Dissertations / Theses on the topic 'Interpolation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Interpolation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Rabut, Christophe. "B-splines polyharmoniques cardinales : interpolation, quasi-interpolation, filtrage." Toulouse 3, 1990. http://www.theses.fr/1990TOU30046.
Full textRamesh, Gayatri. "FRACTAL INTERPOLATION." Master's thesis, University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3128.
Full textM.S.
Department of Mathematics
Sciences
Mathematical Science MS
Goggins, Dan. "Constraint-based interpolation /." Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd976.pdf.
Full textYeung, R. Kacheong. "Stable rational interpolation." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0021/NQ46952.pdf.
Full textChrist, Jürgen [Verfasser], and Andreas [Akademischer Betreuer] Podelski. "Interpolation modulo theories." Freiburg : Universität, 2015. http://d-nb.info/1119805767/34.
Full textFang, Quanlei. "Multivariable Interpolation Problems." Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/28311.
Full textPh. D.
Merrell, Jacob Porter. "Generalized Constrained Interpolation." Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2360.pdf.
Full textGoggins, Daniel David. "Constraint-Based Interpolation." BYU ScholarsArchive, 2005. https://scholarsarchive.byu.edu/etd/610.
Full textAmeur, Yacin. "Interpolation of Hilbert spaces." Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-1753.
Full textAmeur, Yacin. "Interpolation of Hilbert spaces /." Uppsala : Matematiska institutionen, Univ. [distributör], 2001. http://publications.uu.se/theses/91-506-1531-9/.
Full textKristoffersen, Stian. "The Empirical Interpolation Method." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-23378.
Full textFERREIRA, CARLOS ROBERTO DA COSTA. "MODIFIED INTERPOLATION OF LSFNULLS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2006. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=9195@1.
Full textOs novos serviços de telecomunicações têm impulsionado o desenvolvimento de melhorias nos algoritmos de codificação de voz, devido à necessidade de se melhorar a qualidade da voz codificada, utilizando a menor taxa de transmissão possível. Esta dissertação analisa e propõem melhorias em um método para o ajuste de parâmetros LSFs de modo a torná- los mais precisos, minimizando as perdas no processo de interpolação de LSFs codificadas. Com isso, a percepção de qualidade da voz sintetizada na saída do decodificador é aumentada, sem que seja necessário aumento da taxa de transmissão. É apresentada de modo detalhado toda a dedução matemática do método citado. Para a avaliação de desempenho das melhorias propostas, o processo de ajuste é implementado em um codificador a taxas médias inferiores a 2 kb/s. Os resultados confirmam que é possível obter redução significativa nas medidas de distorção com a utilização do ajuste de LSFs.
The new telecommunications services have been pushing forward the development of improvements in speech coding, because of the need to improve coded speech quality, using the smallest transmission rate possible. This thesis analyzes and proposes improvements in a method to adjust LSF parameters so they get more accurate, minimizing the losses in the coded LSFs interpolation process. With this, the synthesized speech perceptual quality in the decoder exit is increased, without having to increase the transmission rate. The mathematical deduction of the method is presented in a detailed way. To evaluate the performance of the proposed improvements, the adjust process is implemented in a speech coder with mean rates less than 2 kb/s. The results confirmed that is possible to obtain significant reduction in distortion measures using the adjustment of LSFs.
Jin, Shangzhu. "Backward fuzzy rule interpolation." Thesis, Aberystwyth University, 2015. http://hdl.handle.net/2160/e4e6acbd-914f-4c8a-b40c-91b13a017c69.
Full textNaik, Nitin. "Dynamic fuzzy rule interpolation." Thesis, Aberystwyth University, 2015. http://hdl.handle.net/2160/1caf8126-23c0-4c9c-9d8d-16c65f2f9878.
Full textDu, Toit Wilna. "Radial basis function interpolation." Thesis, Stellenbosch : Stellenbosch University, 2008. http://hdl.handle.net/10019.1/2002.
Full textA popular method for interpolating multidimensional scattered data is using radial basis functions. In this thesis we present the basic theory of radial basis function interpolation and also regard the solvability and stability of the method. Solving the interpolant directly has a high computational cost for large datasets, hence using numerical methods to approximate the interpolant is necessary. We consider some recent numerical algorithms. Software to implement radial basis function interpolation and to display the 3D interpolants obtained, is developed. We present results obtained from using our implementation for radial basis functions on GIS and 3D face data as well as an image warping application.
Goosen, Karin M. (Karin Michelle). "Subdivision, interpolation and splines." Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51924.
