monzo a sienogranitos tendo por vezes, granada e monazita como minerais acessórios primários e caracterizadas como granitos do tipo S ou Muscovite bearing Peraluminous Granitoids (MPG). Essas rochas apresentam restritos e elevados teores de sílica, caracterizando-as como muito evoluídas; formadas por magmatismo cálcio alcalino de alto K a shoshonítico, peraluminoso e ferroso. A idade U-Pb (SHRIMP) de 928 ± 5 Ma foi obtida em zircões ígneos, e coincide com idades U-Pb (TIMS) relatadas para este granito. A análise Sm-Nd indica uma idade modelo TDM de 1,58 Ga, e valor ɛND(0,93Ga) negativo (-2,90). Esses resultados indicam que o Granito São Domingos formou-se em um ambiente pós-tectônico, no final da Orogenia Sunsás, cuja origem magmática está associada ao retrabalhamento de crosta continental mesoproterozoica. Três padrões diferentes de ETR foram encontrados para esses litotipos, sugerindo a geração de magmas contemporâneos não cogenéticos, provenientes de fontes crustais distintas.
The São Domingos Granite is an intrusive body of the Guapé Intrusive Suite, located in the Aguapeí mobile belt, corresponding to a branch of the Sunsás Orogeny in SW Amazonian Craton. This body is considered as a batholith slightly elongated in the NE direction, which crops out over an area of ca. 150 km2. It is situated to the north of the São Domingos District, a municipality of the Jauru city, Mato Grosso State. It consists of hololeucocratic to leucocratic rocks ranging from pinky to pinky-gray. They are isotropic, ranging from equigranular to inequigranular grains, sometimes porphyritic and pegmatitic, classified as muscovite-biotite monzo to syenogranites. Sometimes they present garnet and monazite as primary accessory minerals. These features characterize them as S-type granites or Muscovite bearing Peraluminous Granitoides (MPG). The rocks contain high silica content, which characterizes them as very evolved, formed by high-K to shoshonitic, peraluminous, and ferrous calc-alkaline magmatism. A U-Pb age of 928 ± 5 Ma was obtained for one of the analyzed rocks, which agrees with previous U-Pb ages obtained for this granite. Sm-Nd analysis indicates a TDM model age of 1.58 Ga, and negative ND value (-2.90). These results demonstrate that the São Domingos intrusion corresponds to a post tectonic environment, related to the Sunsás orogeny, whose magmatic origin is associated to re-working of the ancient continental crust. Moreover, three different ETR patterns were found for these lithotipes, suggesting the generation of contemporaneous non-cogenetic magmas, involving distinct crustal sources.
APA, Harvard, Vancouver, ISO, and other styles
2

Poitrasson, Franck. "Apports du système radiométrique Samarium-Néodyme à la connaissance du magnétisme anorogénique intracontinental. Exemple du sud-est de la France (Corse et Estérel)." Clermont-Ferrand 2, 1994. http://www.theses.fr/1994CLF21601.

