Academic literature on the topic 'Intermolecular Bonding'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Intermolecular Bonding.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Intermolecular Bonding"
Chang, Guanjun, Li Yang, Xianpan Shi, Lin Zhang, and Runxiong Lin. "Intermolecular hydrogen bonding of polyiminosulfone." Polymer Science Series A 57, no. 2 (March 2015): 251–55. http://dx.doi.org/10.1134/s0965545x15020030.
Full textKatovic, Zvonimir, and Miljenko Stefanic. "Intermolecular hydrogen bonding in novolacs." Industrial & Engineering Chemistry Product Research and Development 24, no. 2 (June 1985): 179–85. http://dx.doi.org/10.1021/i300018a001.
Full textWash, Paul L., Emily Maverick, John Chiefari, and David A. Lightner. "Acid−Amide Intermolecular Hydrogen Bonding." Journal of the American Chemical Society 119, no. 16 (April 1997): 3802–6. http://dx.doi.org/10.1021/ja963416e.
Full textRay, Upamanyu, Zhenqian Pang, and Teng Li. "Programming material properties by tuning intermolecular bonding." Journal of Applied Physics 132, no. 21 (December 7, 2022): 210703. http://dx.doi.org/10.1063/5.0123058.
Full textSingh, Praveen, Ranjeet Kumar, and Ashish Kumar Tewari. "Hydrogen bonding framework in imidazole derivatives: Crystal structure and Hirshfeld surface analysis." European Journal of Chemistry 11, no. 1 (March 31, 2020): 50–59. http://dx.doi.org/10.5155/eurjchem.11.1.50-59.1945.
Full textZHANG, YAN, CHANG-SHENG WANG, and ZHONG-ZHI YANG. "ESTIMATION ON THE INTRAMOLECULAR 8- AND 12-MEMBERED RING N–H…O=C HYDROGEN BONDING ENERGIES IN β-PEPTIDES." Journal of Theoretical and Computational Chemistry 08, no. 02 (April 2009): 279–97. http://dx.doi.org/10.1142/s0219633609004708.
Full textJabłoński, Mirosław. "Intramolecular Hydrogen Bonding 2021." Molecules 26, no. 20 (October 19, 2021): 6319. http://dx.doi.org/10.3390/molecules26206319.
Full textMurray, Jane S., Kevin E. Riley, Peter Politzer, and Timothy Clark. "Directional Weak Intermolecular Interactions: σ-Hole Bonding." Australian Journal of Chemistry 63, no. 12 (2010): 1598. http://dx.doi.org/10.1071/ch10259.
Full textLee, Jung-Woo, Jung-Il Jin, M. F. Achard, and F. Hardouin. "Incommensurability induced by intermolecular hydrogen bonding." Liquid Crystals 28, no. 5 (May 2001): 663–71. http://dx.doi.org/10.1080/02678290010028726.
Full textMahajan, R., H. Nandedkar, and V. Suthar. "Intermolecular Hydrogen Bonding in Mixed Mesomorphism." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 330, no. 1 (August 1, 1999): 511–16. http://dx.doi.org/10.1080/10587259908025628.
Full textDissertations / Theses on the topic "Intermolecular Bonding"
Page, Christopher Samuel. "On non-classical intermolecular interactions and chiral recognition." Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287722.
Full textStarbuck, Jonathan. "Structural studies of compounds containing p-block elements." Thesis, University of Bristol, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340162.
Full textHudson, Amanda Gayle. "Characterization of Intermolecular Interactions in Nanostructured Materials." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/77855.
Full textPh. D.
Leal, Ayala Angel Andres. "Effect of intermolecular hydrogen bonding on the micro-mechanical properties of high performance organic fibers." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 307 p, 2008. http://proquest.umi.com/pqdweb?did=1597616621&sid=11&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textBroder, Charlotte Kate. "Diffraction studies of hydrogen bonding and other intermolecular interactions in organic crystal structures." Thesis, Durham University, 2002. http://etheses.dur.ac.uk/3886/.
Full textMehra, Nitin. "Thermal Conduction in Polymer Based Materials by Engineering Intermolecular Interactions." University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron1578202939238852.
Full textMcKee, Matthew Gary. "The Influence of Branching and Intermolecular Interactions on the Formation of Electrospun Fibers." Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/29370.
Full textPh. D.
Fedor, Anna M. "Terahertz spectroscopy of the intermolecular and intramolecular vibrations of molecules in solution." Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available, full text:, 2007. http://wwwlib.umi.com/cr/syr/main.
Full textOdendal, James Arthur. "Investigating intermolecular interactions motifs in ammonium carboxylate salts." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2965.