Full textENGLISH ABSTRACT: In this thesis we study the underlying mathematical principles of stationary subdivision, which can be regarded as an iterative recursion scheme for the generation of smooth curves and surfaces in computer graphics. An important tool for our work is Fourier analysis, from which we state some standard results, and give the proof of one non-standard result. Next, since cardinal spline functions have strong links with subdivision, we devote a chapter to this subject, proving also that the cardinal B-splines are refinable, and that the corresponding Euler-Frobenius polynomial has a certain zero structure which has important implications in our eventual applications. The concepts of a stationary subdivision scheme and its convergence are then introduced, with as motivating example the de Rahm-Chaikin algorithm. Standard results on convergence and regularity for the case of positive masks are quoted and graphically illustrated. Next, we introduce the concept of interpolatory stationary subdivision, in which case the limit curve contains all the original control points. We prove a certain set of sufficient conditions on the mask for convergence, at the same time also proving the existence and other salient properties of the associated refinable function. Next, we show how the analysis of a certain Bezout identity leads to the characterisation of a class of symmetric masks which satisfy the abovementioned sufficient conditions. Finally, we show that specific special cases of the Bezout identity yield convergent interpolatory symmetric subdivision schemes which are identical to choosing the corresponding mask coefficients equal to certain point evaluations of, respectively, a fundamental Lagrange interpolation polynomial and a fundamental cardinal spline interpolant. The latter procedure, which is known as the Deslauriers-Dubuc subdivision scheme in the case of a polynomial interpolant, has received attention in recent work, and our approach provides a convergence result for such schemes in a more general framework. Throughout the thesis, numerical illustrations of our results are provided by means of graphs.
AFRIKAANSE OPSOMMING: In hierdie tesis ondersoek ons die onderliggende wiskundige beginsels van stasionêre onderverdeling, wat beskou kan word as 'n iteratiewe rekursiewe skema vir die generering van gladde krommes en oppervlakke in rekenaargrafika. 'n Belangrike stuk gereedskap vir ons werk is Fourieranalise, waaruit ons sekere standaardresuJtate formuleer, en die bewys gee van een nie-standaard resultaat. Daarna, aangesien kardinale latfunksies sterk bande het met onderverdeling, wy ons 'n hoofstuk aan hierdie onderwerp, waarin ons ook bewys dat die kardinale B-Iatfunksies verfynbaar is, en dat die ooreenkomstige Euler-Frobenius polinoom 'n sekere nulpuntstruktuur het wat belangrike implikasies het in ons uiteindelike toepassings. Die konsepte van 'n stasionêre onderverdelingskema en die konvergensie daarvan word dan bekendgestel, met as motiverende voorbeeld die de Rahm-Chaikin algoritme. Standaardresultate oor konvergensie en regulariteit vir die geval van positiewe maskers word aangehaal en grafies geïllustreer. Vervolgens stelons die konsep van interpolerende stasionêre onderverdeling bekend, in welke geval die limietkromme al die oorspronklike kontrolepunte bevat. Ons bewys 'n sekere versameling van voldoende voorwaardes op die masker vir konvergensie, en bewys terselfdertyd die bestaan en ander toepaslike eienskappe van die ge-assosieerde verfynbare funksie. Daarna wys ons hoedat die analise van 'n sekere Bezout identiteit lei tot die karakterisering van 'n klas simmetriese maskers wat die bovermelde voldoende voorwaardes bevredig. Laastens wys ons dat spesifieke spesiale gevalle van die Bezout identiteit konvergente interpolerende simmetriese onderverdelingskemas lewer wat identies is daaraan om die ooreenkomstige maskerkoëffisientegelyk aan sekere puntevaluasies van, onderskeidelik, 'n fundamentele Lagrange interpolasiepolinoom en 'n kardinale latfunksie-interpolant te kies. Laasgenoemde prosedure, wat bekend staan as die Deslauriers-Dubuc onderverdelingskema in die geval van 'n polinoominterpolant, het aandag ontvang in onlangse werk, en ons benadering verskaf 'n konvergensieresultaat vir sulke skemas in 'n meer algemene raamwerk. Deurgaans in die tesis word numeriese illustrasies van ons resultate met behulp van grafieke verskaf.
Calvi, Jean-Paul. "Interpolation et fonctionnelles analytiques." Toulouse 3, 1993. http://www.theses.fr/1993TOU30014.
Full textEastwood, Alan. "Interpolation à plusieurs variables." Nice, 1988. http://www.theses.fr/1988NICE4170.
Full textIebesh, Abdulhamid. "Interpolation of Yield curves." Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-48968.
Full textEastwood, Alan. "Interpolation à plusieurs variables." Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb37613442b.
Full textMiranda, Gerald N. "Interpolation weights of algebraic multigrid." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1997. http://handle.dtic.mil/100.2/ADA334079.
Full textGandhi, Sonia. "ENO interpolation for image compression." Diss., Connect to online resource, 2005. http://wwwlib.umi.com/cr/colorado/fullcit?p1425778.
Full textSubhan, Fazli. "Multilevel sparse kernel-based interpolation." Thesis, University of Leicester, 2011. http://hdl.handle.net/2381/9894.
Full textArnesen, Martin. "The Generalized Empirical Interpolation Method." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-24676.
Full textAsaturyan, Souren. "Shape preserving surface interpolation schemes." Thesis, University of Dundee, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278368.
Full textChen, Chengyuan. "Higher order fuzzy rule interpolation." Thesis, Aberystwyth University, 2015. http://hdl.handle.net/2160/28b8a37d-9833-4afb-b0c8-bef53749a9d2.
Full textYang, Longzhi. "Fuzzy interpolation and its adaptation." Thesis, Aberystwyth University, 2011. http://hdl.handle.net/2160/d24357c7-91a1-400d-83ce-23d1b1aa01cf.
Full textSetterqvist, Eric. "Taut Strings and Real Interpolation." Doctoral thesis, Linköpings universitet, Matematik och tillämpad matematik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-132421.
Full textNordenfors, Oskar. "The Riesz-Thorin Interpolation Theorem." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-149503.
Full textI denna uppsats presenteras grundläggande måtteori och något kring teorin om Lp-rum med målet att bevisa Riesz-Thorins interpolationssats.
Dehlbom, Gustaf. "Interpolation of the yield curve." Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-423128.
Full textSevero, Franco. "Interpolation schemes in percolation theory." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASM004.
Full textThis thesis provides new results concerning the phase transition of percolation models, specially Bernoulli percolation and level-sets of the Gaussian free field. The common technique used in theses results consists in comparing two different percolation models by continuously interpolating between them. The main purpose of this thesis is to illustrate how this technique can be applied to a wider variety of contexts than those previously studied
Leung, Nim Keung. "Convexity-Preserving Scattered Data Interpolation." Thesis, University of North Texas, 1995. https://digital.library.unt.edu/ark:/67531/metadc277609/.
Full textTaylor, Rodney. "Lagrange interpolation on Leja points." [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002363.
Full textDinh, Andreas. "Lokale Lagrange-Interpolation mit Splineoberflächen." [S.l. : s.n.], 2006. http://nbn-resolving.de/urn:nbn:de:bsz:180-madoc-13537.
Full textMartin, Peter. "Spatial interpolation in other dimensions /." Connect to this title online, 2004. http://hdl.handle.net/1957/4063.
Full textGood, Jennifer Rose. "Weighted interpolation over W*-algebras." Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/1843.
Full textDudziak, William James. "PRESENTATION AND ANALYSIS OF A MULTI-DIMENSIONAL INTERPOLATION FUNCTION FOR NON-UNIFORM DATA: MICROSPHERE PROJECTION." University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1183403994.
Full textErmis, Evren [Verfasser], and Andreas [Akademischer Betreuer] Podelski. "Interpolation in software model checking and fault localization = Interpolation in Software Model Checking und Defektlokalisierung." Freiburg : Universität, 2014. http://d-nb.info/1123479259/34.
Full textKhosravan, Najafabadi Shohreh. "Optimal vector interpolation of asynoptic spatial survey of vector quantities for interpolating ADCP water velocity measurements." Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/27381.
Full textApel, Thomas, and Cornelia Pester. "Clément-type interpolation on spherical domains - interpolation error estimates and application to a posteriori error estimation." Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601335.
Full textHecklin, Gero. "Interpolation mit bivariaten und trivariaten Splineräumen." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=974189065.
Full textFacciolo, Furlan Gabriele. "Irregularly sampled image resortation and interpolation." Doctoral thesis, Universitat Pompeu Fabra, 2011. http://hdl.handle.net/10803/22714.
Full textLa generación de modelos urbanos de elevación a partir de imágenes de satélite mediante técnicas de reconstrucción estereoscópica presenta varios retos debido a sus requisitos de precisión. En esta tesis se estudian tres problemas vinculados a la generación de estos modelos partiendo de pares estereoscópicos adquiridos por satélites en una configuración con baseline pequeño. Estos problemas fueron motivados por el proyecto MISS, lanzado por el CNES (Centre National d'Etudes Spatiales) con el objetivo de desarrollar las técnicas de reconstrucción para imágenes adquiridas con baseline pequeños. El primer problema es la restauración de imágenes muestreadas irregularmente y la fusión de imágenes usando un modelo de interpolación de banda limitada. Se propone un nuevo método de restauración, el cual usa una familia de regularizadores que permite controlar el decaimiento espectral de la solución e incorpora el modelo de formación de imagen como un conjunto de restricciones locales. El segundo problema es la interpolación de imágenes muestreadas en forma dispersa usando un prior de auto similitud, se considera también el problema relacionado de inpainting de imágenes. Se propone un nuevo framework para inpainting basado en ejemplares, el cual luego es extendido a la interpolación de imágenes muestreadas en forma dispersa. El tercer problema es la regularización e interpolación de modelos digitales de elevación imponiendo restricciones geométricas las cuales se extraen de una imagen de referencia. Para este problema se estudian tres modelos de regularización: un regularizador anisótropo de superficie mínima, la variación total anisótropa y un nuevo algoritmo de interpolación afín a trozos.
Riehle, Thomas J. "Adaptive bilateral extensor for image interpolation." Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4555.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (February 23, 2007) Includes bibliographical references.
Ounaïes, Myriam. "Interpolation dans les algèbres de Hörmander." Habilitation à diriger des recherches, Université Louis Pasteur - Strasbourg I, 2008. http://tel.archives-ouvertes.fr/tel-00338027.
Full textHartmann, Andreas. "Interpolation libre et opérateurs de Toeplitz." Habilitation à diriger des recherches, Université Sciences et Technologies - Bordeaux I, 2005. http://tel.archives-ouvertes.fr/tel-00281652.
Full text1) Interpolation simple : interpolation des valeurs en des points ;
2) Interpolation généralisée : p.ex. interpolation des dérivées, interpolation sur des points proches, interpolation tangentielle, etc. ;
3) Interpolation classique : l'interpolation est définie à partir d'un espace des traces déterminé a priori ;
4) Interpolation libre : l'interpolation est définie à partir d'une propriété de la trace (à savoir d'être un idéal d'ordre) ;
5) Interpolation libre et fonctions extrémales : caractérisation de l'interpolation en termes de fonctions extrémales ;
6) Interpolation libre et opérateurs de Toeplitz.
Le dernier point nous éloignera un peu des problèmes d'interpolation. Même s'il existe un lien étroit entre les problèmes d'interpolation libre (en particulier dans les espaces de type Paley-Wiener ou plus généralement les espaces modèles, voir Section 4.1), nous allons nous intéresser de plus près à certaines propriétés des opérateurs de Toeplitz qui se révèlent importantes dans le contexte de l'interpolation. Cependant, notre étude sera menée détachée du contexte de l'interpolation. Ce sera l'occasion de rencontrer à nouveau des fonctions extrémales. Nous allons en effet étudier les fonctions extrémales des noyaux d'opérateurs de Toeplitz (supposés non triviaux). Celles-ci s'avèrent posséder beaucoup de propriétés intéressantes.
Une remarque concernant les techniques utilisées. Les problèmes d'interpolation étant abordés dans des situations très variées (espaces de Hilbert et de Banach comme par exemple Bergman et Hardy, algèbres de Fréchet, et même des espaces vectoriels qui ne sont pas topologiques ; interpolation classique, libre et généralisée) nécessitent des méthodes très difféerentes. Par ailleurs, les problèmes connexes sont motivés par des problèmes d'interpolation mais ils sont considérés dans un contexte déconnecté de l'interpolation. Nous verrons ainsi de l'analyse complexe classique (espaces de Hardy, factorisation de Riesz-Nevanlinna, mesures de Carleson, majorantes harmoniques) et harmonique (toujours présente dans le contexte de l'interpolation et du sampling), de la géométrie des espaces de Banach (bases, bases inconditionnelles, espaces d'interpolation, indices de Boyd), de l'analyse fonctionnelle (principes variationnels, certains aspects topologiques) et convexe (Lemme de Minkowski-Farkas) en passant par la théorie des opérateurs (Théorème du relèvement du commutant, sous-espaces invariants), ainsi que de l'analyse complexe d'une et plusieurs variables (méthodes du d-bar) jusqu'aux espaces de de Branges-Rovnyak.
Shi, Feng. "Panorama interpolation for image-based navigation." Thesis, University of Ottawa (Canada), 2008. http://hdl.handle.net/10393/27607.
Full textFilipsson, Lars. "On polynomial interpolation and complex convexity /." Stockholm : Tekniska högsk, 1999. http://www.lib.kth.se/abs99/fili0604.pdf.
Full textMartin, Russell McAnally Ken. "Interpolation of head-related transfer functions." Fishermans Bend,Victoria : Defence Science and Technology Organisation, 2007. http://hdl.handle.net/1947/8028.
Full textSiu, Anthony. "Real time trajectory generation and interpolation." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/35898.
Full textPrice, Jeffery Ray. "A framework for adaptive image interpolation." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/13718.
Full text