Academic literature on the topic 'Interleukin-12'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Interleukin-12.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Interleukin-12"

1

Leonard, Patricia, and Sanjiv Sur. "Interleukin-12." BioDrugs 17, no. 1 (2003): 1–7. http://dx.doi.org/10.2165/00063030-200317010-00001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

&NA;. "Interleukin-12." Inpharma Weekly &NA;, no. 1124 (February 1998): 7. http://dx.doi.org/10.2165/00128413-199811240-00013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Trinchieri, Giorgio. "Interleukin-12." Clinical Immunotherapeutics 3, no. 4 (April 1995): 262–70. http://dx.doi.org/10.1007/bf03259278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Clinton, Steven K., Eduardo Canto, and Michael A. O'Donnell. "INTERLEUKIN-12." Urologic Clinics of North America 27, no. 1 (February 2000): 147–55. http://dx.doi.org/10.1016/s0094-0143(05)70242-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Weiner, David. "Plasmid Interleukin 12." AIDS 14, no. 12 (August 2000): 1759–60. http://dx.doi.org/10.1097/00002030-200008180-00010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Leng, S. X., and J. A. Elias. "Interleukin-11 inhibits macrophage interleukin-12 production." Journal of Immunology 159, no. 5 (September 1, 1997): 2161–68. http://dx.doi.org/10.4049/jimmunol.159.5.2161.

Full text
Abstract:
Abstract IL-12 is a heterodimeric cytokine produced by phagocytic and other cells with important physiologic and pathologic properties. Regulated IL-12 production is crucial for the generation of protective Th1 responses to infectious agents. In contrast, IL-12 excess contributes to the pathogenesis of a variety of autoimmune and inflammatory disorders. To further understand the processes regulating IL-12 production, we determined whether IL-11 regulated monocyte/macrophage production of this cytokine moiety. IL-11 did not alter the IL-12 (p70) production of unstimulated THP-1 monocytic cells or human blood monocytes. It did, however, inhibit, in a dose-dependent fashion, the IL-12 production of IFN-gamma plus Staphylococcus aureus Cowan strain 1-stimulated THP-1 cells and stimulated blood monocytes. This inhibition of IL-12 protein production was associated with a proportionate decrease in IL-12 p35 and p40 mRNA accumulation. Nuclear run-on assays revealed comparable decreases in IL-12 p35 and p40 gene transcription. IL-11 did not similarly regulate monocyte/macrophage production of IL-8 or macrophage inflammatory protein-1alpha (MIP-1alpha) and IL-6 did not similarly inhibit IL-12 elaboration. These studies demonstrate that IL-11 is a potent inhibitor of monocyte/macrophage IL-12 production and that this inhibitory effect is, at least in part, transcriptionally mediated. They also demonstrate that this inhibition is not the result of a generalized suppression of macrophage effector function and that the ability to inhibit monocyte/macrophage IL-12 production is not a generalized property of all IL-6-type cytokines.
APA, Harvard, Vancouver, ISO, and other styles
7

Fox, Robert J., and Abdolmohamad M. Rostami. "Anti???Interleukin-12 Antibody." BioDrugs 13, no. 4 (April 2000): 233–41. http://dx.doi.org/10.2165/00063030-200013040-00002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

&NA;. "Interleukin-12 trial halted." Reactions Weekly &NA;, no. 556 (June 1995): 2. http://dx.doi.org/10.2165/00128415-199505560-00003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

&NA;. "Interleukin-12 studies continue." Reactions Weekly &NA;, no. 558 (July 1995): 2. http://dx.doi.org/10.2165/00128415-199505580-00003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

&NA;. "Interleukin-12 trial halted." Inpharma Weekly &NA;, no. 992 (June 1995): 21. http://dx.doi.org/10.2165/00128413-199509920-00047.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Interleukin-12"

1

Balu, Sucharitha. "Cloning and characterisation of chicken interleukin-12 and the interleukin-12 receptor." Thesis, University of Bristol, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Swinburne, Sarah Jane. "A study of the molecular and biological characteristics of ovine interleukin-12." Title page, contents and summary only, 2000. http://web4.library.adelaide.edu.au/theses/09PH/09phs9777.pdf.

