Journal articles on the topic 'Interpretable ML'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Interpretable ML.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zytek, Alexandra, Ignacio Arnaldo, Dongyu Liu, Laure Berti-Equille, and Kalyan Veeramachaneni. "The Need for Interpretable Features." ACM SIGKDD Explorations Newsletter 24, no. 1 (June 2, 2022): 1–13. http://dx.doi.org/10.1145/3544903.3544905.
Full textWu, Bozhi, Sen Chen, Cuiyun Gao, Lingling Fan, Yang Liu, Weiping Wen, and Michael R. Lyu. "Why an Android App Is Classified as Malware." ACM Transactions on Software Engineering and Methodology 30, no. 2 (March 2021): 1–29. http://dx.doi.org/10.1145/3423096.
Full textYang, Ziduo, Weihe Zhong, Lu Zhao, and Calvin Yu-Chian Chen. "ML-DTI: Mutual Learning Mechanism for Interpretable Drug–Target Interaction Prediction." Journal of Physical Chemistry Letters 12, no. 17 (April 27, 2021): 4247–61. http://dx.doi.org/10.1021/acs.jpclett.1c00867.
Full textLin, Zhiqing. "A Methodological Review of Machine Learning in Applied Linguistics." English Language Teaching 14, no. 1 (December 23, 2020): 74. http://dx.doi.org/10.5539/elt.v14n1p74.
Full textAbdullah, Talal A. A., Mohd Soperi Mohd Zahid, and Waleed Ali. "A Review of Interpretable ML in Healthcare: Taxonomy, Applications, Challenges, and Future Directions." Symmetry 13, no. 12 (December 17, 2021): 2439. http://dx.doi.org/10.3390/sym13122439.
Full textSajid, Mirza Rizwan, Arshad Ali Khan, Haitham M. Albar, Noryanti Muhammad, Waqas Sami, Syed Ahmad Chan Bukhari, and Iram Wajahat. "Exploration of Black Boxes of Supervised Machine Learning Models: A Demonstration on Development of Predictive Heart Risk Score." Computational Intelligence and Neuroscience 2022 (May 12, 2022): 1–11. http://dx.doi.org/10.1155/2022/5475313.
Full textSingh, Devesh. "Interpretable Machine-Learning Approach in Estimating FDI Inflow: Visualization of ML Models with LIME and H2O." TalTech Journal of European Studies 11, no. 1 (May 1, 2021): 133–52. http://dx.doi.org/10.2478/bjes-2021-0009.
Full textCarreiro Pinasco, Gustavo, Eduardo Moreno Júdice de Mattos Farina, Fabiano Novaes Barcellos Filho, Willer França Fiorotti, Matheus Coradini Mariano Ferreira, Sheila Cristina de Souza Cruz, Andre Louzada Colodette, et al. "An interpretable machine learning model for covid-19 screening." Journal of Human Growth and Development 32, no. 2 (June 23, 2022): 268–74. http://dx.doi.org/10.36311/jhgd.v32.13324.
Full textMenon, P. Archana, and Dr R. Gunasundari. "Study of Interpretability in ML Algorithms for Disease Prognosis." Revista Gestão Inovação e Tecnologias 11, no. 4 (August 19, 2021): 4735–49. http://dx.doi.org/10.47059/revistageintec.v11i4.2500.
Full textDawid, Anna, Patrick Huembeli, Michał Tomza, Maciej Lewenstein, and Alexandre Dauphin. "Hessian-based toolbox for reliable and interpretable machine learning in physics." Machine Learning: Science and Technology 3, no. 1 (November 24, 2021): 015002. http://dx.doi.org/10.1088/2632-2153/ac338d.
Full textBölte, Jens, Bernadette M. Jansma, Anna Zilverstand, and Pienie Zwitserlood. "Derivational morphology approached with event-related potentials." Mental Lexicon 4, no. 3 (December 15, 2009): 336–53. http://dx.doi.org/10.1075/ml.4.3.02bol.
Full textRajczakowska, Magdalena, Maciej Szeląg, Karin Habermehl-Cwirzen, Hans Hedlund, and Andrzej Cwirzen. "Interpretable Machine Learning for Prediction of Post-Fire Self-Healing of Concrete." Materials 16, no. 3 (February 2, 2023): 1273. http://dx.doi.org/10.3390/ma16031273.
Full textBohanec, Marko, Marko Robnik-Šikonja, and Mirjana Kljajić Borštnar. "Decision-making framework with double-loop learning through interpretable black-box machine learning models." Industrial Management & Data Systems 117, no. 7 (August 14, 2017): 1389–406. http://dx.doi.org/10.1108/imds-09-2016-0409.