Full text
Abstract:
Le systeme radiometrique sm-nd a ete utilise pour caracteriser les processus magmatiques qui se produisent dans la croute continentale en contexte anorogenique. Les exemples etudies proviennent de la province anorogenique fini-paleozoique du se de la france (corse et esterel). Associe au rb-sr, le systeme radiometrique sm-nd a permis de mettre en evidence l'importance des processus de reinjections pour l'evolution des chambres magmatiques basiques. Des donnees quantitatives sur la dynamique de ces chambres ont egalement pu etre obtenues grace a ces resultats isotopiques. La comparaison des evolutions isotopiques de la petite chambre magmatique etudiee (fozzano) avec d'autres de plus grande taille (kalka, australie; skaergaard, groenland; kiglapait, labrador) indique qu'il existe une relation etroite entre les modalites de l'assimilation crustale et le volume des chambres. L'evaluation de l'homogeneite des compositions isotopiques du nd dans trois types petrographiques differents de granites anorogeniques a ete realisee, a l'echelle de l'intrusion et a l'echelle de la province corse. Les resultats contrastes obtenus demontrent qu'au sein d'une meme province, des granites anorogenqiues peuvent avoir des geneses tres differentes. Les magmas parentaux possibles de ces granites vont depuis des liquides d'anatexie de croute inferieure basique, jusqu'a des magmas mantelliques sous satures en silice qui se melangent avec la croute inferieure basique. Le modele propose pour la corse est egalement valable pour des magmatismes equivalents situes dans les white mountains (new hampshire) et dans le fosse d'oslo (norvege). Les grands volumes de rhyolites de l'esterel ont des compositions isotopiques du nd extremement constantes, probablement acquises dans la croute profonde lors d'un processus d'homogeneisation. La chambre magmatique superficielle n'a ete le siege que de processus de differenciation, sans assimilation crustale significative. Il est montre que le sm-nd sur mineraux est un geochronometre fiable et relativement precis pour les granites. Ces nouvelles determinations geochronologiques indiquent que le debut du magmatisme anorogenique de corse est precoce (environ 330 ma), puisqu'il s'est produit avant la fin de la mise en place du batholite calco-alcalin. Cette etude isotopique sur mineraux a egalement mis en evidence que les phases majeures et accessoires des granites ont des reponses constrastees, et parfois meme inattendues, vis-a-vis du systeme sm-nd au cours des interactions avec des fluides. Cette etude de la remobilisation hydrothermale du sm-nd a l'echelle des mineraux et de la roche totale a permis d'estimer des distances minimales de transport des terres rares dans la croute continentale granitique par des fluides. Un episode hydrothermal a egalement ete date en corse a environ 200 ma par sm-nd sur mineraux. Ce travail montre le grand interet du systeme radiometrique sm-nd pour les etudes d'interactions fluides-roches lorsque les lanthanides sont remobilises
APA, Harvard, Vancouver, ISO, and other styles
3

Popoff, Michel. "Déformation intracontinentale Gondwanienne : rifting mézoique en Afrique : évolution meso-cénozoique du fossé de la Bénoué, Nigéria : relations avec l'ouverture de l'Océan Atlantique Sud." Aix-Marseille 3, 1990. http://www.theses.fr/1990AIX3A002.

Full text
Abstract:
Le fossé de la Bénoué est un trait tectonique majeur (1000 km) à la surface du globe. Différencié au cours du Crétacé au sein du socle africain, en bordure du golfe de Guinée. Cette structure de premier ordre ébauchée dès le Jurassique terminal, se compose de plusieurs dépôt-centres de 6000 m de profondeur qui évoluent à partir du Crétacé inférieur lors d'une période de rifting dans un régime d'extension, la composante principale minimale étant orientée ENE-WSW. Une sédimentation continentale typique de bassin d'effondrement, avec dépôts de cônes alluviaux sub-aériens. Faciès palustres et lacustres de bassin peu profond (Groupe inférieur de Bima, groupe de Keana) s'établit avec l'installation des grands lacs africains crétacés. A l'amont du fossé, ces lacs sont. Rapidement comblés par un fort influx détritique. Et recouverts par les dépôts post-rift de plaine fluviatile en tresse (Formation supérieure de Bima) du fleuve Paléo-Bénoué. A l'aval du fossé, une sédimentation turbiditique (Groupe d'Asu river) alimente à l'Albien des bassins marins profonds. Au Crétacé supérieur, la sédimentation argilo-détritique et ses épisodes carbonates sont placés sous l'influence des variations eustatiques globales des niveaux marins. Des conditions continentales sont rétablies au Paléocène dans tout le fossé, excepté sur sa bordure atlantique. La structuration syn-dépôt des premiers bassins crétacé inférieur s'observe par le développement, la nature et la répartition des faciès syn-rift dans des structures en hémi-grabens : dépôts de cônes confinés dans les bassins étroits, enchaînements faciès de cônes proximaux. De plaine fluviatile et plaine deltai͏̈que, de deltas distaux avec décantation distale (mais parfois mise en place turbide) de dépôts lacustres ou palustres. Dans des bassins disjoints Les relations entre tectonique et sédimentation se précisent avec la répartition des méagabrèches et conglomérats de pied de faille, discordances progressives et déformation syn-sédiment : blocs basculés, microfailles hydroplastiques. La découverte dans le NE du fossé d'un volcanisme précoce bi-modal fini-jurassique et syn-sédiment crétacé, tous deux d'affinité transitionnelle, précise le cadre tectonique distensif. Dans la période post-rift majeur, une migration progressive des dépôt-centres confine les bassins crétacé supérieur sur la bordure ouest du fossé alors que se produit uneinversion structurale des premiers bassins situés sur le bord oriental, au cours du Santonien. Un volcanisme alcalin affecte à cette époque la partie SW du fossé. La structure en grand du fossé de la Bénoué s'articule autour des grandes familles de failles héritées de l'orogenèse panafricaine : failles de transfert transafricaines ENE-WSW sur lesquelles jouent par rifting oblique les fractures NNE-SSW et WNW-ESE. Cette fracturation syn-rift s'irradie à l'intérieur du continent africain lors de la fragmentation crétacée du Gondwana et constitue l'immense système des rifts médio-africains (M. A. R. S. ). Ces fractures continentales qui régissent la cinématique intraplaque conditionnent ensemble les premiers mouvements interplaques, l'implantation et la direction des premiers segments transformants océaniques dans le golfe de Guinée. Le fossé de la Bénoué devient ainsi un marqueur complémentaire dans les reconstitutions sédimentaire. Tectonique et cinématique de l'évolution crétacée de l'océan Atlantique sud
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Intracontinental magmatism"