Full text
Abstract:
Bibliography: leaves 172-214. Interleukin-12 (IL-12) is a heterodimeric cytokine composed of two disulphide-linked subunits, p35 and p40, which form biologically active p70. IL-12 is able to induce IFN-y production from T and NK cells, and promote the proliferation of mitogen-activated T cells. It is thought that IL-12 may be an important cytokine in the initiation and progression of allograft destruction. This thesis describes the characterisation of ovine IL-12.
APA, Harvard, Vancouver, ISO, and other styles
3

Werner, Christoph. "Von Interleukin-12 zur p40-Zytokinfamilie Interleukin-12-unabhängige Wirkungen von p40-Zytokinen in der Infekt- und Tumorabwehr /." [S.l.] : [s.n.], 2003. http://dol.uni-leipzig.de/pub/2003-34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Werner, Christoph. "Von Interleukin-12 zur p40-Zytokinfamilie: Interleukin-12-unabhängige Wirkungen von p40-Zytokinen in der Infekt- und Tumorabwehr." Doctoral thesis, Universitätsbibliothek Leipzig, 2004. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-37550.

Full text
Abstract:
Interleukin-12 (IL-12) ist ein zentrales Zytokin in der Entwicklung einer protektiven, zellulären Typ 1-Immunantwort. Es ist aus einer p40- und einer p35-Untereinheit aufgebaut. Es stimuliert NK- und T-Zellen zur Ausschüttung großer Mengen IFN-gamma und setzt so eine Typ 1-Immunantwort in Gang. Die p40-Untereinheit des IL-12 kommt auch in anderen biologisch wirksamen Verbindungen wie beispielsweise als Monomer, Homodimer oder als IL-23 (in Verbindung mit einer p19-Untereinheit) vor. Während das Homodimer in der vorliegenden Arbeit als reiner Antagonist zu IL-12 zu wirken scheint, wurden für IL-23 bereits zu IL-12 agonistische Wirkungen demonstriert. Im Mittelpunkt der vorliegenden Arbeit stand die Erarbeitung p40-abhängiger Wirkungen unter Ausschluß der Effekte von IL-12, d. h. möglicherweise IL-23-abhängiger Effekte. In den vorliegenden Untersuchungen wurde mit gendeletierten Mäusen gearbeitet, so dass IL-12 in diesen Systemen keine Rolle spielen kann sondern nur die p40-Proteine außer IL-12. Im Infektionsmodell mit Salmonella Enteritidis wurden p35-gendeletierte (p35-/--) und p40-/--Mäuse verwendet. Durch eine Induktion der p40-Expression waren Unterschiede auf die Wirkung der p40-Proteine zurückzuführen. Es zeigte sich, dass p40-Proteine durch die Induktion einer IFN-gamma Produktion eine Verbesserung der Abtötung intrazellulärer Pathogene bewirkten. Dadurch gelang in den p35-/--Mäusen die Eindämmung der systemischen Infektion besser und diese Mäuse überlebten länger als die p40-/--Mäuse. In Tumormodellen mit dem Lewis-Lungenkarzinom und dem Melanom B16 wurden p35/40-/--Mäuse, welche keine p40-Proteine bilden können, mit der für p40 kodierenden DNA gentherapiert. Durch diese lokale Gentherapie kam es zu einer Reduktion des Tumorwachstums. In immunhistologischen Untersuchungen war eine Rekrutierung von Makrophagen und eine Hemmung der Angiogenese im Tumorbereich sichtbar. Lokale und systemische Proteintherapien mit dem Homodimer oder IL-23 hatten keinen Effekt auf das Wachstum des Tumors, was auf die Existenz eines weiteren noch unbekannten heterodimeren p40-Proteins hindeutet. In vitro konnte gezeigt werden, dass IL-23 die IFN-gamma-Produktion durch Splenozyten induziert und dieser Effekt durch das Homodimer antagonisiert werden kann. Interessanterweise kann es in primären Milzzellkulturen auch IL-12 antagonisieren. Eine In-vitro-Infektion führte zu einer p40-abhängigen IFN-gamma-Produktion, die auch durch das Homodimer antagonisiert werden konnte. Während die Effekte der p40-Proteine im Infektionsmodell möglicherweise auf IL-23 zurückgeführt werden können und diese Effekte auch durch In-vitro-Untersuchungen gestützt werden, muss nach den Ergebnissen im Tumormodell auf die Existenz eines weiteren, bisher unbekannten p40-Proteines, p40-x, geschlossen werden
Interleukin-12 (IL-12) is a key cytokine in the development of a protective cellular Th1 immune response. It consists of a p40 and a p35 subunit. Following stimulation with IL-12, NK and T cells produce large amounts of IFN-gamma resulting in a type 1 immune response. The p40 subunit of IL-12 is also part of other biologically active proteins such as monomeric or homodimeric p40 or the heterodimeric IL-23 (in combination with a p19 subunit). While in this study the homodimeric p40 appears to antagonize IL-12, IL-23 was demonstrated to have agonistic effects. The aim of this study was to investigate p40-dependent effects which can be observed independently of IL-12, i.e. potential effects mediated by IL-23. For the experiments mutant mice were used so that IL-12 dependent mechanisms could not play a role but only p40-dependent proteins excluding IL-12. In a Salmonella Enteritidis infection model p35-gene deleted (p35-/-) and p40-/- mice were used. As the expression of p40 is induced by bacterial antigen, differences between the strains were caused by the p40 protein. During the infection p40 proteins induced IFN-gamma production thus improving the killing of intracellular pathogens. This resulted in a better control of the systemic infection and longer survival periods of the p35-/- mice as compared to p40-/- mice. For the experiments in the tumor model using the Lewis-Lung carcinoma and the Melanoma B16 as tumors, p35/40-/- mice which are unable to produce any p40 proteins, received gene therapy with DNA encoding for p40. This local gene therapy resulted in a reduced tumor growth. Immunohistochemical examination revealed an infiltration of the tumor tissue with macrophages and a reduced neoangiogenesis within the tumor. This effect could not be achieved by local administration of IL-23 or the p40-homodimer as a protein, indicating the existence of an as yet unknown heterodimeric p40 protein. In vitro experiments showed that IL-23 induces IFN-gamma production by splenocytes and this effect can be antagonized by the homodimer. Interestingly, IL-23 is also able to antagonize IL-12 in primary splenocyte cultures. In vitro infection with Salmonella resulted in an p40-dependent IFN-gamma production that could also be antagonized by the homodimer. The protective effects in the infection model might be caused by IL-23, which is supported by the in vitro results. On the other hand, in the tumor model IL-23 does not seem to be the player and it must be concluded that the protective effects are caused by an other as yet unknown p40-dependent protein p40-x
APA, Harvard, Vancouver, ISO, and other styles
5