Full textENGLISH ABSTRACT: This thesis reports an in-depth investigation of the intermolecular interaction motifs in secondary, primary and ammonium carboxylate salts. The investigation was conducted using the Cambridge Structural Database (CSD), together with a systematic steric-specific experimental study. The tendency in the literature has been to analyse organic salt crystal structures in terms of hydrogen bonding patterns, almost ignoring cation-anion interactions. This study focuses on the cation-anion interactions in secondary, primary and ammonium carboxylate salts, which have a direct effect on the formation of specific structural motifs. The ideas of ring-stacking and ring-laddering, which arise from the tendency of cations and anions to arrange themselves so as to maximise electrostatic interactions, have been applied to ammonium carboxylate salts. An extensive survey of organic ammonium carboxylate salt structures in the CSD has been carried out. The structural motifs in ammonium carboxylates were investigated, and a set of predictive rules for the pattern of intermolecular interactions in these salts was developed. Using these results, the formation of ring-stacking or ring-laddering in primary ammonium carboxylate salts can be predicted. The results from the CSD survey are discussed in Chapter 3. An experimental study has been carried out, which complements the results obtained from the CSD survey. The experimental study formed 19 novel ammonium carboxylate salts, of which 2 formed hydrates and 2 co-crystals of salts. The experimental results confirm what was found in the CSD survey, and this is discussed in Chapter 4. This study has found that the principle of ring-stacking and ring-laddering can be applied in a general form to the crystal structures of organic ammonium carboxylate salts. The size of the cation and the anion in these salts has a significant effect on the formation of structural motifs in the solid state. Interactions between cation and anion substituents also play an important role in the formation of particular structural motifs in ammonium carboxylate salts.
AFRIKAANSE OPSOMMING: In hierdie tesis word die intermolekulêre interaksie motiewe in die sekondêre, primêre en ammonium karbosilaat soute in-diepte ondersoek. Die studie is gedoen met behulp van die Cambridge Strukturele Databasis (CSD), saam met ‟n sistematiese steriesspesifieke eksperimentele studie. Die neiging in die literatuur is om organiese sout kristal strukture in terme van waterstofbindings patrone te analiseer sonder om katioon-anioon interaksies in ag te neem. Die studie fokus juis op hierdie katioon-anioon interaksies tussen sekondêre, primêre en ammonium karbosilaat soute wat ‟n direkte effek het op die vorming van spesifieke strukturele motiewe naamlik „ring-stacking‟ en „ring-laddering‟ wat hul oorsprong kry vanaf die neiging van katione en anione om hulself op so ‟n wyse te rangskik sodat die elektrostatiese interaksies ‟n maksimum kan bereik, op die ammonium karboksilaat soute. ‟n Volledige ondersoek van ammonium karboksilaat soute in die CSD is gedoen. Die strukturele motiewe in ammonium karboksilaat is ondersoek, en ‟n stel reels wat die patrone van intermolekulêre interaksies in hierdie soute voorspelis ontwikkel. Hierdie resultate kan gebruik word om die vorming van „ring-stacking‟ en „ring-laddering‟ in primêre ammonium karbosilaat soute te voorspel. Die resultate van die CSD ondersoek word bespreek in Hoofstuk 3. ‟n Eksperimentele studie is uitgevoer en die resultate hiervan komplimenteer die resultate van die CSD ondersoek. In die eksperimentele studie is 19 nuwe ammonium karboksilaat soute gekristaliseer, waarvan 2 hidraat-soute en 2 ko-kristal-van-soute is. Die eksperimentele resultate bevestig die bevindings van die CSD ondersoek, en dit word bespreek in Hoofstuk 4. Hierdie studie het gevind dat die beginsel van „ring-stacking‟ en „ring-laddering‟ kan in „n algemene vorm in die kristal strukture van organiese ammonium karboksilaat soute toegepas word. Die grootte van die katioon en anion in hierdie soute het ‟n beduidende effek op die vorming van strukturele motiewe in die vaste toestand. Interaksie tussen die katioon en anioon substituente speel „n belangrike rol in die vorming van spesifieke motiewe in ammonium karbosilaat soute.
Spencer, Claire Louise. "High resolution laser and infrared spectroscopy and ab initio calculations for the study of intermolecular hydrogen bonding." Thesis, University of Sheffield, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.566483.
Full textBooks on the topic "Intermolecular Bonding"
(Contributor), P. W. Fowler, I. W. Jenneskens (Contributor), C. Nillot (Contributor), P.L.A. Popelier (Contributor), L. S. Price (Contributor), S. L. Price (Contributor), A. Soncini (Contributor), S. Tsuzuki (Contributor), and D. Wales (Editor), eds. Intermolecular Forces and Clusters I (Structure and Bonding) (Structure and Bonding). Springer, 2005.
Find full text(Contributor), R. A. Christie, G. E. Ewing (Contributor), B. Jeziorski (Contributor), K. D. Jordan (Contributor), K. Patkowski (Contributor), K. Szalewicz (Contributor), S. S. Xantheas (Contributor), and D. Wales (Editor), eds. Intermolecular Forces and Clusters II (Structure and Bonding). Springer, 2006.
Find full textCoppens, Philip. X-Ray Charge Densities and Chemical Bonding. Oxford University Press, 1997. http://dx.doi.org/10.1093/oso/9780195098235.001.0001.
Full textAyala, Angel Andres Leal. Effect of Intermolecular Hydrogen Bonding on the Micro-Mechanical Properties of High Performance Organic Fibers. ProQuest, UMI Dissertation Publishing, 2012.