Full textKim, Eui-Jin. "Analysis of Travel Mode Choice in Seoul Using an Interpretable Machine Learning Approach." Journal of Advanced Transportation 2021 (March 1, 2021): 1–13. http://dx.doi.org/10.1155/2021/6685004.
Full textZafar, Muhammad Rehman, and Naimul Khan. "Deterministic Local Interpretable Model-Agnostic Explanations for Stable Explainability." Machine Learning and Knowledge Extraction 3, no. 3 (June 30, 2021): 525–41. http://dx.doi.org/10.3390/make3030027.
Full textNtampaka, Michelle, and Alexey Vikhlinin. "The Importance of Being Interpretable: Toward an Understandable Machine Learning Encoder for Galaxy Cluster Cosmology." Astrophysical Journal 926, no. 1 (February 1, 2022): 45. http://dx.doi.org/10.3847/1538-4357/ac423e.
Full textLiu, Fang, Xiaodi Wang, Ting Li, Mingzeng Huang, Tao Hu, Yunfeng Wen, and Yunche Su. "An Automated and Interpretable Machine Learning Scheme for Power System Transient Stability Assessment." Energies 16, no. 4 (February 16, 2023): 1956. http://dx.doi.org/10.3390/en16041956.
Full textBarbosa, Poliana Goncalves, and Elena Nicoladis. "Deverbal compound comprehension in preschool children." Mental Lexicon 11, no. 1 (June 7, 2016): 94–114. http://dx.doi.org/10.1075/ml.11.1.05bar.
Full textHicks, Steven, Debesh Jha, Vajira Thambawita, Pål Halvorsen, Bjørn-Jostein Singstad, Sachin Gaur, Klas Pettersen, et al. "MedAI: Transparency in Medical Image Segmentation." Nordic Machine Intelligence 1, no. 1 (November 1, 2021): 1–4. http://dx.doi.org/10.5617/nmi.9140.
Full textLee, Dongwoo, John Mulrow, Chana Joanne Haboucha, Sybil Derrible, and Yoram Shiftan. "Attitudes on Autonomous Vehicle Adoption using Interpretable Gradient Boosting Machine." Transportation Research Record: Journal of the Transportation Research Board 2673, no. 11 (June 23, 2019): 865–78. http://dx.doi.org/10.1177/0361198119857953.
Full textShrotri, Aditya A., Nina Narodytska, Alexey Ignatiev, Kuldeep S. Meel, Joao Marques-Silva, and Moshe Y. Vardi. "Constraint-Driven Explanations for Black-Box ML Models." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 8 (June 28, 2022): 8304–14. http://dx.doi.org/10.1609/aaai.v36i8.20805.
Full textLuo, Yi, Huan-Hsin Tseng, Sunan Cui, Lise Wei, Randall K. Ten Haken, and Issam El Naqa. "Balancing accuracy and interpretability of machine learning approaches for radiation treatment outcomes modeling." BJR|Open 1, no. 1 (July 2019): 20190021. http://dx.doi.org/10.1259/bjro.20190021.
Full textSchnur, Christopher, Payman Goodarzi, Yevgeniya Lugovtsova, Jannis Bulling, Jens Prager, Kilian Tschöke, Jochen Moll, Andreas Schütze, and Tizian Schneider. "Towards Interpretable Machine Learning for Automated Damage Detection Based on Ultrasonic Guided Waves." Sensors 22, no. 1 (January 5, 2022): 406. http://dx.doi.org/10.3390/s22010406.
Full textEder, Matthias, Emanuel Moser, Andreas Holzinger, Claire Jean-Quartier, and Fleur Jeanquartier. "Interpretable Machine Learning with Brain Image and Survival Data." BioMedInformatics 2, no. 3 (September 6, 2022): 492–510. http://dx.doi.org/10.3390/biomedinformatics2030031.
Full textGadzinski, Gregory, and Alessio Castello. "Combining white box models, black box machines and human interventions for interpretable decision strategies." Judgment and Decision Making 17, no. 3 (May 2022): 598–627. http://dx.doi.org/10.1017/s1930297500003594.
Full textCakiroglu, Celal, Kamrul Islam, Gebrail Bekdaş, Sanghun Kim, and Zong Woo Geem. "Interpretable Machine Learning Algorithms to Predict the Axial Capacity of FRP-Reinforced Concrete Columns." Materials 15, no. 8 (April 8, 2022): 2742. http://dx.doi.org/10.3390/ma15082742.
Full textPark, Jurn-Gyu, Nikil Dutt, and Sung-Soo Lim. "An Interpretable Machine Learning Model Enhanced Integrated CPU-GPU DVFS Governor." ACM Transactions on Embedded Computing Systems 20, no. 6 (November 30, 2021): 1–28. http://dx.doi.org/10.1145/3470974.
Full textLi, Fa, Qing Zhu, William J. Riley, Lei Zhao, Li Xu, Kunxiaojia Yuan, Min Chen, et al. "AttentionFire_v1.0: interpretable machine learning fire model for burned-area predictions over tropics." Geoscientific Model Development 16, no. 3 (February 3, 2023): 869–84. http://dx.doi.org/10.5194/gmd-16-869-2023.
Full textChaibi, Mohamed, EL Mahjoub Benghoulam, Lhoussaine Tarik, Mohamed Berrada, and Abdellah El Hmaidi. "An Interpretable Machine Learning Model for Daily Global Solar Radiation Prediction." Energies 14, no. 21 (November 5, 2021): 7367. http://dx.doi.org/10.3390/en14217367.
Full textAslam, Nida, Irfan Ullah Khan, Samiha Mirza, Alanoud AlOwayed, Fatima M. Anis, Reef M. Aljuaid, and Reham Baageel. "Interpretable Machine Learning Models for Malicious Domains Detection Using Explainable Artificial Intelligence (XAI)." Sustainability 14, no. 12 (June 16, 2022): 7375. http://dx.doi.org/10.3390/su14127375.
Full textThekke Kanapram, Divya, Lucio Marcenaro, David Martin Gomez, and Carlo Regazzoni. "Graph-Powered Interpretable Machine Learning Models for Abnormality Detection in Ego-Things Network." Sensors 22, no. 6 (March 15, 2022): 2260. http://dx.doi.org/10.3390/s22062260.
Full textHu, Hao, Marie-José Huguet, and Mohamed Siala. "Optimizing Binary Decision Diagrams with MaxSAT for Classification." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 4 (June 28, 2022): 3767–75. http://dx.doi.org/10.1609/aaai.v36i4.20291.
Full textKhanna, Varada Vivek, Krishnaraj Chadaga, Niranajana Sampathila, Srikanth Prabhu, Venkatesh Bhandage, and Govardhan K. Hegde. "A Distinctive Explainable Machine Learning Framework for Detection of Polycystic Ovary Syndrome." Applied System Innovation 6, no. 2 (February 23, 2023): 32. http://dx.doi.org/10.3390/asi6020032.
Full textCombs, Kara, Mary Fendley, and Trevor Bihl. "A Preliminary Look at Heuristic Analysis for Assessing Artificial Intelligence Explainability." WSEAS TRANSACTIONS ON COMPUTER RESEARCH 8 (June 1, 2020): 61–72. http://dx.doi.org/10.37394/232018.2020.8.9.
Full textLakkad, Aditya Kamleshbhai, Rushit Dharmendrabhai Bhadaniya, Vraj Nareshkumar Shah, and Lavanya K. "Complex Events Processing on Live News Events Using Apache Kafka and Clustering Techniques." International Journal of Intelligent Information Technologies 17, no. 1 (January 2021): 39–52. http://dx.doi.org/10.4018/ijiit.2021010103.
Full textNavidi, Zeinab, Jesse Sun, Raymond H. Chan, Kate Hanneman, Amna Al-Arnawoot, Alif Munim, Harry Rakowski, et al. "Interpretable machine learning for automated left ventricular scar quantification in hypertrophic cardiomyopathy patients." PLOS Digital Health 2, no. 1 (January 4, 2023): e0000159. http://dx.doi.org/10.1371/journal.pdig.0000159.
Full textIzza, Yacine, Alexey Ignatiev, and Joao Marques-Silva. "On Tackling Explanation Redundancy in Decision Trees." Journal of Artificial Intelligence Research 75 (September 29, 2022): 261–321. http://dx.doi.org/10.1613/jair.1.13575.
Full textMcGovern, Amy, Ryan Lagerquist, David John Gagne, G. Eli Jergensen, Kimberly L. Elmore, Cameron R. Homeyer, and Travis Smith. "Making the Black Box More Transparent: Understanding the Physical Implications of Machine Learning." Bulletin of the American Meteorological Society 100, no. 11 (November 2019): 2175–99. http://dx.doi.org/10.1175/bams-d-18-0195.1.
Full textGuo, Ganggui, Shanshan Li, Yakun Liu, Ze Cao, and Yangyu Deng. "Prediction of Cavity Length Using an Interpretable Ensemble Learning Approach." International Journal of Environmental Research and Public Health 20, no. 1 (December 30, 2022): 702. http://dx.doi.org/10.3390/ijerph20010702.
Full textJaafreh, Russlan, Jung-Gu Kim, and Kotiba Hamad. "Interpretable Machine Learning Analysis of Stress Concentration in Magnesium: An Insight beyond the Black Box of Predictive Modeling." Crystals 12, no. 9 (September 2, 2022): 1247. http://dx.doi.org/10.3390/cryst12091247.
Full textBertsimas, Dimitris, Daisy Zhuo, Jack Dunn, Jordan Levine, Eugenio Zuccarelli, Nikos Smyrnakis, Zdzislaw Tobota, Bohdan Maruszewski, Jose Fragata, and George E. Sarris. "Adverse Outcomes Prediction for Congenital Heart Surgery: A Machine Learning Approach." World Journal for Pediatric and Congenital Heart Surgery 12, no. 4 (April 28, 2021): 453–60. http://dx.doi.org/10.1177/21501351211007106.
Full textWöber, Wilfried, Manuel Curto, Papius Tibihika, Paul Meulenbroek, Esayas Alemayehu, Lars Mehnen, Harald Meimberg, and Peter Sykacek. "Identifying geographically differentiated features of Ethopian Nile tilapia (Oreochromis niloticus) morphology with machine learning." PLOS ONE 16, no. 4 (April 15, 2021): e0249593. http://dx.doi.org/10.1371/journal.pone.0249593.
Full textAlsayegh, Faisal, Moh A. Alkhamis, Fatima Ali, Sreeja Attur, Nicholas M. Fountain-Jones, and Mohammad Zubaid. "Anemia or other comorbidities? using machine learning to reveal deeper insights into the drivers of acute coronary syndromes in hospital admitted patients." PLOS ONE 17, no. 1 (January 24, 2022): e0262997. http://dx.doi.org/10.1371/journal.pone.0262997.
Full textWongvibulsin, Shannon, Katherine C. Wu, and Scott L. Zeger. "Improving Clinical Translation of Machine Learning Approaches Through Clinician-Tailored Visual Displays of Black Box Algorithms: Development and Validation." JMIR Medical Informatics 8, no. 6 (June 9, 2020): e15791. http://dx.doi.org/10.2196/15791.
Full textKhadem, Heydar, Hoda Nemat, Jackie Elliott, and Mohammed Benaissa. "Interpretable Machine Learning for Inpatient COVID-19 Mortality Risk Assessments: Diabetes Mellitus Exclusive Interplay." Sensors 22, no. 22 (November 12, 2022): 8757. http://dx.doi.org/10.3390/s22228757.
Full textEstivill-Castro, Vladimir, Eugene Gilmore, and René Hexel. "Constructing Explainable Classifiers from the Start—Enabling Human-in-the Loop Machine Learning." Information 13, no. 10 (September 29, 2022): 464. http://dx.doi.org/10.3390/info13100464.
Full textDaly, Elizabeth M., Massimiliano Mattetti, Öznur Alkan, and Rahul Nair. "User Driven Model Adjustment via Boolean Rule Explanations." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 7 (May 18, 2021): 5896–904. http://dx.doi.org/10.1609/aaai.v35i7.16737.
Full textBermejo, Pablo, Alicia Vivo, Pedro J. Tárraga, and J. A. Rodríguez-Montes. "Development of Interpretable Predictive Models for BPH and Prostate Cancer." Clinical Medicine Insights: Oncology 9 (January 2015): CMO.S19739. http://dx.doi.org/10.4137/cmo.s19739.
Full textDe Cannière, Hélène, Federico Corradi, Christophe J. P. Smeets, Melanie Schoutteten, Carolina Varon, Chris Van Hoof, Sabine Van Huffel, Willemijn Groenendaal, and Pieter Vandervoort. "Wearable Monitoring and Interpretable Machine Learning Can Objectively Track Progression in Patients during Cardiac Rehabilitation." Sensors 20, no. 12 (June 26, 2020): 3601. http://dx.doi.org/10.3390/s20123601.
Full textDimitriadis, Ilias, Konstantinos Georgiou, and Athena Vakali. "Social Botomics: A Systematic Ensemble ML Approach for Explainable and Multi-Class Bot Detection." Applied Sciences 11, no. 21 (October 21, 2021): 9857. http://dx.doi.org/10.3390/app11219857.
Full text