Walter, Claudia. "Bestimmung der Zytokine Interleukin-1ra, Interleukin-6, Interleukin-10 und Interleukin-12 im Vaginalsekret bei Frauen mit Bakterieller Vaginose." Diss., lmu, 2004. http://nbn-resolving.de/urn:nbn:de:bvb:19-28461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chakir, Habiba. "Role of interleukin-12 and interleukin-18 in murine immune cell regulation." Thesis, University of Ottawa (Canada), 2003. http://hdl.handle.net/10393/28980.

Full text
Abstract:
Interleukin 12 plays a central role in NK cell activation and CD4 +T cell differentiation. IL-12 acts via a receptor composed of IL-12Rbeta1 and IL-12Rbeta2 subunits. IL-12Rbeta1 plays a primary role in ligand binding whereas IL-12Rbeta2 is responsible for signaling. IL-18 shares some functional activities of IL-12. However, there is a considerable amount of contradictory data in the literature regarding the requirements for IL-12 and IL-18 responsiveness. This work examined the expression of IL-12Rbeta2 on murine NK and T cells and the requirements for acquisition of IL-12/IL-18 responsiveness. NK cells stimulated with IL-2+IL-12 or IL-2+IL-18 exhibited rapid upregulation of IFN-gamma expression followed by upregulation of IL-10 or IL-13 mRNA, respectively. NK cells from IL-12Rbeta2-deficient mice responded to IL-2+IL-18 independently of IL-12. Furthermore, flow cytometric analyses revealed that NK cells activated in vitro with IL-2 differentiate into two distinct cell subsets expressing different levels of IL-12Rbeta2. Like NK cells, NK-T cells also responded to IL-2+IL-12 or IL-2+IL-18 without stimulation of the antigen-specific T cell receptor (TCR). Previously, it was thought that all T cells require activation via the TCR in order to respond to IL-12 or IL-18. Thus, responsiveness of conventional T cells to IL-2+IL-12 or IL-2+IL-18 in the absence of TCR ligation was assessed. Naive CD4+T cells from wild type or DO11.10/Rag2-/- OVA-specific TCR transgenic mice responded to IL-2+IL-12 or IL-2+IL-18 by expressing IFN-gamma and cells grown in IL-2+IL-12 exhibited signs of polarization towards a TH1 phenotype. Transgenic BALB/c mice constitutively expressing the IL-12Rbeta2 chain were generated and the role of the IL-12Rbeta2 in TH2 phenotype development was analyzed using the TH1-dependent murine leishmaniasis model. Despite constitutive expression of the IL-12Rbeta2 chain, transgenic TH2 cells did not revert to TH1 when restimulated with IL-12 and mice remained susceptible to Leishmania. The role of IL-12Rbeta2 in TH1 cell development was also analyzed using the same model. Resistant C57BL/6 mice defective in IL-12Rbeta2 gene exhibited susceptibility to L. major infection and expressed a T H2 phenotype, consistent with a critical role for IL-12 in this model. Thus understanding the expression of IL-12Rbeta2 in NK and CD4 +T cells and its regulation by cytokines may constitute an important element in studies in cancer and autoimmune disease therapy.
APA, Harvard, Vancouver, ISO, and other styles
7

