Academic literature on the topic 'Intracontinental'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Intracontinental.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Intracontinental"

1

Fitzgerald, Richard J. "Interpreting intracontinental earthquakes." Physics Today 63, no. 1 (January 2010): 17. http://dx.doi.org/10.1063/1.4797231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Xu, Wen-Liang, Jia-Hui Chen, Ai-Hua Weng, Jie Tang, Feng Wang, Chun-Guang Wang, Peng Guo, Yi-Ni Wang, Hao Yang, and Andrey A. Sorokin. "Stagnant slab front within the mantle transition zone controls the formation of Cenozoic intracontinental high-Mg andesites in northeast Asia." Geology 49, no. 1 (August 25, 2020): 19–24. http://dx.doi.org/10.1130/g47917.1.

Full text
Abstract:
Abstract The geochemistry of Cenozoic intracontinental high-Mg andesites (HMAs) in northeast Asia, together with regional geophysical data, offers an opportunity to explore the genetic relationship between the formation of intracontinental HMAs and subduction of the Pacific plate. Compared with primary HMAs in arcs, Cenozoic intracontinental HMAs in northeast Asia have lower Mg# [100 × Mg/(Mg + Fe2+)] values (53–56) and CaO contents (5.8–6.6 wt%), higher alkali (Na2O + K2O) contents (5.15–6.45 wt%), and enriched Sr-Nd-Hf isotopic compositions (87Sr/86Sr = 0.7056–0.7059; εNd = −4.9 to −3.4; εHf = −4.7 to −2.6) as well as lower Pb isotope ratios (206Pb/204Pb = 16.76–19.19; 207Pb/204Pb = 15.42–15.45; 208Pb/204Pb = 36.71–37.11). These Cenozoic intracontinental HMAs are similar to Cenozoic potassic basalts in northeast China with respect to their Sr-Nd-Pb-Hf isotopic compositions but have higher SiO2 and Al2O3 contents and lower K2O, MgO, and light rare earth element contents. These features indicate that these Cenozoic intracontinental HMAs originated from the mantle, where recycled ancient sediments and water contributed to partial melting of peridotite. Combined with the presence of a large low-resistivity anomaly derived from the mantle transition zone (MTZ) near these intracontinental HMAs, and their occurrence above the stagnant slab front within the MTZ (at 600 km depth) in northeast Asia, we conclude that the stagnant slab front, with high contents of recycled ancient sediments and water, has controlled the formation of Cenozoic intracontinental HMAs in northeast Asia.
APA, Harvard, Vancouver, ISO, and other styles
3

Raimondo, Tom, Alan S. Collins, Martin Hand, Althea Walker-Hallam, R. Hugh Smithies, Paul M. Evins, and Heather M. Howard. "Ediacaran intracontinental channel flow." Geology 37, no. 4 (April 2009): 291–94. http://dx.doi.org/10.1130/g25452a.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ma, Huimin, Yu Wang, Yajuan Huang, and Yueting Xie. "Three-stage Mesozoic intracontinental tectonic evolution of South China recorded in an overprinted basin: evidence from stratigraphy and detrital zircon U–Pb dating." Geological Magazine 156, no. 12 (June 6, 2019): 2085–103. http://dx.doi.org/10.1017/s0016756819000451.

Full text
Abstract:
AbstractThe NE–NNE-trending Yuan-Ma Basin in central South China, an overprinted basin, is important for understanding the transition in Mesozoic intracontinental deformation in South China from compressional to extensional settings. A detailed sedimentary and structural cross-section across the basin reveals the Upper Triassic – Lower Jurassic black coal-bearing shale, greyish-green sandstone and brick-red claystone, and the Middle Jurassic brick-red sandstone, pebbly sandstone and conglomerate in the eastern segment of the basin. The Lower Cretaceous brick-red coarse sandstone, pebbly sandstone and siltstone occurred in the western and central segments, as well as fault breccia and Lower Cretaceous sandstone at the western margin of the basin. Detrital zircon U–Pb dating by laser ablation inductively coupled plasma mass spectrometry shows that the magmatic and metamorphic zircons yield significant age clusters at 900–700, 500–350 and 300–150 Ma, as well a minor age cluster at 120–100 Ma. Synthesizing the stratigraphic sequences, structures, isotopic dating results and palaeocurrent data, we infer that the Yuan-Ma Basin experienced three evolutionary stages and tectonic settings: (1) during Late Triassic – Early Jurassic time, the Yuan-Ma Basin was related to the diachronous progressive intracontinental deformation as a result of the early Mesozoic Xuefeng intracontinental orogeny in South China; (2) during Middle–Late Jurassic time, the Yuan-Ma Basin was related to intracontinental compression in South China; and (3) during late Early Cretaceous time, the Yuan-Ma Basin was constrained by the intracontinental extension that occurred in eastern China. These three stages, a result of various tectonic regimes, caused the intracontinental deformation that was controlled by the evolution of the continents and their margins.
APA, Harvard, Vancouver, ISO, and other styles
5

Piazolo, Sandra, Nathan R. Daczko, David Silva, and Tom Raimondo. "Melt-present shear zones enable intracontinental orogenesis." Geology 48, no. 7 (April 13, 2020): 643–48. http://dx.doi.org/10.1130/g47126.1.