1

Armando, Giovanni. Intracontinental alkaline magmatism: Geology, petrography, mineralogy and geochemistry of the Jebel Hayim Massif (Central High Atlas - Morocco). Lausanne, Suisse: Université de Lausanne, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Intracontinental magmatism"

1

Sawkins, Frederick J. "Intracontinental Hotspots, Anorogenic Magmatism, and Associated Metal Deposits." In Metal Deposits in Relation to Plate Tectonics, 239–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-08681-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pirajno, Franco. "Intracontinental Magmatism, Anorogenic Metamorphism, Ore Systems and Mantle Plumes." In Ore Deposits and Mantle Plumes, 291–321. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-2502-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Izokh, A. E., G. S. Fedoseev, and V. A. Kutolin. "Late Cretaceous Intracontinental Alkaline-Basaltoid Magmatism of the Chebakovo-Balakhta Depression." In Geological Tour of Devonian and Ordovician Magmatism of Kuznetsk Alatau and Minusinsk Basin, 215–32. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-29559-2_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pirajno, Franco. "Oceanic Islands, Large Igneous Provinces, Mafic Dyke Swarms, and Intracontinental Alkaline Magmatism." In Ore Deposits and Mantle Plumes, 111–214. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-2502-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Macdonald, Francis A., W. Adolph Yonkee, Rebecca M. Flowers, and Nicholas L. Swanson-Hysell. "Neoproterozoic of Laurentia." In Laurentia: Turning Points in the Evolution of a Continent. Geological Society of America, 2022. http://dx.doi.org/10.1130/2022.1220(19).

