Journal articles on the topic 'Interneurone cortical'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Interneurone cortical.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Somogyi, Peter, and Thomas Klausberger. "Defined types of cortical interneurone structure space and spike timing in the hippocampus." Journal of Physiology 562, no. 1 (December 22, 2004): 9–26. http://dx.doi.org/10.1113/jphysiol.2004.078915.
Full textYang, Panzao, Joanne O. Davidson, Tania M. Fowke, Robert Galinsky, Guido Wassink, Rashika N. Karunasinghe, Jaya D. Prasad, et al. "Connexin Hemichannel Mimetic Peptide Attenuates Cortical Interneuron Loss and Perineuronal Net Disruption Following Cerebral Ischemia in Near-Term Fetal Sheep." International Journal of Molecular Sciences 21, no. 18 (September 4, 2020): 6475. http://dx.doi.org/10.3390/ijms21186475.
Full textQiu, Fang, Xingfeng Mao, Penglai Liu, Jinyun Wu, Yuan Zhang, Daijing Sun, Yueyan Zhu, et al. "microRNA Deficiency in VIP+ Interneurons Leads to Cortical Circuit Dysfunction." Cerebral Cortex 30, no. 4 (November 4, 2019): 2229–49. http://dx.doi.org/10.1093/cercor/bhz236.
Full textFishell, Gord, and Adam Kepecs. "Interneuron Types as Attractors and Controllers." Annual Review of Neuroscience 43, no. 1 (July 8, 2020): 1–30. http://dx.doi.org/10.1146/annurev-neuro-070918-050421.
Full textLukomska, Agnieszka, Grzegorz Dobrzanski, Monika Liguz-Lecznar, and Malgorzata Kossut. "Somatostatin receptors (SSTR1-5) on inhibitory interneurons in the barrel cortex." Brain Structure and Function 225, no. 1 (December 23, 2019): 387–401. http://dx.doi.org/10.1007/s00429-019-02011-7.
Full textYing, Guoxin, Sen Wu, Ruiqing Hou, Wei Huang, Mario R. Capecchi, and Qiang Wu. "The Protocadherin Gene Celsr3 Is Required for Interneuron Migration in the Mouse Forebrain." Molecular and Cellular Biology 29, no. 11 (March 30, 2009): 3045–61. http://dx.doi.org/10.1128/mcb.00011-09.
Full textLamsa, Karri, and Tomi Taira. "Use-Dependent Shift From Inhibitory to Excitatory GABAA Receptor Action in SP-O Interneurons in the Rat Hippocampal CA3 Area." Journal of Neurophysiology 90, no. 3 (September 2003): 1983–95. http://dx.doi.org/10.1152/jn.00060.2003.
Full textHoward, MacKenzie A., and Scott C. Baraban. "Synaptic integration of transplanted interneuron progenitor cells into native cortical networks." Journal of Neurophysiology 116, no. 2 (August 1, 2016): 472–78. http://dx.doi.org/10.1152/jn.00321.2016.
Full textCruz-Santos, Maria, Lucia Fernandez Cardo, and Meng Li. "A Novel LHX6 Reporter Cell Line for Tracking Human iPSC-Derived Cortical Interneurons." Cells 11, no. 5 (March 1, 2022): 853. http://dx.doi.org/10.3390/cells11050853.
Full textNestor, Michael W., Samson Jacob, Bruce Sun, Deborah Prè, Andrew A. Sproul, Seong Im Hong, Chris Woodard, et al. "Characterization of a subpopulation of developing cortical interneurons from human iPSCs within serum-free embryoid bodies." American Journal of Physiology-Cell Physiology 308, no. 3 (February 1, 2015): C209—C219. http://dx.doi.org/10.1152/ajpcell.00263.2014.
Full textYekhlef, Latefa, Gian Luca Breschi, Laura Lagostena, Giovanni Russo, and Stefano Taverna. "Selective activation of parvalbumin- or somatostatin-expressing interneurons triggers epileptic seizurelike activity in mouse medial entorhinal cortex." Journal of Neurophysiology 113, no. 5 (March 1, 2015): 1616–30. http://dx.doi.org/10.1152/jn.00841.2014.
Full textBryson, Alexander, Samuel F. Berkovic, Steven Petrou, and David B. Grayden. "State transitions through inhibitory interneurons in a cortical network model." PLOS Computational Biology 17, no. 10 (October 15, 2021): e1009521. http://dx.doi.org/10.1371/journal.pcbi.1009521.