Full text
Abstract:
Abstract Localized rheological weakening is required to initiate and sustain intracontinental orogenesis, but the reasons for weakening remain debated. The intracontinental Alice Springs orogen dominates the lithospheric architecture of central Australia and involved prolonged (450–300 Ma) but episodic mountain building. The mid-crustal core of the orogen is exposed at its eastern margin, where field relationships and microstructures demonstrate that deformation was accommodated in biotite-rich shear zones. Rheological weakening was caused by localized melt-present deformation coupled with melt-induced reaction softening. This interpretation is supported by the coeval and episodic nature of melt-present deformation, igneous activity, and sediment shed from the developing orogen. This study identifies localized melt availability as an important ingredient enabling intracontinental orogenesis.
APA, Harvard, Vancouver, ISO, and other styles
6

Wencai, Yang. "Analysis of deep intracontinental subduction." Episodes 23, no. 1 (March 1, 2000): 20–24. http://dx.doi.org/10.18814/epiiugs/2000/v23i1/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Deng, Qi-dong, Meng-tan Gao, Xin-ping Zhao, and Jian-chun Wu. "Intracontinental basins and strong earthquakes." Acta Seismologica Sinica 17, no. 4 (July 2004): 377–80. http://dx.doi.org/10.1007/s11589-004-0016-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Artemjev, M. E., and M. K. Kaban. "Isostatic processes and intracontinental orogenesis." Journal of Geodynamics 13, no. 1 (January 1991): 77–86. http://dx.doi.org/10.1016/0264-3707(91)90031-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Engel, Charles, Michael K. Hendrickson, and John H. Rogers. "Intranational, Intracontinental, and Intraplanetary PPP." Journal of the Japanese and International Economies 11, no. 4 (December 1997): 480–501. http://dx.doi.org/10.1006/jjie.1997.0388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chakraborty, Chandan. "Proterozoic intracontinental basin: The Vindhyan example." Journal of Earth System Science 115, no. 1 (February 2006): 3–22. http://dx.doi.org/10.1007/bf02703022.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Intracontinental"

1

Benkhelil, Jean. "Structure et évolution géodynamique du bassin intracontinental de la Bénoué (Nigeria)." Nice, 1986. http://www.theses.fr/1986NICE4055.

Full text
Abstract:
Le remplissage sédimentaire de ce bassin comprend d'épaisses séries continentales et marines, ces dernières correspondant à la grande transgression qui, au Turonien, a permis la communication entre l'Atlantique et la Téthys à travers la Bénoué et le Sahara. La structure profonde est caractérisée par un "haut" axial borde par deux gouttières. A l'intérieur de celles-ci s'individualisent des sous-bassins suggérant une ouverture en "pull-apart". Les principaux évènements géologiques sont mis en relation avec l'initiation des fractures océaniques du golfe de Guinée. Le bassin de la Bénoué est replacé dans un modèle d'ouverture de l'Atlantique sud faisant intervenir des discontinuités intra plaques
APA, Harvard, Vancouver, ISO, and other styles
2

Benkhelil, Jean. "Structure et évolution géodynamique du Bassin intracontinental de la Benque, Nigéria." Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb37595918t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Xie, Xiangyang. "Sedimentary record of Mesozoic intracontinental deformation in the south Ordos Basin, China." Laramie, Wyo. : University of Wyoming, 2007. http://proquest.umi.com/pqdweb?did=1483471401&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Silva, Marcelo Ferreira da. "Aerogeofísica, litogeoquímica e geologia na caracterização do rifte intracontinental da faixa Paraguai." reponame:Repositório Institucional da UnB, 2007. http://repositorio.unb.br/handle/10482/2839.

Full text
Abstract:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Geociências, 2007.
Submitted by Rosane Cossich Furtado (rosanecossich@gmail.com) on 2009-12-20T15:00:21Z No. of bitstreams: 1 2007_MarceloFerreiradaSilva.PDF: 8048887 bytes, checksum: d7cb41cb53ef384d28ee1b73773c908a (MD5)
Approved for entry into archive by Lucila Saraiva(lucilasaraiva1@gmail.com) on 2009-12-22T00:22:55Z (GMT) No. of bitstreams: 1 2007_MarceloFerreiradaSilva.PDF: 8048887 bytes, checksum: d7cb41cb53ef384d28ee1b73773c908a (MD5)
Made available in DSpace on 2009-12-22T00:22:55Z (GMT). No. of bitstreams: 1 2007_MarceloFerreiradaSilva.PDF: 8048887 bytes, checksum: d7cb41cb53ef384d28ee1b73773c908a (MD5) Previous issue date: 2007-02-09
A integração de dados aerogeofísicos e de litogeoquímica permitem propor um modelo de evolução geotectônica considerando a abertura de um rifte intracontinental na Faixa Paraguai. A presença de rochas vulcânicas básicas e piroclásticas ácidas concentradas na região dos Araés, município de Nova Xavantina, sudeste do estado do Mato Grosso, sugerem o envolvimento de múltiplas fontes mantélicas na geração do magmatismo bimodal na área. A presença de uma pluma mantélica na base da crosta continental é requerida para explicar a assinatura geoquímica dos basaltos encontrados na região (continental flood basalts e tipo OIB), bem como, a tentativa de abertura e formação de crosta oceânica durante a evolução do rifte é sugerida pela presença de basaltos toleíticos com assinatura de MORB. O processamento dos dados dos temas aeromagnéticos de campo anômalo, amplitude do gradiente horizontal total, amplitude do sinal analítico e inclinação do sinal analítico auxiliaram na caracterização das feições estruturais da região e o delineamento dos corpos magnéticos, delimitando os limites do rifte, orientado na direção EW, e que posteriormente foram reativados formando extensas zonas de cisalhamento com indicadores cinemáticos dextrais. A identificação de uma estrutura anelar delimitando as rochas vulcânicas na região do Garimpo dos Araés sugere a presença de uma caldeira ignimbrítica formada no início da abertura do rifte e tem implicações metalogenéticas para a prospecção na região.
APA, Harvard, Vancouver, ISO, and other styles
5

Xue, Zhenhua. "Mesozoic tectonic evolution of the Longmenshan thrust belt, East Tibet." Thesis, Orléans, 2017. http://www.theses.fr/2017ORLE2020/document.