Find full textBook chapters on the topic "Intermolecular Bonding"
Boeyens, Jan C. A. "Intermolecular Bonding." In Intermolecular Interactions, 3–7. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-4829-4_2.
Full textHuyskens, P. L., and G. G. Siegel. "Hydrogen Bonding and Entropy." In Intermolecular Forces, 397–408. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76260-4_17.
Full textvan der Avoird, Ad. "Intermolecular Forces and the Properties of Molecular Solids." In Theoretical Models of Chemical Bonding, 391–433. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-58177-9_10.
Full textHamilton, Andrew D., Yoshitomo Hamuro, Ji Yang, Steven J. Geib, and Erkang Fan. "Intra- and Intermolecular Hydrogen Bonding Control of Supramolecular Structure." In Computational Approaches in Supramolecular Chemistry, 101–8. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1058-7_6.
Full textKato, Takashi, Hajime Adachi, Norifumi Hirota, Akira Fujishima, and Jean M. J. Fréchet. "Design of New Type of Liquid Crystalline Polymers Through Intermolecular Hydrogen Bonding." In Advances in New Materials, 299–305. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3456-3_26.
Full textTimcheva, Ilijana, and Peter Nikolov. "Intermolecular Hydrogen Bonding in the Fluorescence Excited State of Organic Luminophores Containing Both Carbonyl and Amino Groups." In Hydrogen Bonding and Transfer in the Excited State, 269–85. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470669143.ch12.
Full textPhilpott, Matthew P., Sophia C. Hayes, Carsten L. Thomsen, and Philip J. Reid. "Intermolecular Hydrogen Bonding in Chlorine Dioxide Photochemistry: A Time-Resolved Resonance Raman Study." In ACS Symposium Series, 136–47. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2002-0820.ch010.
Full textJensen, Jan H., Paul N. Day, Mark S. Gordon, Harold Basch, Drora Cohen, David R. Garmer, Morris Kraus, and Walter J. Stevens. "Effective Fragment Method for Modeling Intermolecular Hydrogen-Bonding Effects on Quantum Mechanical Calculations." In ACS Symposium Series, 139–51. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/bk-1994-0569.ch009.
Full textJanietz, D., D. Goldmann, C. Schmidt, and J. H. Wendorff. "Control of Structure Formation of 1,3,5-Triazines through Intermolecular Hydrogen Bonding and CT-Interactions." In ACS Symposium Series, 282–95. Washington, DC: American Chemical Society, 2001. http://dx.doi.org/10.1021/bk-2001-0798.ch021.
Full textSobolewski, Andrzej L., and Wolfgang Domcke. "AB Initio Reaction Paths and Potential-Energy Functions for Excited-State Intra- and Intermolecular Hydrogen-Transfer Processes." In Ultrafast Hydrogen Bonding Dynamics and Proton Transfer Prosesses in the Condensed Phase, 93–118. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0059-7_5.
Full textConference papers on the topic "Intermolecular Bonding"
Meindinyo, Remi-Erempagamo T., and Thor Martin Svartås. "Intermolecular Forces in Clathrate Hydrate Related Processes." In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/omae2015-41774.
Full textMishra, Anamika, Vineet Gupta, Poonam Tandon, Ko-Ki Kunimoto, P. M. Champion, and L. D. Ziegler. "Vibrational Spectroscopy and Density Functional Theory of Intermolecular Hydrogen Bonding in 2-Thiohydantoins." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482568.
Full textMotosuke, Masahiro, Yuji Nagasaka, and Shinji Honami. "Time-Resolved and Micro-Scale Measurement of Thermal Property for Intermolecular Dynamics Using an Infrared Laser." In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32918.
Full textYang, Fuzheng, and Ranga Pitchumani. "A Model for Nonisothermal Healing of Thermoplastic Polymers During Fusion Bonding." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/htd-24363.
Full textSugimoto, H., and H. Tabata. "Non-labeling Detection of Specific Intermolecular Bonding Using THz-SPR of Topological Insulator Bi2Se3." In 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). IEEE, 2021. http://dx.doi.org/10.1109/irmmw-thz50926.2021.9567444.
Full textOgihara, M., T. Sagimori, M. Mutoh, H. Furuta, T. Suzuki, H. Fujiwara, and M. Sakuta. "Single-crystal thin-film bonding on diamond-like carbon film by intermolecular force for super high-density integration of high-power LEDs." In 2008 IEEE International Electron Devices Meeting (IEDM). IEEE, 2008. http://dx.doi.org/10.1109/iedm.2008.4796729.
Full textPons, B. Stanley. "Infrared Spectral Electrochemistry of Surface Reactions." In Microphysics of Surfaces, Beams, and Adsorbates. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/msba.1985.tua2.
Full textReports on the topic "Intermolecular Bonding"
Gragson, D. E., and G. L. Richmond. Probing the Intermolecular Hydrogen Bonding of Water Molecules at the CCl sub 4 Water Interface in the Presence of Charged Soluble Surfactant. Fort Belvoir, VA: Defense Technical Information Center, June 1998. http://dx.doi.org/10.21236/ada347139.
Full text