Academic literature on the topic 'Intervertebral disc'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Intervertebral disc.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Intervertebral disc"
Noerma Kurniawa, Ceccare, Yeni Cahyati, and Rizki Agung Basuki. "PERBANDINGAN POSISI KNEE JOINT FLEKSI DAN EXTENSI PEMERIKSAAN LUMBOSACRAL ANTERO POSTERIOR (AP) SUPINE DALAM MEMPERLIHATKAN DISCUS INTERVERTEBRALIS." JRI (Jurnal Radiografer Indonesia) 3, no. 1 (June 11, 2021): 13–19. http://dx.doi.org/10.55451/jri.v3i1.55.
Full textChabarova, Olga, Jelena Selivonec, and Alicia Menendez Hurtado. "Investigation of the Role of Osteoporotic Vertebra Degeneration on the Stability of the Lumbar Spine: In Silico Modelling under Compressive Loading." Bioengineering 11, no. 5 (May 17, 2024): 507. http://dx.doi.org/10.3390/bioengineering11050507.
Full textCalleja-Agius, J., Y. Muscat-Baron, and M. P. Brincat. "Estrogens and the intervertebral disc." Menopause International 15, no. 3 (August 31, 2009): 127–30. http://dx.doi.org/10.1258/mi.2009.009016.
Full textFernandez-Moure, Joseph, Caitlyn A. Moore, Keemberly Kim, Azim Karim, Kevin Smith, Zonia Barbosa, Jeffrey Van Eps, Pranela Rameshwar, and Bradley Weiner. "Novel therapeutic strategies for degenerative disc disease: Review of cell biology and intervertebral disc cell therapy." SAGE Open Medicine 6 (January 1, 2018): 205031211876167. http://dx.doi.org/10.1177/2050312118761674.
Full textShu, Cindy C., Susan M. Smith, Christopher B. Little, and James Melrose. "Elevated hypertrophy, growth plate maturation, glycosaminoglycan deposition, and exostosis formation in the Hspg2 exon 3 null mouse intervertebral disc." Biochemical Journal 476, no. 2 (January 18, 2019): 225–43. http://dx.doi.org/10.1042/bcj20180695.
Full textAlberts, Russell, Arun-Angelo Patil, and Dongxue Zhou. "Single-unit artificial intervertebral disc." Journal of Neurosurgery: Spine 1, no. 1 (July 2004): 95–100. http://dx.doi.org/10.3171/spi.2004.1.1.0095.
Full textPauza, Kevin. "Cadaveric Intervertebral Disc Temperature Mapping During Disc Biacuplasty." October 2008 5;11, no. 10;5 (October 14, 2008): 669–76. http://dx.doi.org/10.36076/ppj.2008/11/669.
Full textYlinen, P., R. M. Tulamo, M. Kellomäki, P. Türmälä, P. Rokkanen, and T. Palmgren. "Lumbar intervertebral disc replacement using bioabsorbable self-reinforced poly-L-lactide full-threaded screws, or cylindrical implants of polylactide polymers, bioactive glass and Polyactive™." Veterinary and Comparative Orthopaedics and Traumatology 16, no. 03 (July 2003): 138–44. http://dx.doi.org/10.1055/s-0038-1632777.
Full textZhou, Zhiyu, Manman Gao, Fuxin Wei, Jiabi Liang, Wenbin Deng, Xuejun Dai, Guangqian Zhou, and Xuenong Zou. "Shock Absorbing Function Study on Denucleated Intervertebral Disc with or without Hydrogel Injection through Static and Dynamic Biomechanical Tests In Vitro." BioMed Research International 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/461724.
Full textDanylevych, V. P. "The lumbar intervertebral discs in males and females: measures, correlation, modeling." Reports of Vinnytsia National Medical University 26, no. 1 (March 28, 2022): 17–26. http://dx.doi.org/10.31393/reports-vnmedical-2022-26(1)-03.
Full textDissertations / Theses on the topic "Intervertebral disc"
Stefanakis, Manos. "Biomechanics of intervertebral disc pain." Thesis, University of Bristol, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.556723.
Full textLemos, Felipe Fernandes [UNESP]. "Influência da desidratação no comportamento mecânico do disco intervertebral lombar." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/105330.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
A desidratação do núcleo pulposo que, juntamente com o anulus fibroso, compõe o disco intervertebral, participa do processo de degeneração da coluna vertebral. Torna-se importante entender como este processo de desidratação e a consequente alteração das propriedades mecânicas influenciam na biomecânica dessa articulação. O principal objetivo deste estudo é analisar a influência da desidratação no coeficiente de amortecimento viscoso e como esta variação pode alterar o comportamento mecânico do disco intervertebral lombar. Este estudo é composto de duas etapas: na primeira, o coeficiente de amortecimento viscoso foi obtido experimentalmente de unidades funcionais de colunas lombares suínas antes e após o processo de desidratação das mesmas; na segunda, foi simulado em modelo computacional a resposta harmônica, utilizando-se dados da literatura e do coeficiente de amortecimento viscoso, analisando as diferenças entre uma simulação com o disco intervertebral hidratado e desidratado. O coeficiente de amortecimento viscoso hidratado (4,7) e desidratado (2,7) apresentou diferença estatisticamente significante (p<0,001). Na simulação computacional podese evidenciar uma menor influência da variação do coeficiente de amortecimento viscoso quando analisado de forma isolada do que quando analisado em conjunto com variações nos dados referentes à rigidez, principalmente nas frequências de ressonância e nas amplitudes de pressão intradiscal e deformação do disco intervertebral. Concluiu-se que discos intervertebrais desidratados respondem de forma diferente à vibração, o que pode contribuir para os processos lesivos da coluna vertebral
The dehydration of the nucleus pulposus which, with the anulus fibrosus, composes the intervertebral disc, participates in the process of degeneration of the spine. It is important to understand how this process and the consequent alteration of dehydration of the mechanical properties influence the biomechanics of this joint. The aim of this study is to analyze the influence of dehydration in the viscous damping coefficient and how this variation can change the mechanical behavior of lumbar intervertebral disc. This study consists of two stages: first, the viscous damping coefficient was obtained experimentally in functional units of porcine lumbar spine before and after the dehydration process of them; second, an harmonic response was simulated in a computer model, using literature data and the viscous damping coefficient, analyzing the differences between a simulation with the hydrated and dehydrated intervertebral disc. The hydrated (4.7) and dehydrated (2.7) viscous damping coefficient showed a statistically significant difference (p <0.001). In the computer simulation, a lower influence of variation of the viscous damping coefficient can be detected when analyzed separately than when analyzed together with variation on stiffness data, especially in the resonance frequencies and in the amplitudes of the intradiscal pressure and deformation of the intervertebral disc. We conclude that dehydrated intervertebral discs respond differently to vibration, what can contribute to the damaging processes of the spine
González, Guitiérrez Ramiro Arturo. "Biomechanical study of intervertebral disc degeneration." Doctoral thesis, Universitat Politècnica de Catalunya, 2012. http://hdl.handle.net/10803/76781.
Full textLa degeneración y edad afectan la biomecánica del disco intervertebral, reduciendo la capacidad de rigidez, flexibilidad y atenuación de impactos, contra el movimiento y carga del raquis. La caracterización biomecánica del disco se realiza con ensayos mecánicos a segmentos de vértebra-disco-vértebra y aplicando cargas axiales, cortantes, flexión y torsión, estáticas ó dinámicas, con magnitudes de carga según el intervalo fisiológico. Sin embargo, las pruebas tradicionales no dan una visión de los estados de carga y deformación de los componentes del disco: núcleo pulposo, anillo fibroso y placa terminal. Por lo tanto, el estado interno de esfuerzos y deformaciones del disco, solo puede ser predicho con métodos numéricos, uno de los cuales es el método de elemento finito. El objetivo de esta tesis fue, estudiar la biomecánica de discos intervertebrales degenerados a las condiciones de carga en compresión, flexión y torsión, mediante el uso de ensayos mecánicos y de un modelo de elementos finitos de la degeneración de disco, basado en imágenes con resonancia magnética (MRI). Por lo tanto, se usaron discos lumbares L2-L3 y L4-L5 obtenidos de cadáveres, con degeneración leve a severa. Se identificó osteocondrosis intervertebral y espondilosis deformante, siendo el colapso del espacio intervertebral el aspecto más relevante. Luego, todos los discos fueron ensayados a condiciones de carga estática y dinámica, y los resultados correspondieron a la rigidez del disco (a compresión, flexión y torsión), a la relajación de tensiones y a la respuesta dinámica. De éstos, la rigidez fue usada para validar el modelo de disco. Los resultados de los ensayos sugieren que los discos con degeneración avanzada sobre aquellos con degeneración leve son, menos rigidos a compresión, menos rigidos a flexión y torsión, presentan menor protuberancia radial, y reducen sus propiedades viscoelásticas y de amortiguamiento. El estudio muestra que la degeneración impacta las propiedades biomecánicas del disco, poniendo en riesgo la funcionalidad normal. El desarollo de un modelo de elementos finitos de la degeneración de disco inició eligiendo una secuencia de resonancia magnética de un disco L2-L3. La segmentación de los materiales del disco y de las vértebras se realizó basado en intensidad de brillo del pixel y en fundamentos de radiología, y se creó una malla de elementos finitos correspondiente a la forma irregular del disco. Los materiales del disco se modelaron como hiperelásticos y los tejidos óseos se modelaron como materiales ortotrópicos e isotrópicos. El ajuste de propiedades de los materiales fue basado en la integridad del anillo fibroso, y dio una rigidez correspondiente a la de un disco con degeneración leve. Luego, se realizó la validación del modelo, e incluyó un estudio de las distribuciones de esfuerzo y deformación a las condiciones de carga en compresión, flexión y torsión. Los resultados de todas las simulaciones de carga mostraron que el disco es sometido a grandes deformaciones. En contraste, las vértebras fueron sometidas a mayores esfuerzos pero con deformaciones insignificantes. En compresión, el modelo predijo la formación de una protuberancia radial simétrica, en concordancia con la experimentación. El núcleo pulposo mostró ser el portador principal de carga, con tensiones y deformaciones principales negativas. En flexión y torsión, el anillo fibroso mostró ser el portador principal de carga, con grandes deformaciones y tensiones principales simétricas para la primera carga, y con grandes tensiones cortantes para la segunda carga. El estudio mostró la importancia de las deformaciones de los tejidos blandos, principalmente notados en la degeneración avanzada. Por el contrario, las tensiones mayores en los cuerpos vertebrales sobre aquellas del disco intervertebral mostraron la relevancia de la predisposición a las fracturas óseas. Este tipo de estudio debe contribuir a la comprensión de la biomecánica del disco intervertebral.
Osti, Orso L. "Annular tears and intervertebral disc degeneration /." Title page, contents and abstract only, 1990. http://web4.library.adelaide.edu.au/theses/09PH/09pho85.pdf.
Full textLiu, Jane J. "Proteoglycans of the human intervertebral disc." Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=68204.
Full textNaish, Claudia Martha. "Ultrasound imaging of the intervertebral disc." Thesis, University of Bristol, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288301.
Full textMolinari, Michael B. "Mechanical fractionation of the intervertebral disc." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:7385c54f-a3d0-4467-aca4-c7a9b8686982.
Full textLuxmoore, Bethany Jane. "Computational simulation of the intervertebral disc." Thesis, University of Leeds, 2013. http://etheses.whiterose.ac.uk/4685/.
Full textJim, Jin-to. "Genetics and molecular characterization of degenerative disc disease." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B35720189.
Full textChan, Kit-ying, and 陳潔瑩. "Development of whole disc organ culture system and acellular disc scaffold for intervertebral disc engineering." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45600077.
Full textBooks on the topic "Intervertebral disc"
Shapiro, Irving M., and Makarand V. Risbud, eds. The Intervertebral Disc. Vienna: Springer Vienna, 2014. http://dx.doi.org/10.1007/978-3-7091-1535-0.
Full textThacher, Christopher. Intervertebral disc disease. Edited by Kay William J and Brown Nancy O. Philadelphia, PA: J.B. Lippincott, 1989.
Find full textM, Phillips Frank, and Lauryssen Carl, eds. The lumbar intervertebral disc. New York, NY: Thieme Medical Publishers, 2010.
Find full textColville, Gordon Malcolm Herbert. Enzymes of the intervertebral disc. Manchester: University of Manchester, 1995.
Find full textW, Hardy Russell, ed. Lumbar disc disease. 2nd ed. New York: Raven Press, 1993.
Find full text1940-, Ghosh P., ed. The Biology of the intervertebral disc. Boca Raton, FL: CRC Press, 1988.
Find full textGrad, Sibylle, Mauro Alini, David Eglin, Daisuke Sakai, Joji Mochida, Sunil Mahor, Estelle Collin, Biraja Dash, and Abhay Pandit. Cells and Biomaterials for Intervertebral Disc Regeneration. Cham: Springer International Publishing, 2010. http://dx.doi.org/10.1007/978-3-031-02580-8.
Full textPostacchini, Franco. Lumbar disc herniation. Wien: Springer, 1999.
Find full text1915-, Brown Joseph E., Nordby Eugene J, and Smith Lyman, eds. Chemonucleolysis. Thorofare, NJ: Slack, 1985.
Find full textG, Watkins Robert, and Collis John S, eds. Lumbar discectomy and laminectomy. Rockville, Md: Aspen Publishers, 1987.
Find full textBook chapters on the topic "Intervertebral disc"
Cortes, Daniel H., and Dawn M. Elliott. "The Intervertebral Disc: Overview of Disc Mechanics." In The Intervertebral Disc, 17–31. Vienna: Springer Vienna, 2013. http://dx.doi.org/10.1007/978-3-7091-1535-0_2.
Full textLasanianos, Nick G., George K. Triantafyllopoulos, and Spiros G. Pneumaticos. "Intervertebral Disc Herniation." In Trauma and Orthopaedic Classifications, 243–45. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6572-9_54.
Full textCrock, Henry Vernon. "Intervertebral Disc Calcification." In A Short Practice of Spinal Surgery, 147–57. Vienna: Springer Vienna, 1993. http://dx.doi.org/10.1007/978-3-7091-6650-5_4.
Full textAdams, Michael A. "Intervertebral Disc Tissues." In Engineering Materials and Processes, 7–35. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03970-1_2.
Full textEseonu, Kelechi, and Nicolas Beresford-Cleary. "Intervertebral Disc Anatomy." In Spine Surgery Vivas for the FRCS (Tr & Orth), 213–14. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003201304-59.
Full textShah, Akansha M., Sarah Yoon Ji Kwon, Wilson C. W. Chan, and Danny Chan. "Intervertebral Disc Degeneration." In Cartilage, 229–61. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45803-8_10.
Full textLavignolle, B. "The Intervertebral Disc." In Spinal Anatomy, 207–16. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20925-4_14.
Full textBrisson, Brigitte A. "Intervertebral Disc Fenestration." In Current Techniques in Canine and Feline Neurosurgery, 191–98. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118711545.ch22.
Full textShapiro, Irving M., and Makarand V. Risbud. "Introduction to the Structure, Function, and Comparative Anatomy of the Vertebrae and the Intervertebral Disc." In The Intervertebral Disc, 3–15. Vienna: Springer Vienna, 2013. http://dx.doi.org/10.1007/978-3-7091-1535-0_1.
Full textYee, Anita, and Danny Chan. "Genetic Basis of Intervertebral Disc Degeneration." In The Intervertebral Disc, 157–76. Vienna: Springer Vienna, 2013. http://dx.doi.org/10.1007/978-3-7091-1535-0_10.
Full textConference papers on the topic "Intervertebral disc"
Maleskian, M., S. S. Park, and C. J. Hunter. "Experimental Modal Analysis of Intervertebral Disc Joint Dynamics." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-191699.
Full textHwang, David, Miao Yu, and Adam H. Hsieh. "Dependence of Intervertebral Disc Pressure Generation on Load History." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-204233.
Full textKim, Jesse G., Tae-Hong Lim, Susan M. Renner, Atsushi Fujiwara, Cahn Nuyen, Taekhoon Yoon, and Howard S. An. "Experimental Intervertebral Disc Degeneration: Compressive Behavior Changes Over Time." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2611.
Full textWiltsey, Craig, Thomas Christiani, Jesse Williams, Jamie Coulter, Dana Demiduke, Katelynn Toomer, Sherri English, et al. "Tissue Engineering of the Intervertebral Disc." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80349.
Full textLee, Cynthia R., Mauro Alini, and James C. Iatridis. "Organ Culture System for Mechanobiology Studies of the Intervertebral Disc." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61248.
Full textKumaresan, Srirangam, Frank A. Pintar, Narayan Yoganandan, Phaladone J. Khouphongsy, and Joseph F. Cusick. "Intervertebral Disc Morphology in Cervical Spine Biomechanics." In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0464.
Full textColliou, Olivier K., Ellen Liebenberg, Neil A. Duncan, and Jeffrey C. Lotz. "Compression-Induced Intervertebral Disc Degeneration in a Mouse Model." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0279.
Full textNatarajan, Raghu N., Mohammed Qasim, Howard An, and Gunnar B. J. Andersson. "Effect of Annular Micro Tear on Lumbar Intervertebral Disc Biomechanics." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19025.
Full textMarini, Giacomo, Gerd Huber, and Stephen J. Ferguson. "Nonlinear Dynamic Behaviour of the Intervertebral Disc." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14641.
Full textTerbetas, G., A. Kozlovskaja, D. Varanius, V. Graziene, J. Vaitkus, and A. Vaitkuviene. "Spectroscopic Parameters of Lumbar Intervertebral Disc Material." In LASER FLORENCE 2008: Selected Presentations at the International Laser Medicine Congress. American Institute of Physics, 2009. http://dx.doi.org/10.1063/1.3175623.
Full textReports on the topic "Intervertebral disc"
Smith, Paul N., David R. J. Gill, Michael J. McAuliffe, Catherine McDougall, James D. Stoney, Christopher J. Vertullo, Christopher J. Wall, et al. Demographics of Spinal Disc Arthroplasty: Supplementary Report. Australian Orthopaedic Association, October 2023. http://dx.doi.org/10.25310/yjor3105.
Full textSnyder, Brian. Development of Ultrasound to Measure In-vivo Dynamic Cervical Spine Intervertebral Disc Mechanics. Fort Belvoir, VA: Defense Technical Information Center, January 2014. http://dx.doi.org/10.21236/ada600493.
Full textDuan, Jiahao, Shaofeng Yang, Zhaoyong LI, Long Chen, and Ran Teng. Treatment of lumbar intervertebral disc herniation by invigorating kidney and promoting blood Circulation:A protocol for systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, March 2022. http://dx.doi.org/10.37766/inplasy2022.3.0080.
Full textGuo, Tianci, Huichuan Feng, Aifeng Liu, Jixin Chen, and Weijie Yu. Efficacy and safety of percutaneous endoscopic lumbar discectomy via intervertebral approach for L5/S1 lumbar disc herniation: a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, July 2021. http://dx.doi.org/10.37766/inplasy2021.7.0073.
Full textLi, Wenhao, He Zhao, Zhencheng Xiong, Chuanhong Li, Jianbin Guan, Tao Liu, Yongdong Yang, and Xing Yu. Evaluation of the efficacy of stem cell therapy in animal models of intervertebral disc degeneration based on imaging indicators: a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, April 2022. http://dx.doi.org/10.37766/inplasy2022.4.0148.
Full textLi, Jiaqi, PWH Kwong, MYL Chan, and M. Kawabata. Comparison of in vivo intradiscal pressure between sitting and standing in human lumbar spine: A systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, March 2022. http://dx.doi.org/10.37766/inplasy2022.3.0043.
Full textA GLP Chronic Study to Evaluate the Biological Effects and Systemic Toxicity of Rejuve (IDSD) Implantation in an Ovine Intervertebral Disc Model. Spinal Simplicity LLC, October 2018. http://dx.doi.org/10.57212/emyn8297.
Full text