Full text
Abstract:
ABSTRACT Neoproterozoic to Cambrian isolation of Laurentia during the breakup of Rodinia was associated with multiple large igneous provinces, protracted multiphase rifting, and variable subsidence histories along different margin segments. In this contribution, we develop a paleogeographic model for the Neoproterozoic tectonic evolution of Laurentia based on available stratigraphic, paleomagnetic, petrologic, geochronologic, and thermochronologic data. Early Tonian strata are confined to intracontinental basins in northern Laurentia. Breakup of Rodinia around Laurentia began in earnest with emplacement of the ca. 778 Ma Gunbarrel large igneous province, interpreted to have accompanied separation of the North China block along the Yukon promontory, and onset of localized, intracratonic extension southward along the western margin. Eruption of the ca. 760–740 Ma Mount Rogers volcanic complex along the Southern Appalachian segment of the eastern margin may record extension associated with separation of the Kalahari or South American terranes. At about the same time, the Australia-Mawson blocks began separating from the Sonoran segment of the southern margin and Mojave promontory. Emplacement of the ca. 720 Ma Franklin large igneous province along the northern margin was likely associated with separation of Siberia and was followed by widespread bimodal volcanism and extension along the western margin spanning ca. 720–670 Ma, leading to partial separation of continental fragments, possibly including Tasmania, Zealandia, and Tarim. Emplacement of the ca. 615 Ma Central Iapetus magmatic province along the eastern margin marked rifting that led to separation of Baltica and Amazonia, and partial separation of the Arequipa-Pampia-Antofalla fragments. During the late Ediacaran to Cambrian, the western, northern, eastern, and southern margins all experienced a second episode of local extension and mafic magmatism, including emplacement of the ca. 585 Ma Grenville dikes and ca. 540–532 Ma Wichita large igneous province, leading to final separation of continental fragments and Cambrian rift-drift transitions on each margin. Cryogenian rifting on the western and northern margins and segments of the eastern margin was contemporaneous with low-latitude glaciation. Sturtian and Marinoan glacial deposits and their distinctive ca. 660 Ma and 635 Ma cap carbonates provide important event horizons that are correlated around the western and northern margins. Evidence for Ediacaran glaciation is absent on Laurentia, with the exception of glacial deposits in Scotland, and putative glacial deposits in Virginia, which both formed on the poleward edge of Laurentia. Patterns of exhumation and deposition on the craton display spatial variability, likely controlled by the impingement of mantle plumes associated with mantle upwelling and extensional basin formation during the piecemeal breakup of Rodinia. Glaciation and eustasy were secondary drivers for the distribution of erosion and Neoproterozoic sedimentation on North America.
APA, Harvard, Vancouver, ISO, and other styles
6

Rogers, John J. W., and M. Santosh. "History of Continents after Rifting from Pangea." In Continents and Supercontinents. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780195165890.003.0012.

Full text
Abstract:
As continents moved from Pangea to their present positions, they experienced more than 100 million years of geologic history. Compressive and extensional stresses generated by collision with continental and oceanic plates formed mountain belts, zones of rifting and strike-slip faulting, and magmatism in all of these environments. In this chapter we can only provide capsule summaries of this history for each of the various continents, but many of their salient features have been discussed as examples of tectonic processes in earlier chapters. The final section analyzes the breakup of Pangea as part of the latest cycle of accretion and dispersal of supercontinents. Because it involves continuation of this cycle into the future, it is necessarily very speculative. Figure 10.1 shows approximate patterns of movement of each continent from its position in Pangea to the present. The dominant feature of this pattern is northward movement of all continents except Antarctica, which has remained over the South Pole for more than 250 million years. Shortly after geologists recognized the concept of continental drift, this movement was referred to by the German word “Polflucht” (flight from the pole) because all of the continents were seen to be fleeing from the South Pole. The only continent that did not simply move northward was Eurasia, which essentially rotated clockwise and changed its orientation from north–south to east–west. Comparison of fig. 10.1 with fig. 8.12a (locations of continents shortly before the assembly of Gondwana) shows that the net effect of the last 580 million years of earth history has been a transfer of most continental crust from the southern hemisphere to the northern hemisphere. Accretion and compression against the southern margin of Eurasia constructed a series of mountain belts from the Pyrenees in the west to the numerous ranges of Southeast Asia in the east. This collision generated extensional and transtensional forces that opened rifts and pull-apart basins. Tectonic loading created foreland basins with sediment thicknesses of several kilometers. Opposite the area where the collision of India caused the most intense compression, the extensional basins are interspersed with mountain ranges that were lifted up intracontinentally. We divide the discussion of Eurasia into a section where compression dominates to the south (present orientation) of the former margin of Pangea and a section that describes processes within the landmass to the north.
APA, Harvard, Vancouver, ISO, and other styles
7

Sharman, Glenn R., Daniel F. Stockli, Peter Flaig, Robert G. Raynolds, Marieke Dechesne, and Jacob A. Covault. "Tectonic influence on axial-transverse sediment routing in the Denver Basin." In Tectonic Evolution of the Sevier-Laramide Hinterland, Thrust Belt, and Foreland, and Postorogenic Slab Rollback (180–20 Ma). Geological Society of America, 2022. http://dx.doi.org/10.1130/2021.2555(11).

Full text
Abstract:
ABSTRACT Detrital zircon U-Pb and (U-Th)/He ages from latest Cretaceous–Eocene strata of the Denver Basin provide novel insights into evolving sediment sourcing, recycling, and dispersal patterns during deposition in an intracontinental foreland basin. In total, 2464 U-Pb and 78 (U-Th)/He analyses of detrital zircons from 21 sandstone samples are presented from outcrop and drill core in the proximal and distal portions of the Denver Basin. Upper Cretaceous samples that predate uplift of the southern Front Range during the Laramide orogeny (Pierre Shale, Fox Hills Sandstone, and Laramie Formation) contain prominent Late Cretaceous (84–77 Ma), Jurassic (169–163 Ma), and Proterozoic (1.69–1.68 Ga) U-Pb ages, along with less abundant Paleozoic through Archean zircon grain ages. These grain ages are consistent with sources in the western U.S. Cordillera, including the Mesozoic Cordilleran magmatic arc and Yavapai-Mazatzal basement, with lesser contributions of Grenville and Appalachian zircon recycled from older sedimentary sequences. Mesozoic zircon (U-Th)/He ages confirm Cordilleran sources and/or recycling from the Sevier orogenic hinterland. Five of the 11 samples from syn-Laramide basin fill (latest Cretaceous–Paleocene D1 Sequence) and all five samples from the overlying Eocene D2 Sequence are dominated by 1.1–1.05 Ga zircon ages that are interpreted to reflect local derivation from the ca. 1.1 Ga Pikes Peak batholith. Corresponding late Mesoproterozoic to early Neoproterozoic zircon (U-Th)/He ages are consistent with local sourcing from the southern Front Range that underwent limited Mesozoic–Cenozoic unroofing. The other six samples from the D1 Sequence yielded detrital zircon U-Pb ages similar to pre-Laramide units, with major U-Pb age peaks at ca. 1.7 and 1.4 Ga but lacking the 1.1 Ga age peak found in the other syn-Laramide samples. One of these samples yielded abundant Mesozoic and Paleozoic (U-Th)/He ages, including prominent Early and Late Cretaceous peaks. We propose that fill of the Denver Basin represents the interplay between locally derived sediment delivered by transverse drainages that emanated from the southern Front Range and a previously unrecognized, possibly extraregional, axial-fluvial system. Transverse alluvial-fluvial fans, preserved in proximal basin fill, record progressive unroofing of southern Front Range basement during D1 and D2 Sequence deposition. Deposits of the upper and lower D1 Sequence across the basin were derived from these fans that emanated from the southern Front Range. However, the finer-grained, middle portion of the D1 Sequence that spans the Cretaceous-Paleogene boundary was deposited by both transverse (proximal basin fill) and axial (distal basin fill) fluvial systems that exhibit contrasting provenance signatures. Although both tectonic and climatic controls likely influenced the stratigraphic development of the Denver Basin, the migration of locally derived fans toward and then away from the thrust front suggests that uplift of the southern Front Range may have peaked at approximately the Cretaceous-Paleogene boundary.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Intracontinental magmatism"

1

Wang, Yu, Songnan LIU, and Liyun Zhou. "TECTONIC STRESS TRANSMISSION FROM MARGIN TO INTERIORS: RESPONSIBILITY FOR INTRACONTINENTAL DEFORMATION, MAGMATISM AND SEDIMENTATION." In GSA Connects 2021 in Portland, Oregon. Geological Society of America, 2021. http://dx.doi.org/10.1130/abs/2021am-366225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Clinkscales, Christopher Andrew, and Paul Kapp. "JURASSIC TO CRETACEOUS INTRACONTINENTAL SHORTENING AND MAGMATISM IN NORTH CHINA: EVIDENCE FOR FLAT-SLAB SUBDUCTION OF THE IZANAGI PLATE." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-336397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography