Academic literature on the topic 'Intersection algébrique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Intersection algébrique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Intersection algébrique"
Colliot-Thélène, Jean-Louis, and Alexei N. Skorobogatov. "Descente galoisienne sur le groupe de Brauer." crll 2013, no. 682 (September 6, 2012): 141–65. http://dx.doi.org/10.1515/crelle-2012-0039.
Full textAlfonsi, Liliane. "Bézout et les intersections de courbes algébriques." BibNum, September 1, 2013. http://dx.doi.org/10.4000/bibnum.583.
Full textDissertations / Theses on the topic "Intersection algébrique"
Cheboui, Smail. "Intersection Algébrique sur les surfaces à petits carreaux." Electronic Thesis or Diss., Montpellier, 2021. http://www.theses.fr/2021MONTS006.
Full textWe study the quantity denoted Kvol defined by KVol(X,g) = Vol(X,g)*sup_{alpha,beta} frac{Int(alpha,beta)}{l_g (alpha)l_g(beta)} where X is a compact surface of genus s, Vol(X,g) is the volume (area) of the surface with respect to the metric g and alpha, beta two simple closed curves on the surface X.The main results of this thesis can be found in Chapters 3 and 4. In Chapter 3 titled "Algebraic intersection for translation surfaces in the stratum H(2)" we are interested in the sequence of kvol of surfaces L(n,n) and we provide that KVol(L(n,n)) goes to 2 when n goes to infinity. In Chapter 4 titled "Algebraic intersection for translation surfaces in a family of Teichmüller disks" we are interested in the Kvol for a surfaces belonging to the stratum H(2s-2) wich is an n-fold ramified cover of a flat torus. We are also interested in the surfaces St(2s-1) and we show that kvol(St(2s-1))=2s-1. We are also interested in the minimum of Kvol on the Teichmüller disk of the surface St(2s-1) which will be (2s-1)sqrt {frac {143}{ 144}} and it is achieved at the two points (pm frac{9}{14}, frac{sqrt{143}}{14})
Busé, Laurent. "Étude du résultant sur une variété algébrique." Phd thesis, Université de Nice Sophia-Antipolis, 2001. http://tel.archives-ouvertes.fr/tel-00096815.
Full textGaray-Lopez, Cristhian Emmanuel. "Tropical intersection theory, and real inflection points of real algebraic curves." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066364/document.
Full textThis thesis is divided in two main parts. First, we study the relationships between intersection theories in tropical and algebraic geometry. Then, we study the question of the possibilities for the distribution of the real inflection points associated to a real linear system defined on a smooth real algebraic curve. In the first part, we present new results linking algebraic and tropical intersection theories over a very-affine algebraic variety defined over a particular non-Archimedean field (known as Mal’cev-Newmann field). The main result concerns the intersection of a one-dimensional algebraic cycle with a Cartier divisor in a variety with simple tropicalization. In the second part, we obtain first a characterization of the distribution of real inflection points associated to a real complete linear system of degree d>1 defined over a smooth real elliptic curve. Then we study some canonical, non-hyperelliptic real algebraic curves of genus 4 in a 3-dimensional projective space. We obtain a formule that relies the amount of real Weierstrass points of such a curve with the Euler-Poincaré characteristic of certain topological space. Finally, using O. Viro’s Patch-working technique, we construct an example of a smooth, non-hyperelliptic real algebraic curve of genus 4 having 30 real Weierstrass points
Wintz, Julien. "Méthodes algébriques pour la modélisation géometrique." Phd thesis, Université de Nice Sophia-Antipolis, 2008. http://tel.archives-ouvertes.fr/tel-00347162.
Full textLa première partie de cette thèse porte sur l'utilisation de méthodes algébriques en modélisation géométrique, l'accent étant mis sur la topologie, l'intersection et l'auto-intersection dans le cadre du calcul d'arrangement d'ensembles semi-algébriques comme les courbes et surfaces à représentation implicite ou paramétrique. Une attention particulière est portée à la généricité des algorithmes qui peuvent être spécifiés quel que soit le contexte, puis spécialisés pour répondre aux exigences d'une certaine représentation.
La seconde partie de cette thèse présente le prototypage d'un environnement de modélisation géométrique dont le but est de fournir un moyen générique et efficace pour modéliser des solides à partir d'objets géométriques à re\-pré\-sen\-ta\-tion algébrique tels que les courbes et surfaces implicites ou paramétriques, à la fois d'un point de vue utilisateur et d'un point de vue de développeur, par l'utilisation de librairies de calcul symbolique numérique pour la
manipulation des polynômes définissant les objets géométriques.
Lê, Thi Ha. "Intersection de surfaces algébriques paramétrées : classification et applications en C.G.A.O." Nice, 2007. http://www.theses.fr/2007NICE4033.
Full textFoufou, Sebti. "Contribution à l'algorithmique des intersections de surfaces en algèbre des volumes." Lyon 1, 1997. http://www.theses.fr/1997LYO10216.
Full textBrotbek, Damian. "Variétés projective à fibré cotangent ample." Phd thesis, Université Rennes 1, 2011. http://tel.archives-ouvertes.fr/tel-00677065.
Full textBertrand, Benoit. "Hypersurfaces et intersections complètes maximales dans les variétés toriques." Rennes 1, 2002. http://www.theses.fr/2002REN10018.
Full textPetitjean, Sylvain. "Géométrie énumérative et contacts de variétés linéaires : application aux graphes d'aspects d'objets courbes." Vandoeuvre-les-Nancy, INPL, 1995. http://docnum.univ-lorraine.fr/public/INPL_T_1995_PETITJEAN_S.pdf.
Full textTomasini, Arnaud. "Intersections maximales de quadriques réelles." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAD035/document.
Full textReal algebraic geometry is in its simplest definition, the study of sets of solutions of a system of polynomial equations with real coefficients. In this theme, we focus on the intersections of quadrics where already the case of three quadrics remains wide open. Our subject can be summarized as the topological study of real algebraic varieties and interaction between their topology on the one hand and their deformations and degenerations on the other hand, a problem coming from the 16th Hilbert problem and enriched by recent developments. In this thesis, we will focus on maximum intersections of real quadrics and particularly prove the existence of such intersections using research developments made since the late 80. In the case of intersections of three quadrics, we will point the very close link between the intersections on the one hand and on the other plane curves, and show that the study of M-curves (one of the problems of the 16th Hilbert problem) may be done through the study of maximum intersections. Next, we will use the study on nodal plane curves to determine in some cases deformation classes of intersections of three real quadrics
Books on the topic "Intersection algébrique"
Intersections de deux quadriques et pinceaux de courbes de genre 1 =: Intersections of two quadrics and pencils of curves of genus 1. Berlin: Springer, 2007.
Find full textFerrand, D., Jean-Pierre Jouanolou, O. Jussila, Pierre Berthelot, and Alexander Grothendieck. Théorie des Intersections et Théorème de Riemann-Roch: Séminaire de Géométrie Algébrique du Bois Marie 1966 /67. Springer London, Limited, 2006.
Find full textBook chapters on the topic "Intersection algébrique"
"Théorie locale des intersections de courbes." In Courbes Algébriques Planes, 133–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-33708-9_9.
Full text