Full text
Abstract:
La ceinture orogénique de Longmenshan (LMTB) constitue la frontière orientale du plateau tibétain, qui est reconnue par sa topographie escarpée, son activité tectonique intensive ainsi ses la complexité de ses structures. Comme une orogène typique, le LMTB a subi une forte déformation intracontinentale au cours du Mésozoïque. Ainsi, la connaissance sur l’évolution tectonique du Mésozoïque de la LMTB est cruciale pour comprendre l’orogenèse intracontinentale et la surrection du plateau tibétain. Une ceinture de clivage verticaux divise la LMTB en une zone occidentale et une orientale. La Zone orientale présente un top-to-SE cisaillement tandis que la zone occidentale présente un top-to-NW cisaillement. La zone orientale peut être subdivisée en quatre sous-unités avec de foliations orientées du SE au NW. Le granite syntectonique et les données géochronologiques contraignent cette déformation principale au Mésozoïque inférieur (environ 219 Ma). L’analyse structurale, l’AMS, l’étude microstructurale et la modélisation gravimétrique sur le complexe de Pengguan, l’un des complexes de l’orogène néoprotérozoïques au milieu de segment de la LMTB), révèlent une structure des slices du socle imbriquées de la LMTB et la zone adjacente. Les âges connus, l’exhumation rapide localisée et la subsidence du bassin flextual suggèrent que les slices du socle sont imbriquées au cours du Mésozoïque supérieur (166-120 Ma). La LMTB se trouve loin de la limite de la plaque contemporaine, et est absence de matériel ophiolitique, donc elle peut être considéré comme une orogène intracontinentale. Pendant le début du Mésozoïque, le Yangtze plate subductait vers l’ouest en fermant l’océan paléo-Téthys. Cette tectonique a exhumé des matériaux de différentes profondeurs en surface par des chevauchements vers le SE et chevauchements arrières vers le NW. Au cours de la fin du Mésozoïque, le socle a été soulevé davantage en raison de la collision entre les blocs de Lhasa et de l’Eurasie, qui a conduit à une imbrication des slices du socle et épaissi la croûte
The Longmenshan Thrust Belt (LMTB), constituting the eastern boundary of the Tibetan Plateau, is well known by its steep topography, intensive tectonic activities and the complicated structures. As a typical composite orogen, the LMTB experienced extensive intracontinental deformation during the Mesozoic. The knowledge on the Mesozoic tectonic evolution of the LMTB therefore is crucial to understand the intracontinental orogeny and uplifting of the Plateau. The vertical cleavage belt divides the LMTB into a Western Zone and an Eastern Zone. The Eastern Zone displays a top-to-the-SE shearing while the western zone a top-to-the-NW shearing. The Eastern Zone can be further divided into four subunits with foliations deepening from SE to NW. The syntectonic granite and published geochronologic data constrain this main deformation to the Early Mesozoic around 219 Ma. Structural analysis, AMS and microstructural study and gravity modeling on the Pengguan complex, one of the orogen-parallel Neoproterozoic complexes located in the middle segment of the LMTB, reveal a basement-slice imbricated structure of the LMTB and adjacent areas. Published ages, localized fast exhumation rate and flexural subsidence of the foreland basin suggest that the basement-slices imbricated southeastwards during Late Mesozoic (166-120 Ma). The LMTB is far away from the contemporaneous plate boundary and devoid of ophiolite-related material, therefore, it is supposed to be an intracontinental orogen. During the Early Mesozoic, the Yangtze basement underthrusted westwards due to the far-field effect of the Paleo-Tethys’ obliteration, and the materials in different structural levels have been exhumated to the surface by southeastward thrusting and contemporaneous backward thrusting. During the Late Mesozoic, the basement is further underthrusted due to the collision between the Lhasa and Eurasia blocks, which led to SE-ward imbrication of the basementslices that may thicken the crust
APA, Harvard, Vancouver, ISO, and other styles
6

Yu, Zhou. "Flexural strength of lithospere in central Asia and development of intracontinental orogens : the Tien Shan." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/10718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Baqués, Almirall Vinyet. "Diagenesis and fluid-fracture evolution in an intracontinental basin: The Penedès half-graben,western Mediterranean / Diagènesi i evolució de la relació fluid-fractura en una conca intracontinental: la conca del Penedès, oest de la Mediterrània." Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/112701.