Rempel, Julia D. "Interleukin-12 and interleukin-10 regulation of antibody responses upon protein antigen immunization." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ41623.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Athie, Morales Veronica. "Interleukin 12 signalling pathways in human T lymphocytes." Thesis, University College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schardt, Victor. "Vergleichende Untersuchungen zur Hefepilzbesiedelung von Mundhöhle und Vagina und Bestimmung von Interleukin-4, Interleukin-10 und Interleukin-12." Diss., lmu, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-155152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Naseer, Tanveer 1971. "In vivo expression of interleukin-12 and interleukin-13 in the pathogenesis of asthma." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=23925.

Full text
Abstract:
IL-12 and IL-13 are recently discovered cytokines which belong to Th1 and Th2 subtypes, respectively. To further support the hypothesis that Th2-type cytokines are involved in asthma, mRNA levels for IL-12 and IL-13 were measured in bronchial biopsies from asthmatics and normal controls as well as in moderately severe asthmatics before and after corticosteroid therapy using the technique of in situ hybridization. The number of IL-13 mRNA positive cells in asthmatics was significantly higher than that found in normal controls. However, there was a significant decrease in the number of IL-12 mRNA positive cells in asthmatic biopsies compared to normal controls. Following corticosteroid therapy, a significant decrease in IL-13 mRNA positive cells and an increase in the number of cells expressing IL-12 mRNA was detected. The results suggest an in vivo role of the cytokines in modulating allergic responses and support the role of Th2 type cytokines in asthma.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Interleukin-12"

1

Lasek, Witold, and Radoslaw Zagozdzon. Interleukin 12: Antitumor Activity and Immunotherapeutic Potential in Oncology. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46906-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Il-12 (Chemical Immunology). S. Karger AG (Switzerland), 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Interleukin 12: Antitumor Activity and Immunotherapeutic Potential in Oncology. Springer International Publishing AG, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lasek, Witold, Radoslaw Zagozdzon, and Marek Jakóbisiak. Interleukin 12: Antitumor Activity and Immunotherapeutic Potential in Oncology. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Interleukin 12: Cellular and molecular immunology of an important regulatory cytokine. New York, N.Y: New York Academy of Sciences, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

New York Academy of Sciences (Corporate Author), Inc. Genetics Institute (Corporate Author), and Michael T. Lotze (Editor), eds. Interleukin 12: Cellular and Molecular Immunology of an Important Regulatory Cytokine (Annals of the New York Academy of Sciences, V. 795). New York Academy of Sciences, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

(Editor), Michael T. Lotze, Giorgio Trinchiere (Editor), Maurice Gately (Editor), and Stanley Wolf (Editor), eds. Interleukin 12: Cellular and Molecular Immunology of an Important Regulatory Cytokine (Annals of the New York Academy of Sciences). New York Academy of Sciences, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Construction of murine interleukin-12 retroviral Vectors: Implications for gene therapy of hematologic malignancies. Ottawa: National Library of Canada, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Interleukin-12"

1

Kaufman, Howard L., and Neal Dharmadhikari. "Interleukin-12." In Cancer Therapeutic Targets, 345–59. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4419-0717-2_144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dieckman, Tessa, Antonie Zwiers, Georg Kraal, and Gerd Bouma. "Interleukin 12." In Compendium of Inflammatory Diseases, 709–14. Basel: Springer Basel, 2016. http://dx.doi.org/10.1007/978-3-7643-8550-7_220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bukowski, Ronald M., and Charles Tannenbaum. "Interleukin-12." In Melanoma, 221–34. Totowa, NJ: Humana Press, 2002. http://dx.doi.org/10.1007/978-1-59259-159-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kaufman, Howard L., and Neal Dharmadhikari. "Interleukin-12." In Cancer Therapeutic Targets, 1–15. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4614-6613-0_144-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dieckman, Tessa, Antonie Zwiers, Georg Kraal, and Gerd Bouma. "Interleukin 12." In Encyclopedia of Inflammatory Diseases, 1–7. Basel: Springer Basel, 2014. http://dx.doi.org/10.1007/978-3-0348-0620-6_220-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bryan, Shannon, Michiko Kobayashi, and Sanjiv Sur. "Interleukin-12, Interleukin-18 and Interferon-γ." In New Drugs for Asthma, Allergy and COPD, 274–78. Basel: KARGER, 2001. http://dx.doi.org/10.1159/000062155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pile, Kevin D., Garry G. Graham, and Stephen M. Mahler. "Interleukin-12/23 Inhibitors: Ustekinumab." In Compendium of Inflammatory Diseases, 714–17. Basel: Springer Basel, 2016. http://dx.doi.org/10.1007/978-3-7643-8550-7_232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pile, Kevin D., Garry G. Graham, and Stephen M. Mahler. "Interleukin-12/23 Inhibitors: Ustekinumab." In Encyclopedia of Inflammatory Diseases, 1–3. Basel: Springer Basel, 2015. http://dx.doi.org/10.1007/978-3-0348-0620-6_232-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aulitzky, W. E., and C. Huber. "Interleukin-12: Biology and Clinical Studies." In Symposium in Immunology VI, 111–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60562-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fernández-Ruiz, Mario. "Interleukin-12 and -23 Targeted Agents." In Infectious Complications in Biologic and Targeted Therapies, 199–217. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11363-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Interleukin-12"

1

"03 Targeting interleukin 12/23." In 8th ANNUAL MEETING OF THE LUPUS ACADEMY, Warsaw, Poland, September 6–8, 2019. Lupus Foundation of America, 2019. http://dx.doi.org/10.1136/lupus-2019-la.15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Conway, R., L. O’Neill, P. Gallagher, G. McCarthy, C. Murphy, D. Veale, U. Fearon, and E. Molloy. "SAT0542 Interleukin-12 and interleukin-23 are key pathogenic players in giant cell arteritis." In Annual European Congress of Rheumatology, EULAR 2018, Amsterdam, 13–16 June 2018. BMJ Publishing Group Ltd and European League Against Rheumatism, 2018. http://dx.doi.org/10.1136/annrheumdis-2018-eular.2850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Canataroglu, A., E. Erken, and R. Gunesacar. "FRI0165 Serum levels of interleukin-12 in behcet’s disease." In Annual European Congress of Rheumatology, Annals of the rheumatic diseases ARD July 2001. BMJ Publishing Group Ltd and European League Against Rheumatism, 2001. http://dx.doi.org/10.1136/annrheumdis-2001.225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vo, Jimmy Nhu. "Abstract 1535: Intratumoral chitosan/interleukin-12 immunotherapy reduces breast cancer metastasis." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-1535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ursic Valentinuzzi, K., U. Kamensek, S. Kos, S. Kranjc Brezar, M. Cemazar, and G. Sersa. "P08.03 Interleukin-12 gene electrotransfer as an adjuvant immunotherapy to electrochemotherapy." In iTOC9 – 9th Immunotherapy of Cancer Conference, September 22–24, 2022 – Munich, Germany. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jitc-2022-itoc9.49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ishihara, Jun, Aslan Mansurov, and Jeffrey Hubbell. "1227 Eliminating the immunotoxicity of interleukin-12 through protease-sensitive masking." In SITC 37th Annual Meeting (SITC 2022) Abstracts. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jitc-2022-sitc2022.1227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Smith, Sean, Jack Baltz, Bhanu Koppolu, Sruthi Ravindranathan, Khue Nguyen, and David Zaharoff. "Abstract B020: Effector cells in chitosan/interleukin-12 immunotherapy of bladder tumors in mice." In Abstracts: CRI-CIMT-EATI-AACR Inaugural International Cancer Immunotherapy Conference: Translating Science into Survival; September 16-19, 2015; New York, NY. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/2326-6074.cricimteatiaacr15-b020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Xi, Ashlee Tietje, Xianzhong Yu, and Yanzhang Wei. "Abstract 4874: Interleukin-12/FasTI: A novel bi-functional fusion protein for cancer immunotherapy." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-4874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cheema, Tooba A., Hiroaki Wakimoto, Samuel Rabkin, and Robert L. Martuza. "Abstract 5389: Oncolytic herpes simplex virus expressing interleukin-12 for treating glioma stem cells." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-5389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Simkin, Guillermo O., Julia G. Levy, and David W. C. Hunt. "Interleukin-12 reverses the inhibitory impact of photodynamic therapy (PDT) on the murine contact hypersensitivity response." In BiOS '98 International Biomedical Optics Symposium, edited by Thomas J. Dougherty. SPIE, 1998. http://dx.doi.org/10.1117/12.308134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography