Academic literature on the topic 'Intestinal mucosal immune system'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Intestinal mucosal immune system.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Intestinal mucosal immune system"
Igietseme, Joseph U., John L. Portis, and Linda L. Perry. "Inflammation and Clearance of Chlamydia trachomatis in Enteric and Nonenteric Mucosae." Infection and Immunity 69, no. 3 (March 1, 2001): 1832–40. http://dx.doi.org/10.1128/iai.69.3.1832-1840.2001.
Full textWang, Li, Limeng Zhu, and Song Qin. "Gut Microbiota Modulation on Intestinal Mucosal Adaptive Immunity." Journal of Immunology Research 2019 (October 3, 2019): 1–10. http://dx.doi.org/10.1155/2019/4735040.
Full textLi, Tianming, Mei Liu, Siyu Sun, Xuying Liu, and Dongyan Liu. "Epithelial Cells Orchestrate the Functions of Dendritic Cells in Intestinal Homeostasis." Journal of Biomedical Research & Environmental Sciences 1, no. 7 (November 2020): 343–52. http://dx.doi.org/10.37871/jbres1165.
Full textSchuppler, Markus, and Martin J. Loessner. "The Opportunistic PathogenListeria monocytogenes: Pathogenicity and Interaction with the Mucosal Immune System." International Journal of Inflammation 2010 (2010): 1–12. http://dx.doi.org/10.4061/2010/704321.
Full textAstafieva, N. G., I. V. Gamova, E. N. Udovitchenko, I. A. Perfilova, D. Y. Kobzev, and І. Ae Michailova. "Mucosal immune system: the regulatory action of probiotics." Russian Journal of Allergy 12, no. 5 (December 15, 2015): 17–30. http://dx.doi.org/10.36691/rja423.
Full textYoo, Ji, Maureen Groer, Samia Dutra, Anujit Sarkar, and Daniel McSkimming. "Gut Microbiota and Immune System Interactions." Microorganisms 8, no. 10 (October 15, 2020): 1587. http://dx.doi.org/10.3390/microorganisms8101587.
Full textFiocchi, Claudio. "Intestinal inflammation: a complex interplay of immune and nonimmune cell interactions." American Journal of Physiology-Gastrointestinal and Liver Physiology 273, no. 4 (October 1, 1997): G769—G775. http://dx.doi.org/10.1152/ajpgi.1997.273.4.g769.
Full textSun, Ruicong, Chunjin Xu, Baisui Feng, Xiang Gao, and Zhanju Liu. "Critical roles of bile acids in regulating intestinal mucosal immune responses." Therapeutic Advances in Gastroenterology 14 (January 2021): 175628482110180. http://dx.doi.org/10.1177/17562848211018098.
Full textHeyman, M. "How dietary antigens access the mucosal immune system." Proceedings of the Nutrition Society 60, no. 4 (November 2001): 417–26. http://dx.doi.org/10.1079/pns2001117.
Full textYue, Bei, Xiaoping Luo, Zhilun Yu, Sridhar Mani, Zhengtao Wang, and Wei Dou. "Inflammatory Bowel Disease: A Potential Result from the Collusion between Gut Microbiota and Mucosal Immune System." Microorganisms 7, no. 10 (October 11, 2019): 440. http://dx.doi.org/10.3390/microorganisms7100440.
Full textDissertations / Theses on the topic "Intestinal mucosal immune system"
Thompson, Fiona Marie. "Activation of the mucosal immune system and growth of the small intestine at weaning /." Title page, abstract and contents only, 1994. http://web4.library.adelaide.edu.au/theses/09PH/09pht4677.pdf.
Full textStange, Jörg. "Studies on host-pathogen interactions at mucosal barrier surfaces using the murine intestinal parasite Eimeria falciformis." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2013. http://dx.doi.org/10.18452/16716.
Full textThe roles of Th1 and Th17 responses as mediators of host protection and pathology in the intestine are the subjects of intense research. Here we investigated a model of intestinal inflammation driven by the intracellular apicomplexan parasite Eimeria falciformis. Although IFN-γ was the predominant cytokine during E. falciformis infection in wild type mice, it was found to be dispensable for host defence and the development of infection-driven intestinal inflammation. E. falciformis-infected IFN-γR-/- and IFN-γ-/- mice developed dramatically exacerbated body weight loss and intestinal pathology, but surprisingly harboured fewer parasites. This was associated with a striking increase in parasite-specific IL-17A and IL-22 production in the mesenteric lymph nodes and at the site of infection. Concurrent neutralisation of IL-17A and IL-22 in E. falciformis infected IFN-γR-/- mice resulted in a reduction in infection induced body weight loss and inflammation and significantly increased parasite shedding. Taken together these data demonstrate for the first time an anti-parasitic effect of IL-22 during an intestinal infection and suggest that IL-17A and IL-22 have redundant roles in driving intestinal pathology in the absence of IFN-γ signalling. To further develop E. falciformis as a model system, we established transfection of E. falciformis sporozoites using various plasmids that contain the fluorescent reporter YFP and the resistance marker DHTS. Sporozoites applied rectally to mice were shown to complete their life cycle, albeit with a lower efficiency in comparison to oral infection with oocysts. Repeated in vivo selection using pyrimethamine and/or FACS and manual sorting led to a maximum percentage of 34 % YFP-expressing oocysts. Taken together, we demonstrate for the first time transfection of E. falciformis and provide perspectives for further work on the establishment of a stable transgenic parasite line.
Tyrer, Peter Charles, and n/a. "Targeting M-cells for oral vaccine delivery." University of Canberra. Health Sciences, 2004. http://erl.canberra.edu.au./public/adt-AUC20060427.122012.
Full textMunro, Grant Hamilton. "Murine giardiasis : intestinal mucosal immune responses." Thesis, University of Edinburgh, 1985. http://hdl.handle.net/1842/20043.
Full textHu, Hong-Zhen. "Purinergic neurogenic intestinal mucosal secretion." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1100028634.
Full textDocument formatted into pages; contains 171 p. Includes bibliographical references. Abstract available online via OhioLINK's ETD Center; full text release delayed at author's request until 2005 Nov. 10.
Santos, Liliane Martins dos. "Breakdown of intestinal homeostasis by mucosal infections triggers adaptive immune responses against antigens from commensal bacteria." Universidade Federal de Minas Gerais, 2011. http://hdl.handle.net/1843/BUOS-8XUR5V.
Full textO trato gastrointestinal de mamíferos é colonizado por uma diversa comunidade microbiana que co-existe mutualisticamente com seu hospedeiro. Estudos recentes têm demonstrado o papel importante destes microrganismos na modulação de respostas imunes. Por outro lado, bactéria da microbiota podem também contribuir para a patologia no contexto de infecções agudas. Por exemplo, infecções orais com Toxoplasma gondii em certas linhagens murinas levam a uma inflamação intestinal exacerbada que é acompanhada por perda de diversidade da microbiota. Além disso, a microbiota agrava a imunopatologia da toxoplasmose. Os mecanismos que explicam este fenômeno ainda não são completamente compreendidos. No presente estudo utilizamos de camundongos tratados com antibióticos para estudar como o reconhecimento de microrganismos da microbiota pode influenciar respostas imunes e a patologia de infecções agudas de mucosa. Camundongos tratados mostraram menor resposta inflamatória e menor quantificação de parasita após infecção com T. gondii. Camundongos germfree também infectados com T. gondii têm menor carga parasitária e níveis reduzidos de enzimas do fígado. Translocação sistêmica de bactérias intestinais foi observada no pico da infecção assim como mudanças temporais de diversidade dentro da comunidade microbiana intestinal. Três bactérias mais encontradas no intestine de camundongos infectados com T. gondii foram usadas para o estudo de respostas específicas contra a microbiota. A infecção com T. gondii foi capaz de induzir respostas humorais específicas contra antígenos da microbiota e respostas adaptativas celulares indicadas por uma forte reação de DTH contra uma das bactérias isoladas. Além disso, células CBir TCR transgênicas que somente respondem a um peptídeo de flagelina se tornam ativadas após a infecção oral com T. gondii. O presente estudo também demonstrou que uma infecção menos intensa, com Microsporidia, também induz anticorpos contra antígenos microbiamos assim como a colite induzida pela bactéria Citrobacter rodentium. A vacinação de camundongos contra uma bacteria commensal levou a um controle mais eficiente de T. gondii mas não agravou a imunopatologia da doença. Em conjunto, nossos resultados sugerem que infecções agudas de mucosa podem ativar respostas adaptativas imunes contra bactérias da microbiota intestinal que por sua vez contribuem para a proteção contra infecções subsequentes.
Morris, Bruce C. "Intestinal Mucosal Mast Cell Immune Response and Pathogenesis of Two Eimeria Acervulina Isolates in Broiler Chickens." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/36228.
Full textMaster of Science
Etling, Michele R. "THE AGING MUCOSAL IMMUNE SYSTEM IN THE INTERLEUKIN-10-DEFICIENT MOUSE." Case Western Reserve University School of Graduate Studies / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=case1184295867.
Full textBlazek, Alisa D. "A Simulated Altitude Device can Improve Endurance Performance without Mucosal Immune System Compromise." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1267567607.
Full textPardo, Camacho Cristina. "Intestinal mucosal humoral response and neuro-immune interaction as contributors to the pathophysiology of diarrhea-predominant Irritable Bowel Syndrome." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670719.
Full textEl Síndrome del Intestino Irritable (SII) es un trastorno gastrointestinal crónico y prevalente que cursa con alteraciones en la motilidad intestinal y dolor abdominal. Constituye un trastorno recurrente y potencialmente incapacitante para el cual no existe un marcador específico diagnóstico ni tratamientos especificos. La ausencia de una patofisiología bien establecida subraya la necesidad identificar las causas orgánicas subyacentes a las alteraciones intestinales y a la generación de síntomas. En la mucosa intestinal de estos pacientes, se ha identificado un cierto grado de inflamación, un incremento de la permeabilidad intestinal y una mayor actividad de la respuesta inmunológica. Estudios previos de nuestro grupo revelaron un incremento de la actividad humoral en la mucosa intestinal de los pacientes con SII con predominio de diarrea (SII-D), asociados a síntomas más severos. Por otra parte, los pacientes que sufren de SII a menudo presentan ansiedad y depresión, sustentando que una disfunción del eje cerebro-intestino podría estar involucrada. Teniendo en cuenta la alta inervación de la mucosa intestinal, juntamente con la modulación bidireccional entre sistema nervioso e inmunitario, el objetivo de esta tesis doctoral es caracterizar la activación de la respuesta humoral por mecanismos neuro-inmunológicos en la mucosa intestinal de los pacientes con SII-D. Para lograr nuestro objetivo, este proyecto se ha divido en tres capítulos. En el capítulo 1, obtuvimos biopsias yeyunales, sangre y heces de pacientes con SII-D y voluntarios sanos. Cuantificamos las Ig en muestras de heces y observamos que los niveles de inmunoglobulina (Ig) G son más altos en el grupo SII-D, concretamente IgG2 e IgG3, esta última sin alcanzar diferencias significativas. La cantidad de IgG total correlaciona de forma positiva con la intensidad del dolor abdominal reportada por los pacientes. Llevamos a cabo un análisis fenotípico en las biopsias de la expresión de los marcadores de célula plasmática CD38/CD138, el marcador neuronal PGP9.5 y la expresión de TACR1 (receptor de sustancia P), involucrado en la señalización nociceptiva. Observamos que las células plasmáticas y las terminaciones nerviosas se encuentran en proximidad y, cuando realizamos la cuantificación de esta distancia mediante microscopía electrónica de transmisión, los resultados mostraron que las células plasmáticas están significativamente más cerca de las terminaciones nerviosas en SII-D. Esta distancia correlaciona con los síntomas de estrés agudo y los niveles de depresión, el segundo sin llegar a alcanzar la significación estadística. En el capítulo 2, realizamos un análisis de RNA-seq con RNA extraído de biopsias yeyunales de pacientes con SII-D y voluntarios sanos. En estas muestras llevamos a cabo un análisis de enriquecimiento del conjunto de genes observamos que el fenotipo inmunológico de la respuesta humoral está enriquecido y 60% de los genes con mayor nivel de enriquecimiento están involucrados en la estructura de las Igs. Las vías asociadas con la función barrera en el intestino también se encuentran sobrerrepresentadas en el SII-D. Finalmente, en el capítulo 3, se evaluaron diferentes fuentes de obtención de célula B como modelo in vitro para estudiar el efecto de los neuropéptidos sobre la actividad inmunológica, más específicamente la sustancia P, en la activación/diferenciación de la célula B y la producción de Igs. Comparamos células de cultivo primario (células B y células plasmáticas aisladas de la mucosa intestinal y sangre) y una línea de célula B inmortalizada (126BLCL). También analizamos células plasmáticas diferenciadas in vitro obtenidas de las células aisladas de sangre. Tras realizar una detallada caracterización fenotípica, concluimos que las células B de sangre son el modelo in vitro más adecuado y factible para alcanzar nuestro objetivo.
Irritable Bowel Syndrome (IBS) is a chronic and prevalent gastrointestinal disorder which curses with intestinal motility alterations and abdominal pain. IBS constitutes a relapsing and potentially disabling disorder and, currently, there is no specific diagnosis biomarker and only palliative treatments are available. The absence of a well-established pathophysiology highlights the need of identifying the underlying organic causes of motility alterations and the onset of symptoms. In the intestinal mucosa of these patients a certain degree of inflammation has been identified together with an increased intestinal permeability and a higher activity of the immune response. Previous studies from our group showed an increased humoral activity in the intestinal mucosa of diarrhea-predominant IBS (IBS-D) patients, associated with more severity of the symptoms. IBS patients often present anxiety and depression, and dysfunction of the gut-brain axis features IBS onset and outcome. Considering intestinal mucosa is highly innervated and the existence of a bidirectional modulation between nervous and immune systems, the main objective of this thesis was to characterize the activation humoral response by neuro-immune mechanisms in the intestinal mucosa of IBS-D patients. To achieve our purpose, this project has been divided into three chapters. In chapter 1, we collected jejunal biopsies, blood and feces from IBS-D patients and healthy volunteers. We quantified immunoglobulins (Igs) in stool and observed higher levels of IgG in IBS-D group, more specifically IgG2 and IgG3, despite this last one did not reach statistical significance. The amount of total IgG positively correlated with the intensity of the abdominal pain reported by the patients. We conducted a phenotypical analysis in jejunal biopsies for the expression of CD38 and CD138 plasma cell marker, PGP9.5 neural marker and TACR1 (substance P receptor) expression, involved in nociceptive signaling. We observed that plasma cells and nerve endings are found in proximity and, when we performed a quantification of this distance by transmission electron microscopy (TEM), results showed plasma cells are significantly close to nerve endings in the IBS-D group. This distance inversely correlates with acute stress symptoms and depression score reported by patients, the later not reaching significance. In Chapter 2, an RNA-seq analysis was conducted in RNA extracted from IBS-D patients and healthy volunteer jejunal biopsies. We performed a Gene Set Enrichment Analysis with all the genes in these samples; we observed the humoral response immunological phenotype is enriched and 60% of the genes with a highest enrichment score are involved in Ig structure. Pathways associated to intestinal barrier function are also overrepresented in IBS-D. Finally, in Chapter 3, we evaluated several sources to obtain a B cell in vitro model to study the effect of neuropeptides on immune activity, more specifically substance P, in B cell activation/differentiation and Ig production. We confronted primary culture cells (B and plasma cells isolated from intestinal mucosa and blood) and an established B cell line (126BLCL). In vitro differentiated plasma cells obtained from blood were also analyzed. After conducting a deep phenotypic characterization, we concluded blood isolated B cells are the most suitable and feasible in vitro model for our purpose. The results of this thesis reinforce the hypothesis of the neuro-immune crosstalk in the intestinal as playing a crucial role in IBS pathophysiology.
Books on the topic "Intestinal mucosal immune system"
Å, Hanson Lars, and Svanborg-Edén Catharina, eds. Mucosal immunobiology: Cellular-molecular interactions in the mucosal immune system. Basel: Karger, 1988.
Find full textWhitehead, Richard. Mucosal biopsy of the gastrointestinal tract. 3rd ed. Philadelphia: Saunders, 1985.
Find full textJihad, Hayek, and Federman Micheline, eds. Gastrointestinal mucosal biopsy. New York: Churchill Livingstone, 1996.
Find full textMucosal biopsy of the gastrointestinal tract. 3rd ed. Philadelphia: Saunders, 1985.
Find full textA, Livolsi Virginia, ed. Mucosal biopsy of the gastrointestinal tract. 4th ed. Philadelphia: Saunders, 1990.
Find full textMucosal biopsy of the gastrointestinal tract. 5th ed. Philadelphia: Saunders, 1997.
Find full text1951-, MacDonald Thomas T., ed. Ontogeny of the immune system of the gut. Boca Raton, Fla: CRC Press, 1990.
Find full text(Editor), Richard Blumberg, and Markus F. Neurath (Editor), eds. Immune Mechanisms in Inflammatory Bowel Disease (Advances in Experimental Medicine and Biology). Springer, 2006.
Find full textBlaser, Annika Reintam, and Adam M. Deane. Normal physiology of the gastrointestinal system. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0172.
Full textFrenkel, Joost, and Hans R. Waterham. Mevalonate Kinase Deficiency. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199972135.003.0039.
Full textBook chapters on the topic "Intestinal mucosal immune system"
James, S. P., W. C. Kwan, and M. C. Sneller. "T cell lymphokine mRNA expression, lymphokine utilization, and regulatory function in the intestinal mucosal immune system." In Advances in Mucosal Immunology, 707–11. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1848-1_218.
Full textBarton, J. R., S. O’Mahoney, and A. Ferguson. "Regulation of antibodies to food proteins within the common mucosal immune system: lack of correlation between antibody titres in saliva and intestinal fluid." In Advances in Mucosal Immunology, 495–96. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1848-1_147.
Full textGeorgiev, Vassil St. "Mucosal Immune System." In National Institute of Allergy and Infectious Diseases, NIH, 675–82. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-297-1_42.
Full textBrandtzaeg, Per, and Finn-Eirik Johansen. "IgA and Intestinal Homeostasis." In Mucosal Immune Defense: Immunoglobulin A, 221–68. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-72232-0_10.
Full textAgarwal, Shradha, and Lloyd Mayer. "The Mucosal Immune System." In Food Allergy, 1–15. Chichester, UK: John Wiley & Sons Ltd, 2014. http://dx.doi.org/10.1002/9781118744185.ch1.
Full textKlimov, Vladimir V. "Skin and Mucosal Immune System." In From Basic to Clinical Immunology, 101–25. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03323-1_2.
Full textRoux, M. E., N. H. Slobodianik, P. Gauffin Cano, and G. Perdigón. "Mucosal Immune System and Malnutrition." In Gut Flora, Nutrition, Immunity and Health, 155–77. Oxford, UK: Blackwell Publishing Ltd, 2008. http://dx.doi.org/10.1002/9780470774595.ch7.
Full textThrane, P. S., T. O. Rognum, and P. Brandtzaeg. "Ontogenesis of the human secretory immune system." In Advances in Mucosal Immunology, 455–58. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1848-1_130.
Full textJohansen, Finn-Eirik, Ranveig Braathen, Else Munthe, Hilde Schjerven, and Per Brandtzaeg. "Regulation of the Mucosal IgA System." In Mucosal Immune Defense: Immunoglobulin A, 111–43. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-72232-0_5.
Full textMestecky, Jiri. "Homeostasis of the Mucosal Immune System." In Advances in Experimental Medicine and Biology, 197–205. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1371-1_26.
Full textConference papers on the topic "Intestinal mucosal immune system"
Polosukhin, Vasiliy V., Pierre P. Massion, Jae W. Lee, Scott H. Randell, and Timothy S. Blackwell. "TOBACCO SMOKE IMPAIRS THE BRONCHIAL MUCOSAL SECRETORY IgA IMMUNE SYSTEM THROUGH ALTERATION OF BRONCHIAL EPITHELIAL CELL DIFFERENTIATION." In American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a1424.
Full textOrlenkovich, Lilija. "CORRELATIONS ANALYSIS OF IMMUNE SYSTEM AND GUT MICROBIOTA INDICES OF RATS IN THE CHRONIC EXPOSITION TO BIOINSECTICIDE ENTOMOPHTHORIN." In XIV International Scientific Conference "System Analysis in Medicine". Far Eastern Scientific Center of Physiology and Pathology of Respiration, 2020. http://dx.doi.org/10.12737/conferencearticle_5fd728a1ea3837.21988844.
Full textSlawinski, Piotr R., Weston M. Lewis, and Benjamin S. Terry. "Performance Assessment of a Noninvasive Swallowable Biosensor Deployment System in Microgravity." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65039.
Full textSmith, Alana, Breia Reed, Joseph F. Pierre, Beverly Lyn-Cook, and Athena Starlard-Davenport. "Abstract B064: Investigation of the breast microbiome and mucosal immune system in African American and non-Hispanic White women with and without breast cancer: A pilot study." In Abstracts: Eleventh AACR Conference on The Science of Cancer Health Disparities in Racial/Ethnic Minorities and the Medically Underserved; November 2-5, 2018; New Orleans, LA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7755.disp18-b064.
Full textKrishnakumar, D., and K. S. Jaganathan. "Development of nasal HPV vaccine formulations." In 16th Annual International Conference RGCON. Thieme Medical and Scientific Publishers Private Ltd., 2016. http://dx.doi.org/10.1055/s-0039-1685403.
Full textFaulkner, M. F., and J. Brandon Dixon. "Engineered Model of the Intestine Suggests Active Transport of Lipid by Lymphatics." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53903.
Full text