Full text
Abstract:
The Penedes half-graben represents a natural field laboratory for the study of the link between tectonics and palaeofluids because it exposes numerous outcrops that allow a global and complete diagenetic study of the basin from Mesozoic to present times. The Penedes half-graben is located in the central part of the Catalan Coastal Ranges (CCR) and results from the superposition of three main tectonic events: (1) the Mesozoic extensional phase which is divided into two Mesozoic rift episodes: the first, Late Permian to Triassic in age and the second, latest Oxfordian to Aptian in age; (2) the Paleocene to middle Oligocene compressional phase which includes the emplacement of ENE-to-NE-trending thick-skinned thrust sheets bounded by SE dipping thrusts with a limited left-lateral strike-slip motion; (3) the late Oligocene?- Neogene extensional phase which split the CCR into a set of ENE-WSW blocks mainly tilted toward the NW, constituting the actual horst-and-graben systems now present at the northwestern Mediterranean. Samples were taken in 19 different outcrop areas located within three main structural domains: the Gaia-Montmell domain, which represents the footwall block of the SE-dipping major normal faults that bound the north-western margin of the basin, the Central Penedes domain, which comprises the central Miocene syn- and post-rift deposits and the Garraf domain, which comprises a group of small syn-depositional tectonic horsts and half-grabens developed in the Garraf horst during its Neogene evolution. Based on the macro and microstructural analysis combined with geochemical results from host rocks, fault rocks and fracture cements, the following diagenetic events have been identified: (1) Very early stages characterized by micritization, early irregular micro-fractures resulting from opening in poorly-lithified sediments and early calcite cement precipitations; (2) Progressive burial stages characterized by brecciation, stylolization and dolomitization; (3) Fracturing and cementations characterized by ninth major deformation stages with their related cements, breccias and stylolites, and (4) four karstification events with associated collapse breccias, sediments and cements filling the fracture, vug and cavern porosities. A depositional control of the δ(18)O values of the syn-rift Mesozoic sediments (Valanginian, Barremian and Aptian) related to the position of the different outcrops with respect to the Mesozoic normal faults is inferred from the values reported in this study. The isotopic values of the Miocene marine facies, depleted in δ(18)O and δ(13)C respect to the expected values for the Miocene seawater, together with the chalky appearance of these limestones, indicate that the Miocene marine limestones were re-balanced under the meteoric diagenetic environment. The meteoric fluid precipitating the calcite cement in the conglomerates of the lower continental complexes was responsible for diagenetically altering the marine host limestone. A different meteoric fluid, more influenced by soil-derived CO2, precipitated the calcite cement present within the upper continental complexes. The fluids circulating through the fractures attributed to the second stage of the Mesozoic rifting were precipitated from formation waters during the progressive burial of the sediment, in a closed palaeohydrological system. From the Paleocene to the mid-Oligocene the fluids circulating through the compressional fractures had a meteoric origin. Due to the Paleogene compression, Mesozoic rocks were uplifted, subaerially exposed and extensively karstified. Different types of sediments and cements were deposited filling the karstic cavities under the meteoric diagenetic environment. Related to the syn- and early post-rift stage, the fractures were sealed by meteoric fluids under both, phreatic and vadose zones. The normal faults attributed to the late post-rift stage favoured the upflowing of marine fluids expelled from the compaction of the late Burdigalian to the early Serravallian marine sediments producing the dolomitization of the host rocks and the precipitation of dolomite cements within the fractures. During the late post-rift and related to latest tensional fractures occurrence different types of meteoric fluids circulated through the fractures. These fluids were precipitated from phreatic to vadose cements, agreeing with the uplift of the entire basin and/or with the falling-down of the meteoric water table related to a generalized sea level fall in the Mediterranean area during the Messinian.
La formació de la conca del Penedès està associada a un període extensiu d’edat neògena que provocà l’obertura del Solc de València. El marge nord-oest del Solc de València està constituït per una sèrie de grabens (Penedès, Vallès, Barcelona ...) i horsts (Garraf, Gaià-Montmell, Montnegre ...), el conjunt dels quals formen la Serralada Costanera Catalana. Aquesta serralada resulta de la superposició de tres esdeveniments tectònics principals: (1) l’extensió Mesozoica, compresa entre el Pèrmic i el Cretàcic inferior, (2) la compressió Paleògena, la qual produí la inversió de les principals conques extensives Mesozoiques i (3) l’extensió neògena, compresa entre l’Oligocè tardà i el Miocè mig, la qual generà l’actual sistema de rift de la Mediterrània occidental. S’han estudiat 19 afloraments localitzats tant en els alts estructurals, Garraf i Gaià-Montmell, com en el sector central de la conca del Penedès. A partir de les dades macro I microestructurals, juntament amb els resultats geoquímics de les roques encaixants, roques de falla i els ciments que reomplen les fractures, s’han identificat els següents estadis diagenètics: i. un primer estadi diagenètic temprà caracteritzat per la formació de microfractures de morfologies irregulars, formades en un sediment poc litificat i per la precipitació d’un ciment de calcita poc interaccionat amb la roca de caixa. ii. un segon estadi d’enterrament caracteritzat per la bretxificació i dolomitització de la roca encaixant i la generació d’estilòlits sub-paral•lels a l’estratificació. iii. nou etapes de deformació amb diferents tipus de rebliments associats a les fractures. iv. quatre estadis de carstificació caracteritzats per diferents tipus de bretxes de col•lapse, sediments i ciments que reomplen les porositats tipus fractura i vug, generades a partir de la dissolució. Els fluids relacionats amb l’extensió Mesozoica són característics d’aigües de formació, en canvi, els fluids que circularen al llarg de les fractures compressives paleògenes, són coherents amb fluids d’origen meteòric altament interaccionats amb la roca de caixa. L’extensió Neògena es caracteritza per una circulació predominant de fluids meteòrics no interaccionats amb la roca de caixa. És en l’estadi de post-rift on s’ha definit una dolomitització parcial de l’encaixant produïda per la barreja d’aigües marines i meteòriques. Durant l’estadi de post-rift tardà tingué lloc un esdeveniment de dissolució càrstica molt extens, el qual es relaciona amb la baixada del nivell del mar durant el Messinià.
APA, Harvard, Vancouver, ISO, and other styles
8

Chu, Yang. "Tectonique intracontinentale dans le bloc de Chine du sud : exemple de la chaîne du Xuefengshan." Phd thesis, Université d'Orléans, 2011. http://tel.archives-ouvertes.fr/tel-00626808.

Full text
Abstract:
Les observations détaillés indiquent que la chaîne de Xuefengshan peut être divisé en deux parties, la zone Ouest, caractérisée par des plis-coffrés, et la zone Est à déformation ductile polyphasée. Elles sont séparées par le chevauchement principal vers l'Ouest. Dans la zone Est, les structures dominantes sont des plis à vergence NW associés à des schistosités pénétratives de plan axial et des linéations NW-SE. De l'ouest vers l'est, la schistosité montre un style en éventail. Les roches du socle affleurent seulement autour des plutons triasiques. Les roches de la chaîne de Xuefengshan sont généralement déformées ductilement mais faiblement métamorphisées, toutefois, sous la croûte supérieure, on met en évidence un décollement ductile et synmétamorphe qui accommode les différences de déformation entre les roches sédimentaires et le socle. L'architecture de la chaîne du Xuefengshan résulte de la déformation polyphasée: la première phase (D1) est caractérisée par un cisaillement ver le nord-ouest. Le deuxième phase (D2) correspond au rétro-plissement vers le SE. La dernière phase (D3) est un événement de raccourcissement NW-SE avec des plis doits et schistosités verticales. En combinant ces nouveaux résultats structuraux avec les données géochronologiques, la chaîne de Xuefengshan est interprété comme un orogène intracontinental formé au Trias moyen. Cette chaîne résulte du sous-charriage continental d'une partie du bloc de Chine du Sud, en réponse à l'effet lointain de la subduction de la plaque de Paleo-Pacifique vers le nord-ouest.
APA, Harvard, Vancouver, ISO, and other styles
9

Siqueira, Luzia Helena. "Granito São Domingos : registro de magmatismo pós-tectônico do orógeno intracontinental aguapeí - SW do Cráton Amazônico." Universidade Federal de Mato Grosso, 2015. http://ri.ufmt.br/handle/1/114.

Full text
Abstract:
Submitted by Jordan (jordanbiblio@gmail.com) on 2016-10-20T13:16:35Z No. of bitstreams: 1 DISS_2015_Luzia Helena Siqueira.pdf: 3499968 bytes, checksum: 289d2c36c60121c189c7a71a65733fce (MD5)
Approved for entry into archive by Jordan (jordanbiblio@gmail.com) on 2016-10-20T13:16:58Z (GMT) No. of bitstreams: 1 DISS_2015_Luzia Helena Siqueira.pdf: 3499968 bytes, checksum: 289d2c36c60121c189c7a71a65733fce (MD5)
Made available in DSpace on 2016-10-20T13:16:59Z (GMT). No. of bitstreams: 1 DISS_2015_Luzia Helena Siqueira.pdf: 3499968 bytes, checksum: 289d2c36c60121c189c7a71a65733fce (MD5) Previous issue date: 2015-07-31
O Granito São Domingos corresponde a um dos corpos da Suíte Intrusiva Guapé, localizado na Faixa Móvel Aguapeí, relacionado à Orogenia Sunsás, SW do Cráton Amazônico. Trata-se de um corpo com dimensões batolíticas de 150 Km² de área aflorante, levemente alongado segundo direção NE e localizado ao norte do distrito São Domingos, município de Jaurú, estado de Mato Grosso. Constitui-se de rochas holo a leucocráticas, de cor rosa-claro a cinza-rosado, isotrópicas, equi a inequigranulares, por vezes, porfiríticas e pegmatíticas, classificadas como Muscovita biotita monzo a sienogranitos tendo por vezes, granada e monazita como minerais acessórios primários e caracterizadas como granitos do tipo S ou Muscovite bearing Peraluminous Granitoids (MPG). Essas rochas apresentam restritos e elevados teores de sílica, caracterizando-as como muito evoluídas; formadas por magmatismo cálcio alcalino de alto K a shoshonítico, peraluminoso e ferroso. A idade U-Pb (SHRIMP) de 928 ± 5 Ma foi obtida em zircões ígneos, e coincide com idades U-Pb (TIMS) relatadas para este granito. A análise Sm-Nd indica uma idade modelo TDM de 1,58 Ga, e valor ɛND(0,93Ga) negativo (-2,90). Esses resultados indicam que o Granito São Domingos formou-se em um ambiente pós-tectônico, no final da Orogenia Sunsás, cuja origem magmática está associada ao retrabalhamento de crosta continental mesoproterozoica. Três padrões diferentes de ETR foram encontrados para esses litotipos, sugerindo a geração de magmas contemporâneos não cogenéticos, provenientes de fontes crustais distintas.
The São Domingos Granite is an intrusive body of the Guapé Intrusive Suite, located in the Aguapeí mobile belt, corresponding to a branch of the Sunsás Orogeny in SW Amazonian Craton. This body is considered as a batholith slightly elongated in the NE direction, which crops out over an area of ca. 150 km2. It is situated to the north of the São Domingos District, a municipality of the Jauru city, Mato Grosso State. It consists of hololeucocratic to leucocratic rocks ranging from pinky to pinky-gray. They are isotropic, ranging from equigranular to inequigranular grains, sometimes porphyritic and pegmatitic, classified as muscovite-biotite monzo to syenogranites. Sometimes they present garnet and monazite as primary accessory minerals. These features characterize them as S-type granites or Muscovite bearing Peraluminous Granitoides (MPG). The rocks contain high silica content, which characterizes them as very evolved, formed by high-K to shoshonitic, peraluminous, and ferrous calc-alkaline magmatism. A U-Pb age of 928 ± 5 Ma was obtained for one of the analyzed rocks, which agrees with previous U-Pb ages obtained for this granite. Sm-Nd analysis indicates a TDM model age of 1.58 Ga, and negative ND value (-2.90). These results demonstrate that the São Domingos intrusion corresponds to a post tectonic environment, related to the Sunsás orogeny, whose magmatic origin is associated to re-working of the ancient continental crust. Moreover, three different ETR patterns were found for these lithotipes, suggesting the generation of contemporaneous non-cogenetic magmas, involving distinct crustal sources.
APA, Harvard, Vancouver, ISO, and other styles
10