Full textDe Gregorio, Roberto, Xiaoning Chen, Emilie I. Petit, Kostantin Dobrenis, and Ji Ying Sze. "Disruption of Transient SERT Expression in Thalamic Glutamatergic Neurons Alters Trajectory of Postnatal Interneuron Development in the Mouse Cortex." Cerebral Cortex 30, no. 3 (September 3, 2019): 1623–36. http://dx.doi.org/10.1093/cercor/bhz191.
Full textFavuzzi, Emilia, Rubén Deogracias, André Marques-Smith, Patricia Maeso, Julie Jezequel, David Exposito-Alonso, Maddalena Balia, et al. "Distinct molecular programs regulate synapse specificity in cortical inhibitory circuits." Science 363, no. 6425 (January 24, 2019): 413–17. http://dx.doi.org/10.1126/science.aau8977.
Full textTaniguchi, Hiroki, Jiangteng Lu, and Z. Josh Huang. "The Spatial and Temporal Origin of Chandelier Cells in Mouse Neocortex." Science 339, no. 6115 (November 22, 2012): 70–74. http://dx.doi.org/10.1126/science.1227622.
Full textVaes, Josine E. G., Chantal M. Kosmeijer, Marthe Kaal, Rik van Vliet, Myrna J. V. Brandt, Manon J. N. L. Benders, and Cora H. Nijboer. "Regenerative Therapies to Restore Interneuron Disturbances in Experimental Models of Encephalopathy of Prematurity." International Journal of Molecular Sciences 22, no. 1 (December 28, 2020): 211. http://dx.doi.org/10.3390/ijms22010211.
Full textMarin, O. "CS06-01 - New insights into the cellular and molecular mechanisms underlying the etiology of schizophrenia." European Psychiatry 26, S2 (March 2011): 1786. http://dx.doi.org/10.1016/s0924-9338(11)73490-3.
Full textYang, Panzao, Joanne O. Davidson, Kelly Q. Zhou, Rani Wilson, Guido Wassink, Jaya D. Prasad, Laura Bennet, Alistair J. Gunn, and Justin M. Dean. "Therapeutic Hypothermia Attenuates Cortical Interneuron Loss after Cerebral Ischemia in Near-Term Fetal Sheep." International Journal of Molecular Sciences 24, no. 4 (February 12, 2023): 3706. http://dx.doi.org/10.3390/ijms24043706.
Full textLarimer, Phillip, Julien Spatazza, Michael P. Stryker, Arturo Alvarez-Buylla, and Andrea R. Hasenstaub. "Development and long-term integration of MGE-lineage cortical interneurons in the heterochronic environment." Journal of Neurophysiology 118, no. 1 (July 1, 2017): 131–39. http://dx.doi.org/10.1152/jn.00096.2017.
Full textHay, Y. Audrey, Jérémie Naudé, Philippe Faure, and Bertrand Lambolez. "Target Interneuron Preference in Thalamocortical Pathways Determines the Temporal Structure of Cortical Responses." Cerebral Cortex 29, no. 7 (July 27, 2018): 2815–31. http://dx.doi.org/10.1093/cercor/bhy148.
Full textJones, Daniel L., MacKenzie A. Howard, Amelia Stanco, John L. R. Rubenstein, and Scott C. Baraban. "Deletion of Dlx1 results in reduced glutamatergic input to hippocampal interneurons." Journal of Neurophysiology 105, no. 5 (May 2011): 1984–91. http://dx.doi.org/10.1152/jn.00056.2011.
Full textFunk, Marzieh, Stefan Jaeger, Niklas Schülert, Cornelia Dorner-Ciossek, Holger Rosenbrock, and Volker Mack. "M181. DEVELOPMENTAL PROGRESSION OF INTERNEURON NETWORK DEFICITS IN A 15Q13.3 MICRODELETION MOUSE MODEL – A GLIMPSE ON ADOLESCENT PRIMING FOR SCHIZOPHRENIA?" Schizophrenia Bulletin 46, Supplement_1 (April 2020): S205. http://dx.doi.org/10.1093/schbul/sbaa030.493.
Full textDing, Chao, Vishalini Emmenegger, Kim Schaffrath, and Dirk Feldmeyer. "Layer-Specific Inhibitory Microcircuits of Layer 6 Interneurons in Rat Prefrontal Cortex." Cerebral Cortex 31, no. 1 (August 22, 2020): 32–47. http://dx.doi.org/10.1093/cercor/bhaa201.
Full textRiedemann, Therese. "Diversity and Function of Somatostatin-Expressing Interneurons in the Cerebral Cortex." International Journal of Molecular Sciences 20, no. 12 (June 17, 2019): 2952. http://dx.doi.org/10.3390/ijms20122952.
Full textGuo, Teng, Guoping Liu, Heng Du, Yan Wen, Song Wei, Zhenmeiyu Li, Guangxu Tao, et al. "Dlx1/2 are Central and Essential Components in the Transcriptional Code for Generating Olfactory Bulb Interneurons." Cerebral Cortex 29, no. 11 (February 23, 2019): 4831–49. http://dx.doi.org/10.1093/cercor/bhz018.
Full textShen, Wei, Ru Ba, Yan Su, Yang Ni, Dongsheng Chen, Wei Xie, Samuel J. Pleasure, and Chunjie Zhao. "Foxg1 Regulates the Postnatal Development of Cortical Interneurons." Cerebral Cortex 29, no. 4 (April 18, 2018): 1547–60. http://dx.doi.org/10.1093/cercor/bhy051.
Full textVasistha, Navneet A., Maria Pardo-Navarro, Janina Gasthaus, Dilys Weijers, Michaela K. Müller, Diego García-González, Susmita Malwade, et al. "Maternal inflammation has a profound effect on cortical interneuron development in a stage and subtype-specific manner." Molecular Psychiatry 25, no. 10 (October 8, 2019): 2313–29. http://dx.doi.org/10.1038/s41380-019-0539-5.
Full textHarward, Stephen C., and Derek G. Southwell. "Interneuron transplantation: a prospective surgical therapy for medically refractory epilepsy." Neurosurgical Focus 48, no. 4 (April 2020): E18. http://dx.doi.org/10.3171/2020.2.focus19955.
Full textLee, L., L. Boorman, E. Glendenning, C. Christmas, P. Sharp, P. Redgrave, O. Shabir, E. Bracci, J. Berwick, and C. Howarth. "Key Aspects of Neurovascular Control Mediated by Specific Populations of Inhibitory Cortical Interneurons." Cerebral Cortex 30, no. 4 (November 20, 2019): 2452–64. http://dx.doi.org/10.1093/cercor/bhz251.
Full textHu, Hang, and Ariel Agmon. "Properties of precise firing synchrony between synaptically coupled cortical interneurons depend on their mode of coupling." Journal of Neurophysiology 114, no. 1 (July 2015): 624–37. http://dx.doi.org/10.1152/jn.00304.2015.
Full textSeeher, Sandra, Bradley A. Carlson, Angela C. Miniard, Eva K. Wirth, Yassin Mahdi, Dolph L. Hatfield, Donna M. Driscoll, and Ulrich Schweizer. "Impaired selenoprotein expression in brain triggers striatal neuronal loss leading to co-ordination defects in mice." Biochemical Journal 462, no. 1 (July 24, 2014): 67–75. http://dx.doi.org/10.1042/bj20140423.
Full textMazza, Frank, Alexandre Guet-McCreight, Taufik A. Valiante, John D. Griffiths, and Etay Hay. "In-silico EEG biomarkers of reduced inhibition in human cortical microcircuits in depression." PLOS Computational Biology 19, no. 4 (April 10, 2023): e1010986. http://dx.doi.org/10.1371/journal.pcbi.1010986.
Full textCooke, James E., Martin C. Kahn, Edward O. Mann, Andrew J. King, Jan W. H. Schnupp, and Ben D. B. Willmore. "Contrast gain control occurs independently of both parvalbumin-positive interneuron activity and shunting inhibition in auditory cortex." Journal of Neurophysiology 123, no. 4 (April 1, 2020): 1536–51. http://dx.doi.org/10.1152/jn.00587.2019.
Full textLitwin-Kumar, Ashok, Robert Rosenbaum, and Brent Doiron. "Inhibitory stabilization and visual coding in cortical circuits with multiple interneuron subtypes." Journal of Neurophysiology 115, no. 3 (March 1, 2016): 1399–409. http://dx.doi.org/10.1152/jn.00732.2015.
Full textXiang, Hui, Huan-Xin Chen, Xin-Xin Yu, Michael A. King, and Steven N. Roper. "Reduced Excitatory Drive in Interneurons in an Animal Model of Cortical Dysplasia." Journal of Neurophysiology 96, no. 2 (August 2006): 569–78. http://dx.doi.org/10.1152/jn.01133.2005.
Full textGarrido, Jesús A., Niceto R. Luque, Silvia Tolu, and Egidio D’Angelo. "Oscillation-Driven Spike-Timing Dependent Plasticity Allows Multiple Overlapping Pattern Recognition in Inhibitory Interneuron Networks." International Journal of Neural Systems 26, no. 05 (June 8, 2016): 1650020. http://dx.doi.org/10.1142/s0129065716500209.
Full textMurata, Yasunobu, and Matthew T. Colonnese. "GABAergic interneurons excite neonatal hippocampus in vivo." Science Advances 6, no. 24 (June 2020): eaba1430. http://dx.doi.org/10.1126/sciadv.aba1430.
Full textKeijser, Joram, and Henning Sprekeler. "Optimizing interneuron circuits for compartment-specific feedback inhibition." PLOS Computational Biology 18, no. 4 (April 28, 2022): e1009933. http://dx.doi.org/10.1371/journal.pcbi.1009933.
Full textBarthó, Peter, Hajime Hirase, Lenaïc Monconduit, Michael Zugaro, Kenneth D. Harris, and György Buzsáki. "Characterization of Neocortical Principal Cells and Interneurons by Network Interactions and Extracellular Features." Journal of Neurophysiology 92, no. 1 (July 2004): 600–608. http://dx.doi.org/10.1152/jn.01170.2003.
Full textJang, Hyun Jae, Hyowon Chung, James M. Rowland, Blake A. Richards, Michael M. Kohl, and Jeehyun Kwag. "Distinct roles of parvalbumin and somatostatin interneurons in gating the synchronization of spike times in the neocortex." Science Advances 6, no. 17 (April 2020): eaay5333. http://dx.doi.org/10.1126/sciadv.aay5333.
Full textKim, Jae-Yeon, and Mercedes F. Paredes. "Implications of Extended Inhibitory Neuron Development." International Journal of Molecular Sciences 22, no. 10 (May 12, 2021): 5113. http://dx.doi.org/10.3390/ijms22105113.
Full textGorelova, Natalia, Jeremy K. Seamans, and Charles R. Yang. "Mechanisms of Dopamine Activation of Fast-Spiking Interneurons That Exert Inhibition in Rat Prefrontal Cortex." Journal of Neurophysiology 88, no. 6 (December 1, 2002): 3150–66. http://dx.doi.org/10.1152/jn.00335.2002.
Full textPeng, Yangfan, Federico J. Barreda Tomas, Paul Pfeiffer, Moritz Drangmeister, Susanne Schreiber, Imre Vida, and Jörg R. P. Geiger. "Spatially structured inhibition defined by polarized parvalbumin interneuron axons promotes head direction tuning." Science Advances 7, no. 25 (June 2021): eabg4693. http://dx.doi.org/10.1126/sciadv.abg4693.
Full textWoodruff, Alan R., and Pankaj Sah. "Inhibition and Synchronization of Basal Amygdala Principal Neuron Spiking by Parvalbumin-Positive Interneurons." Journal of Neurophysiology 98, no. 5 (November 2007): 2956–61. http://dx.doi.org/10.1152/jn.00739.2007.
Full textKrishnan, Vijai, Lauren C. Wade-Kleyn, Ron R. Israeli, and Galit Pelled. "Peripheral Nerve Injury Induces Changes in the Activity of Inhibitory Interneurons as Visualized in Transgenic GAD1-GCaMP6s Rats." Biosensors 12, no. 6 (June 1, 2022): 383. http://dx.doi.org/10.3390/bios12060383.
Full textKann, Oliver, Ismini E. Papageorgiou, and Andreas Draguhn. "Highly Energized Inhibitory Interneurons are a Central Element for Information Processing in Cortical Networks." Journal of Cerebral Blood Flow & Metabolism 34, no. 8 (June 4, 2014): 1270–82. http://dx.doi.org/10.1038/jcbfm.2014.104.
Full textScheuer, Till, Elena auf dem Brinke, Sabine Grosser, Susanne A. Wolf, Daniele Mattei, Yuliya Sharkovska, Paula C. Barthel, et al. "Reduction of cortical parvalbumin expressing GABAergic interneurons in a rodent hyperoxia model of preterm birth brain injury with deficits in social behavior and cognition." Development, September 24, 2021. http://dx.doi.org/10.1242/dev.198390.
Full textGothner, Tina, Pedro J. Gonçalves, Maneesh Sahani, Jennifer F. Linden, and K. Jannis Hildebrandt. "Sustained Activation of PV+ Interneurons in Core Auditory Cortex Enables Robust Divisive Gain Control for Complex and Naturalistic Stimuli." Cerebral Cortex, December 10, 2020. http://dx.doi.org/10.1093/cercor/bhaa347.
Full textBereshpolova, Yulia, Xiaojuan Hei, Jose-Manuel Alonso, and Harvey A. Swadlow. "Three rules govern thalamocortical connectivity of fast-spike inhibitory interneurons in the visual cortex." eLife 9 (December 8, 2020). http://dx.doi.org/10.7554/elife.60102.
Full textZechel, Sabrina, Yasushi Nakagawa, and Carlos F. Ibáñez. "Thalamo-cortical axons regulate the radial dispersion of neocortical GABAergic interneurons." eLife 5 (December 9, 2016). http://dx.doi.org/10.7554/elife.20770.
Full text