Journal articles on the topic 'Interpretable methods'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Interpretable methods.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Topin, Nicholay, Stephanie Milani, Fei Fang, and Manuela Veloso. "Iterative Bounding MDPs: Learning Interpretable Policies via Non-Interpretable Methods." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 11 (May 18, 2021): 9923–31. http://dx.doi.org/10.1609/aaai.v35i11.17192.
Full textKATAOKA, Makoto. "COMPUTER-INTERPRETABLE DESCRIPTION OF CONSTRUCTION METHODS." AIJ Journal of Technology and Design 13, no. 25 (2007): 277–80. http://dx.doi.org/10.3130/aijt.13.277.
Full textMurdoch, W. James, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. "Definitions, methods, and applications in interpretable machine learning." Proceedings of the National Academy of Sciences 116, no. 44 (October 16, 2019): 22071–80. http://dx.doi.org/10.1073/pnas.1900654116.
Full textAlangari, Nourah, Mohamed El Bachir Menai, Hassan Mathkour, and Ibrahim Almosallam. "Exploring Evaluation Methods for Interpretable Machine Learning: A Survey." Information 14, no. 8 (August 21, 2023): 469. http://dx.doi.org/10.3390/info14080469.
Full textKenesei, Tamás, and János Abonyi. "Interpretable support vector regression." Artificial Intelligence Research 1, no. 2 (October 9, 2012): 11. http://dx.doi.org/10.5430/air.v1n2p11.
Full textYe, Zhuyifan, Wenmian Yang, Yilong Yang, and Defang Ouyang. "Interpretable machine learning methods for in vitro pharmaceutical formulation development." Food Frontiers 2, no. 2 (May 5, 2021): 195–207. http://dx.doi.org/10.1002/fft2.78.
Full textMi, Jian-Xun, An-Di Li, and Li-Fang Zhou. "Review Study of Interpretation Methods for Future Interpretable Machine Learning." IEEE Access 8 (2020): 191969–85. http://dx.doi.org/10.1109/access.2020.3032756.
Full textObermann, Lennart, and Stephan Waack. "Demonstrating non-inferiority of easy interpretable methods for insolvency prediction." Expert Systems with Applications 42, no. 23 (December 2015): 9117–28. http://dx.doi.org/10.1016/j.eswa.2015.08.009.
Full textAssegie, Tsehay Admassu. "Evaluation of the Shapley Additive Explanation Technique for Ensemble Learning Methods." Proceedings of Engineering and Technology Innovation 21 (April 22, 2022): 20–26. http://dx.doi.org/10.46604/peti.2022.9025.
Full textBang, Seojin, Pengtao Xie, Heewook Lee, Wei Wu, and Eric Xing. "Explaining A Black-box By Using A Deep Variational Information Bottleneck Approach." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 13 (May 18, 2021): 11396–404. http://dx.doi.org/10.1609/aaai.v35i13.17358.
Full textLi, Qiaomei, Rachel Cummings, and Yonatan Mintz. "Optimal Local Explainer Aggregation for Interpretable Prediction." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (June 28, 2022): 12000–12007. http://dx.doi.org/10.1609/aaai.v36i11.21458.
Full textMahya, Parisa, and Johannes Fürnkranz. "An Empirical Comparison of Interpretable Models to Post-Hoc Explanations." AI 4, no. 2 (May 19, 2023): 426–36. http://dx.doi.org/10.3390/ai4020023.
Full textLee, Franklin Langlang, Jaehong Park, Sushmit Goyal, Yousef Qaroush, Shihu Wang, Hong Yoon, Aravind Rammohan, and Youngseon Shim. "Comparison of Machine Learning Methods towards Developing Interpretable Polyamide Property Prediction." Polymers 13, no. 21 (October 23, 2021): 3653. http://dx.doi.org/10.3390/polym13213653.
Full textLi, Xiao, Zachary Serlin, Guang Yang, and Calin Belta. "A formal methods approach to interpretable reinforcement learning for robotic planning." Science Robotics 4, no. 37 (December 18, 2019): eaay6276. http://dx.doi.org/10.1126/scirobotics.aay6276.
Full textSkirzyński, Julian, Frederic Becker, and Falk Lieder. "Automatic discovery of interpretable planning strategies." Machine Learning 110, no. 9 (April 9, 2021): 2641–83. http://dx.doi.org/10.1007/s10994-021-05963-2.
Full textXu, Yixiao, Xiaolei Liu, Kangyi Ding, and Bangzhou Xin. "IBD: An Interpretable Backdoor-Detection Method via Multivariate Interactions." Sensors 22, no. 22 (November 10, 2022): 8697. http://dx.doi.org/10.3390/s22228697.
Full textGu, Jindong. "Interpretable Graph Capsule Networks for Object Recognition." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 2 (May 18, 2021): 1469–77. http://dx.doi.org/10.1609/aaai.v35i2.16237.
Full textHagerty, C. G., and F. A. Sonnenberg. "Computer-Interpretable Clinical Practice Guidelines." Yearbook of Medical Informatics 15, no. 01 (August 2006): 145–58. http://dx.doi.org/10.1055/s-0038-1638486.
Full textGe, Xiaoyi, Mingshu Zhang, Xu An Wang, Jia Liu, and Bin Wei. "Emotion-Drive Interpretable Fake News Detection." International Journal of Data Warehousing and Mining 18, no. 1 (January 1, 2022): 1–17. http://dx.doi.org/10.4018/ijdwm.314585.
Full textH. Merritt, Sean, and Alexander P. Christensen. "An Experimental Study of Dimension Reduction Methods on Machine Learning Algorithms with Applications to Psychometrics." Advances in Artificial Intelligence and Machine Learning 03, no. 01 (2023): 760–77. http://dx.doi.org/10.54364/aaiml.2023.1149.
Full textLuan, Tao, Guoqing Liang, and Pengfei Peng. "Interpretable DeepFake Detection Based on Frequency Spatial Transformer." International Journal of Emerging Technologies and Advanced Applications 1, no. 2 (March 26, 2024): 19–25. http://dx.doi.org/10.62677/ijetaa.2402108.
Full textVerma, Abhinav. "Verifiable and Interpretable Reinforcement Learning through Program Synthesis." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 9902–3. http://dx.doi.org/10.1609/aaai.v33i01.33019902.
Full textTulsani, Vijya, Prashant Sahatiya, Jignasha Parmar, and Jayshree Parmar. "XAI Applications in Medical Imaging: A Survey of Methods and Challenges." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 9 (October 27, 2023): 181–86. http://dx.doi.org/10.17762/ijritcc.v11i9.8332.
Full textHayes, Sean M. S., Jeffrey R. Sachs, and Carolyn R. Cho. "From complex data to biological insight: ‘DEKER’ feature selection and network inference." Journal of Pharmacokinetics and Pharmacodynamics 49, no. 1 (November 17, 2021): 81–99. http://dx.doi.org/10.1007/s10928-021-09792-7.
Full textKhakabimamaghani, Sahand, Yogeshwar D. Kelkar, Bruno M. Grande, Ryan D. Morin, Martin Ester, and Daniel Ziemek. "SUBSTRA: Supervised Bayesian Patient Stratification." Bioinformatics 35, no. 18 (February 15, 2019): 3263–72. http://dx.doi.org/10.1093/bioinformatics/btz112.
Full textSun, Lili, Xueyan Liu, Min Zhao, and Bo Yang. "Interpretable Variational Graph Autoencoder with Noninformative Prior." Future Internet 13, no. 2 (February 18, 2021): 51. http://dx.doi.org/10.3390/fi13020051.
Full textCansel, Neslihan, Fatma Hilal Yagin, Mustafa Akan, and Bedriye Ilkay Aygul. "INTERPRETABLE ESTIMATION OF SUICIDE RISK AND SEVERITY FROM COMPLETE BLOOD COUNT PARAMETERS WITH EXPLAINABLE ARTIFICIAL INTELLIGENCE METHODS." PSYCHIATRIA DANUBINA 35, no. 1 (April 13, 2023): 62–72. http://dx.doi.org/10.24869/psyd.2023.62.
Full textShi, Liushuai, Le Wang, Chengjiang Long, Sanping Zhou, Fang Zheng, Nanning Zheng, and Gang Hua. "Social Interpretable Tree for Pedestrian Trajectory Prediction." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 2 (June 28, 2022): 2235–43. http://dx.doi.org/10.1609/aaai.v36i2.20121.
Full textKrumb, Henry, Dhritimaan Das, Romol Chadda, and Anirban Mukhopadhyay. "CycleGAN for interpretable online EMT compensation." International Journal of Computer Assisted Radiology and Surgery 16, no. 5 (March 14, 2021): 757–65. http://dx.doi.org/10.1007/s11548-021-02324-1.
Full textBhambhoria, Rohan, Hui Liu, Samuel Dahan, and Xiaodan Zhu. "Interpretable Low-Resource Legal Decision Making." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (June 28, 2022): 11819–27. http://dx.doi.org/10.1609/aaai.v36i11.21438.
Full textWhiteway, Matthew R., Dan Biderman, Yoni Friedman, Mario Dipoppa, E. Kelly Buchanan, Anqi Wu, John Zhou, et al. "Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders." PLOS Computational Biology 17, no. 9 (September 22, 2021): e1009439. http://dx.doi.org/10.1371/journal.pcbi.1009439.
Full textWalter, Nils Philipp, Jonas Fischer, and Jilles Vreeken. "Finding Interpretable Class-Specific Patterns through Efficient Neural Search." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 8 (March 24, 2024): 9062–70. http://dx.doi.org/10.1609/aaai.v38i8.28756.
Full textMeng, Fan. "Creating Interpretable Data-Driven Approaches for Tropical Cyclones Forecasting." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (June 28, 2022): 12892–93. http://dx.doi.org/10.1609/aaai.v36i11.21583.
Full textWang, Min, Steven M. Kornblau, and Kevin R. Coombes. "Decomposing the Apoptosis Pathway Into Biologically Interpretable Principal Components." Cancer Informatics 17 (January 1, 2018): 117693511877108. http://dx.doi.org/10.1177/1176935118771082.
Full textWeiss, S. M., and N. Indurkhya. "Rule-based Machine Learning Methods for Functional Prediction." Journal of Artificial Intelligence Research 3 (December 1, 1995): 383–403. http://dx.doi.org/10.1613/jair.199.
Full textFeng, Aosong, Chenyu You, Shiqiang Wang, and Leandros Tassiulas. "KerGNNs: Interpretable Graph Neural Networks with Graph Kernels." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 6 (June 28, 2022): 6614–22. http://dx.doi.org/10.1609/aaai.v36i6.20615.
Full textWang, Yulong, Xiaolu Zhang, Xiaolin Hu, Bo Zhang, and Hang Su. "Dynamic Network Pruning with Interpretable Layerwise Channel Selection." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 6299–306. http://dx.doi.org/10.1609/aaai.v34i04.6098.
Full textHase, Peter, Chaofan Chen, Oscar Li, and Cynthia Rudin. "Interpretable Image Recognition with Hierarchical Prototypes." Proceedings of the AAAI Conference on Human Computation and Crowdsourcing 7 (October 28, 2019): 32–40. http://dx.doi.org/10.1609/hcomp.v7i1.5265.
Full textGhanem, Souhila, Raphaël Couturier, and Pablo Gregori. "An Accurate and Easy to Interpret Binary Classifier Based on Association Rules Using Implication Intensity and Majority Vote." Mathematics 9, no. 12 (June 8, 2021): 1315. http://dx.doi.org/10.3390/math9121315.
Full textEiras-Franco, Carlos, Bertha Guijarro-Berdiñas, Amparo Alonso-Betanzos, and Antonio Bahamonde. "Interpretable Market Segmentation on High Dimension Data." Proceedings 2, no. 18 (September 17, 2018): 1171. http://dx.doi.org/10.3390/proceedings2181171.
Full textPulkkinen, Pietari, and Hannu Koivisto. "Identification of interpretable and accurate fuzzy classifiers and function estimators with hybrid methods." Applied Soft Computing 7, no. 2 (March 2007): 520–33. http://dx.doi.org/10.1016/j.asoc.2006.11.001.
Full textLiu, Yuekai, Tianyang Wang, and Fulei Chu. "Hybrid machine condition monitoring based on interpretable dual tree methods using Wasserstein metrics." Expert Systems with Applications 235 (January 2024): 121104. http://dx.doi.org/10.1016/j.eswa.2023.121104.
Full textMunir, Nimra, Ross McMorrow, Konrad Mulrennan, Darren Whitaker, Seán McLoone, Minna Kellomäki, Elina Talvitie, Inari Lyyra, and Marion McAfee. "Interpretable Machine Learning Methods for Monitoring Polymer Degradation in Extrusion of Polylactic Acid." Polymers 15, no. 17 (August 28, 2023): 3566. http://dx.doi.org/10.3390/polym15173566.
Full textQiao, Zuqiang, Shengzhi Dong, Qing Li, Xiangming Lu, Renjie Chen, Shuai Guo, Aru Yan, and Wei Li. "Performance prediction models for sintered NdFeB using machine learning methods and interpretable studies." Journal of Alloys and Compounds 963 (November 2023): 171250. http://dx.doi.org/10.1016/j.jallcom.2023.171250.
Full textRagazzo, Michele, Stefano Melchiorri, Laura Manzo, Valeria Errichiello, Giulio Puleri, Fabio Nicastro, and Emiliano Giardina. "Comparative Analysis of ANDE 6C Rapid DNA Analysis System and Traditional Methods." Genes 11, no. 5 (May 22, 2020): 582. http://dx.doi.org/10.3390/genes11050582.
Full textWu, Bozhi, Sen Chen, Cuiyun Gao, Lingling Fan, Yang Liu, Weiping Wen, and Michael R. Lyu. "Why an Android App Is Classified as Malware." ACM Transactions on Software Engineering and Methodology 30, no. 2 (March 2021): 1–29. http://dx.doi.org/10.1145/3423096.
Full textXiang, Ziyu, Mingzhou Fan, Guillermo Vázquez Tovar, William Trehern, Byung-Jun Yoon, Xiaofeng Qian, Raymundo Arroyave, and Xiaoning Qian. "Physics-constrained Automatic Feature Engineering for Predictive Modeling in Materials Science." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 12 (May 18, 2021): 10414–21. http://dx.doi.org/10.1609/aaai.v35i12.17247.
Full textAbafogi, Abdo Ababor. "Survey on Interpretable Semantic Textual Similarity, and its Applications." International Journal of Innovative Technology and Exploring Engineering 10, no. 3 (January 10, 2021): 14–18. http://dx.doi.org/10.35940/ijitee.b8294.0110321.
Full textNan, Tianlong, Yuan Gao, and Christian Kroer. "Fast and Interpretable Dynamics for Fisher Markets via Block-Coordinate Updates." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 5 (June 26, 2023): 5832–40. http://dx.doi.org/10.1609/aaai.v37i5.25723.
Full textZhao, Mingyang, Junchang Xin, Zhongyang Wang, Xinlei Wang, and Zhiqiong Wang. "Interpretable Model Based on Pyramid Scene Parsing Features for Brain Tumor MRI Image Segmentation." Computational and Mathematical Methods in Medicine 2022 (January 31, 2022): 1–10. http://dx.doi.org/10.1155/2022/8000781.
Full text