Santos, Michelli Santana. "Enriquecimento em magnetita e hematita em zonas de cisalhamento de cinturões orogênicos intracontinentais: o exemplo do setor norte do Orógeno Araçuaí-Oeste Congo, Brasil." Instituto de Geociências, 2017. http://repositorio.ufba.br/ri/handle/ri/26566.

Full text
Abstract:
Submitted by Everaldo Pereira (pereira.evera@gmail.com) on 2018-07-03T23:54:04Z No. of bitstreams: 1 Dissertação Mestrado Michelli.pdf: 4172618 bytes, checksum: 5fb3f009f247a36e9b59dcc9021ae983 (MD5)
Approved for entry into archive by NUBIA OLIVEIRA (nubia.marilia@ufba.br) on 2018-07-13T20:25:33Z (GMT) No. of bitstreams: 1 Dissertação Mestrado Michelli.pdf: 4172618 bytes, checksum: 5fb3f009f247a36e9b59dcc9021ae983 (MD5)
Made available in DSpace on 2018-07-13T20:25:34Z (GMT). No. of bitstreams: 1 Dissertação Mestrado Michelli.pdf: 4172618 bytes, checksum: 5fb3f009f247a36e9b59dcc9021ae983 (MD5)
A Sequência Metavulcanossedimentar Igaporã-Licínio de Almeida está inserida na borda leste do Cinturão de Dobramentos e Cavalgamentos do Espinhaço Setentrional, um dos componentes do Corredor do Paramirim, na porção intracontinental do Orógeno Araçuaí. O objetivo principal desse trabalho é entender os processos metalogenéticos que levaram à magnetitização e à hematitização em protominérios estéreis situados em cinturões de dobramentos e cavalgamentos de orógenos intracontinentais. Na área de estudo ocorrem xistos máficos, itabiritos quartzosos, anfibolíticos e carbonáticos e rochas carbonatossilicáticas. Os domínios magnetitizados e hematitizados ricos ocorrem, principalmente, nos itabiritos. A geometria geral do depósito está relacionada com a presença de duplexes compressionais com topo estrutural para SW. Essas são estruturas relacionadas com a Zona de Cisalhamento Carrapato e, como elementos de maior escala contém uma foliação Sn, que é representada por um bandamento composicional e por uma xistosidade paralelizada a ele. A foliação Sn foi observada em todas as escalas e nos itabiritos transpõe uma foliação Sn-1 presente em dobras isoclinais intrafoliais. Estruturas S/C/C’, boudins, pinch –and swell, bem como dobras em bainha e dobras em cortina são coetâneas à formação dessa foliação metamórfica de transposição. Uma lineação de estiramento mineral (Lxn) da mesma fase deformacional integra o arcabouço estrutural, bem como uma incipiente foliação que trunca a Sn- 1//Sn e que se relaciona com as dobras em cortina. A alteração hidrotermal é coetânea com o desenvolvimento das zonas de cisalhamento, tendo sido identificados estágios de potassificação (biotitização e moscovitização), alteração à clorita, carbonatação, alteração a carbonato e formação de óxidos de ferro (magnetita e hematita). A magnetita hipogênica aloja-se em estruturas C’ e em charneiras de dobras isoclinais intrafoliais. Essa geração cresce incluindo silicatos e carbonatos esqueletiformes ou formando bordas de corrosão em: (i) ferri-tschermakita e oligoclásio em xistos máficos; (ii) carbonato, actinolita, quartzo, biotita em rochas carbonatossilicáticas; (iii) quartzo em itabiritos quartzosos; (iv) cumingtonita e quartzo em itabirito anfibolítico; e (v) quartzo, carbonato e moscovita em itabiritos carbonáticos. Além disso, esses óxidos de ferro também substituem moscovita, carbonatos, epidoto e porfiroblastos de anfibólios que truncam a Sn. A hematita é platiforme e ocorre em agregados policristalinos marcando a foliação Sn-1//Sn, bem como a foliação plano axial (Sn) em dobras isoclinais intrafoliais. A sua formação sugere condições de maior oxidação do sistema hidrotermal. Determinações por LA-ICPMS mostram que, de forma geral, nos itabiritos quartzosos e anfibolíticos as magnetitas hipogênicas são mais ricas em Elementos Terras Raras Leves do que as magnetitas precoces e sua composição se aproxima da composição da rocha encaixante da mineralização. A formação de domínios com enriquecimento em hematita e magnetita está relacionada com a percolação de fluidos hidrotermais que dissolveram silicatos, remobilizaram uma primeira geração de magnetita em itabiritos e precipitaram uma segunda geração desse mineral aproveitando estruturas de cisalhamento ediacaranas.
ABSTRACT - The Igaporã-Licínio de Almeida Metavolcano-sedimentary Sequence is located at the eastern border of the Northern Espinhaço Thrust and Fold Belt, one of the components of the Paramirim Corridor, in the intracontinental portion of the Araçuaí Orogen. The main objective of the present study was to understand the metallogenetic processes that lead to the magnetization and hematitization in sterile proto-ores located in thrust and fold belts of intracontinental orogens. Mafic schists, itabirites of quartz, amphibolite and carbonate composition, and carbonate-silicate rocks occur in the study area. Rich magnetized and hematitized domains occur mainly in itabirites. The general geometry of the deposit is related to the presence of compressional duplexes that present their structural top towards SW. These structures are related to the Carrapato Shear Zone and contain as large scale elements Sn foliation, which is represented by compositional banding and parallel schistosity. Sn foliation was observed at all scales and in the itabirites it transposed Sn-1 foliation present in intrafolial isoclinal folds. S/C/C’, boudins, pinch-and-swell structures, as well as sheath and curtain folds are coetaneous with the formation of this metamorphic transposition foliation. Mineral stretching lineation (Lxn) from the same deformational phase integrates the structural framework, as well as an incipient foliation that truncates Sn-1//Sn and is related to curtain folds. Hydrothermal alteration is coetaneous with the development of shear zones, where stages of potassification (biotitization and muscovitization), alteration into chlorite, carbonation, alteration into carbonate, and formation of iron oxides (magnetite and hematite) were identified. Hypogenic magnetite lodges itself in C’ structures and in fold axes of intrafolial isoclinal folds. This generation grows either including silicates and skeletal carbonates or forming corrosion edges in: (i) ferrotschermakite and oligoclase in mafic schists; (ii) carbonate, actinolite, quartz, biotite in carbonate-silicate rocks; (iii) quartz in quartz-rich itabirites; (iv) cummingtonite and quartz in amphibolitic itabirites; and (v) quartz, carbonate, and muscovite in carbonate itabirites. In addition, this iron oxide also replaced muscovite, carbonates, epidote, and are found in porphyroblasts of amphiboles that truncate the Sn foliation. Hematite is platy-shaped and occurs in polycrystalline aggregates, characterizing the Sn-1//Sn foliation, as well as the axial plane foliation (Sn) in intrafolial isoclinal folds. Its formation suggests higher oxidation conditions of the hydrothermal system. The LA-ICPMS technique showed that, in general, in quartz-rich and amphibolitic itabirites, hypogenic magnetites are richer in Light Rare Earth Elements than early magnetites, and their composition is close to that of the country rock of the mineralization process. The formation of hematite- and magnetite-enriched domains is related to the percolation of hydrothermal fluids that dissolved silicates, remobilized the first generation of magnetites in itabirites, and precipitated a second generation of this mineral taking advantage of Ediacaran shear structures.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Intracontinental"

1

Littke, Ralf, Ulf Bayer, Dirk Gajewski, and Susanne Nelskamp, eds. Dynamics of Complex Intracontinental Basins. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-85085-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ulf, Bayer, Gajewski Dirk, Nelskamp Susanne, and SpringerLink (Online service), eds. Dynamics of Complex Intracontinental Basins: The Central European Basin System. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rubin, C. M. Systematic underestimation of earthquake magnitudes from large intracontinental reverse faults: Historical ruptures break across segment boundaries. [Washington, DC: National Aeronautics and Space Administration, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Armando, Giovanni. Intracontinental alkaline magmatism: Geology, petrography, mineralogy and geochemistry of the Jebel Hayim Massif (Central High Atlas - Morocco). Lausanne, Suisse: Université de Lausanne, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

400, Geodynamics of Continental Rifting Meeting and Field Excursion Project IGCP. Rifting in intracontinental setting, Baikal Rift System and other continental rifts: Third Annual Meeting and Field Excursion : Irkutsk and Lake Baikal, Russia, 22-30 August 1999 : abstract book. Irkutsk: [Twin], 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mayol, Stéphane. Géologie de la partie occidentale de la boutonnière paléozoïque des Jebilet, Maroc: Un exemple d'évolution structurale hercynienne de bassins intracontinentaux cambrien et carbonifère. Marseille: Faculté des sciences et techniques de St. Jérôme, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bayer, Ulf, Ralf Littke, Dirk Gajewski, and Susanne Nelskamp. Dynamics of Complex Intracontinental Basins: The Central European Basin System. Springer, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1963-, Hendrix Marc S., and Davis Gregory A. 1935-, eds. Paleozoic and Mesozoic tectonic evolution of central Asia: From continental assembly to intracontinental deformation. Boulder, Colo: Geological Society of America, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

United States. National Aeronautics and Space Administration., ed. Systematic underestimation of earthquake magnitudes from large intracontinental reverse faults: Historical ruptures break across segment boundaries. [Washington, DC: National Aeronautics and Space Administration, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hendrix, Marc S., and Gregory A. Davis. Paleozoic and Mesozoic Tectonic Evolution of Central and Eastern Asia: From Continental Assembly to Intracontinental Deformation. Geological Society of America, 2001. http://dx.doi.org/10.1130/mem194.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Intracontinental"

1

Bayer, U., H. J. Brink, D. Gajewski, and R. Littke. "Characteristics of Complex Intracontinental Sedimentary Basins." In Dynamics of Complex Intracontinental Basins, 2–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-85085-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Maystrenko, Y., U. Bayer, H. J. Brink, and R. Littke. "The Central European Basin System – an Overview." In Dynamics of Complex Intracontinental Basins, 16–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-85085-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cacace, M., U. Bayer, A. M. Marotta, C. Lempp, C. M. Krawczyk, W. Rabbel, S. Willert, et al. "Strain and Temperature an Space and Time." In Dynamics of Complex Intracontinental Basins, 36–153. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-85085-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bachmann, G. H., T. Voigt, U. Bayer, H. von Eynatten, B. Legler, R. Littke, Ch Breitkreuz, et al. "Basin Fill." In Dynamics of Complex Intracontinental Basins, 156–245. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-85085-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Warren, J. K., J. L. Urai, Z. Schléder, C. J. Spiers, P. A. Kukla, M. Mohr, M. Scheck-Wenderoth, et al. "Salt Dynamics." In Dynamics of Complex Intracontinental Basins, 248–344. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-85085-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gaupp, R., P. Möller, V. Lüders, R. di Primio, R. Littke, J. L. Urai, G. Nover, et al. "Fluid Systems." In Dynamics of Complex Intracontinental Basins, 346–458. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-85085-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rolet, J., F. Gresselin, P. Jegouzo, P. Ledru, and R. Wyns. "Intracontinental Hercynian Events in the Armorican Massif." In Pre-Mesozoic Geology in France and Related Areas, 195–219. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-84915-2_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sawkins, Frederick J. "Intracontinental Hotspots, Anorogenic Magmatism, and Associated Metal Deposits." In Metal Deposits in Relation to Plate Tectonics, 239–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-08681-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pirajno, Franco. "Intracontinental Magmatism, Anorogenic Metamorphism, Ore Systems and Mantle Plumes." In Ore Deposits and Mantle Plumes, 291–321. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-2502-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rubin, C. M., and J. B. Saleeby. "Thrust tectonics and Cretaceous intracontinental shortening in southeast Alaska." In Thrust Tectonics, 407–17. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-3066-0_36.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Intracontinental"

1

Silva, Marcelo Ferreira da, Marcus Flavio Nogueira Chiarini, Elton Luiz Dantas, and Roberto Alexandre Vitória de Moraes. "Aeromagnetometria na Caracterização do rifte intracontinental na Faixa Paraguai." In 12th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 15-18 August 2011. Society of Exploration Geophysicists and Brazilian Geophysical Society, 2011. http://dx.doi.org/10.1190/sbgf2011-145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Holt, P. J., M. B. Allen, J. van Hunen, and H. M. Bjørnseth. "Understanding Subsidence Mechanisms of the Intracontinental Palaeozoic Basins of North Africa." In 4th EAGE North African/Mediterranean Petroleum and Geosciences Conference and Exhibition Tunis 2009. European Association of Geoscientists & Engineers, 2009. http://dx.doi.org/10.3997/2214-4609.20145792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gray, K. "TEMPORALLY OVERLAPPING INTRACONTINENTAL CONTRACTION AND TERRANE ACCRETION IN THE CENTRAL NORTH AMERICAN CORDILLERA." In 51st Annual GSA South-Central Section Meeting - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017sc-289331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

LIU, Songnan, and Yu Wang. "AN INTRACONTINENTAL RIFTING TO OROGENY: THE SONGPAN–GARZÊ TERRANE, NORTHEASTERN TIBETAN PLATEAU, CHINA." In GSA Connects 2021 in Portland, Oregon. Geological Society of America, 2021. http://dx.doi.org/10.1130/abs/2021am-366227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ma, Huimin, Yu Wang, and Yajuan Huang. "LINKAGES BETWEEN TECTONICS AND SEDIMENTARY RECORDS OF MESOZOIC INTRACONTINENTAL DEFORMATION IN CENTRAL SOUTH CHINA." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-302692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Yu, Songnan LIU, and Liyun Zhou. "TECTONIC STRESS TRANSMISSION FROM MARGIN TO INTERIORS: RESPONSIBILITY FOR INTRACONTINENTAL DEFORMATION, MAGMATISM AND SEDIMENTATION." In GSA Connects 2021 in Portland, Oregon. Geological Society of America, 2021. http://dx.doi.org/10.1130/abs/2021am-366225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Harrison, Alexa, Nicholas Schrecongost, and Elizabeth McClellan. "ERUPTIVE SEQUENCE AND PROCESSES IN A NEOPROTEROZOIC INTRACONTINENTAL RIFT: THE MOUNT ROGERS FORMATION, SW VA." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-287915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

McClellan, Elizabeth, Jonathan Tso, Alexa Harrison, and Nicholas Schrecongost. "REASSESSMENT OF STRATIGRAPHY IN A NEOPROTEROZOIC INTRACONTINENTAL RIFT: THE VOLCANOGENIC MOUNT ROGERS FORMATION, SW VA." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-288092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alemu, Tadesse B., and Mohamed G. Abdelsalam. "OUTCROP ANALOG FOR INTRACONTINENTAL SAGS (ICONS): A CASE OF THE MEKELE BASIN IN NORTHERN ETHIOPIA." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-308383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bidgoli, Tandis S., Wei Wang, and Daniel Sturmer. "CARBONIFEROUS TRANSITION FROM EXTRAREGIONAL TO LOCAL SEDIMENT SOURCES TIED TO INTRACONTINENTAL ANCESTRAL ROCKY MOUNTAINS DEFORMATION." In GSA Connects 2021 in Portland, Oregon. Geological Society of America, 2021. http://dx.doi.org/10.1130/abs/2021am-371106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography