Academic literature on the topic 'Interlaminar damping materials'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Interlaminar damping materials.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Interlaminar damping materials"

1

Saravanos, D. A., and J. M. Pereira. "Dynamic Characteristics of Specialty Composite Structures with Embedded Damping Layers." Journal of Vibration and Acoustics 117, no. 1 (January 1, 1995): 62–69. http://dx.doi.org/10.1115/1.2873868.

Full text
Abstract:
Damping mechanics for predicting the damped dynamic characteristics in specialty composite structures with compliant interlaminar damping layers are presented. Finite-element based mechanics incorporating a discrete layer (or layer-wise) laminate damping theory are utilized to represent general laminate configurations in terms of lay-up and fiber orientation angles, cross-sectional thickness, shape and boundary conditions. Evaluations of the method with exact solutions and experimental data illustrate its accuracy. Additional parametric studies demonstrate the unique capability of angle-ply composite laminates with cocured interlaminar damping layers to significantly enhance structural damping.
APA, Harvard, Vancouver, ISO, and other styles
2

Saravanos, D. A. "Integrated Damping Mechanics for Thick Composite Laminates and Plates." Journal of Applied Mechanics 61, no. 2 (June 1, 1994): 375–83. http://dx.doi.org/10.1115/1.2901454.

Full text
Abstract:
A method for predicting the damped dynamic characteristics of thick composite laminates and plates is presented. Unified damping mechanics relate the damping of composite plates to constituent properties, fiber volume ratio, fiber orientation, laminate configuration, plate geometry, temperature, and moisture. Discrete layer damping mechanics for thick laminates, entailing piecewise continuous displacement fields and including the effects of interlaminar shear damping, are described. A semi-analytical method for predicting the modal damping and natural frequencies of thick simply-supported specialty composite plates is included. Applications demonstrate the validity, merit, and ranges of applicability of the new theory. The applications further illustrate the significance of interlaminar shear damping, and investigate the effects of lamination, thickness aspect ratio, fiber content, and temperature.
APA, Harvard, Vancouver, ISO, and other styles
3

Gibson, Ronald F., Yu Chen, and Hui Zhao. "Improvement of Vibration Damping Capacity and Fracture Toughness in Composite Laminates by the Use of Polymeric Interleaves." Journal of Engineering Materials and Technology 123, no. 3 (January 18, 2001): 309–14. http://dx.doi.org/10.1115/1.1370385.

Full text
Abstract:
It is shown that, under certain conditions, simultaneous improvement of vibration damping capacity and interlaminar fracture toughness in composite laminates can be achieved by using polymeric interleaves between the composite laminae. The specific case of Mode II interlaminar fracture toughness and flexural damping capacity of interleaved composite laminates is studied. Graphite/epoxy, E-glass/epoxy and E-glass/polyetherimide composite laminates with polymeric interleaves of several different thicknesses and materials were tested using both the end notch flexure (ENF) test for Mode II fracture toughness and the impulse-frequency response test for flexural damping capacity. The Mode II energy release rate GIIc for all three composites increased linearly with increasing interleaf thickness up to a critical thickness, then dropped off with further increases in thickness. The damping loss factor η for all three composites increased linearly with increasing interleaf thickness up to the maximum thickness. Analytical models for predicting the influence of interleaves on GIIc and η are developed, along with a hypothesis for the critical thickness effect with regard to fracture toughness.
APA, Harvard, Vancouver, ISO, and other styles
4

Lakshmaiya, Natrayan, Seeniappan Kaliappan, Pravin P. Patil, Velmurugan Ganesan, Joshuva Arockia Dhanraj, Chattariya Sirisamphanwong, Tanakorn Wongwuttanasatian, et al. "Influence of Oil Palm Nano Filler on Interlaminar Shear and Dynamic Mechanical Properties of Flax/Epoxy-Based Hybrid Nanocomposites under Cryogenic Condition." Coatings 12, no. 11 (November 4, 2022): 1675. http://dx.doi.org/10.3390/coatings12111675.

Full text
Abstract:
Natural fiber-reinforced polymer composites are gaining in popularity due to recyclability and availability. This research investigates how oil palm shell (OPS) filler materials impact the interlaminar shear and the dynamic properties of flax fiber-reinforced hybrid composites under cryogenic circumstances. Filler materials in two different proportions (0, 2, 4, and 6 wt.% OPS) and 40 wt.% flax fibers were used to make composites. The OPS filler-filled polymeric materials were invented through typical hand lay-up. The hybrid materials were imperiled to liquid nitrogen for varying amounts of time after production (15 and 30 min). According to the findings, OPS nanoparticles can be used as natural rather than artificial fillers. Furthermore, loading 4 wt.% OPS nanoparticles into organic fabric-strengthened epoxy polymeric materials during 15 min of cryogenic settings resulted in the best interlaminar shear and dynamic performances. The storage and loss modulus of the flax/epoxy composites were improved by adding a 4% OPS nanofiller. The improvement can be ascribed to the hardness and stiffness of the additional OPS nanofillers. The 4% nano-OPS/flax/epoxy hybrid nanocomposite’s damping factor was substantially reduced compared to the flax/epoxy composites. The OPS nanofiller limits the epoxy molecular chain’s free segmental mobility, resulting in a lower damping factor and enhancing the adherence among flax fibers and the epoxy resin. The shattered specimen of the hybrid materials was investigated using a scanning electron microscope.
APA, Harvard, Vancouver, ISO, and other styles
5

Lu, Wenjiang, Faxiang Qin, Yunfei Wang, Yang Luo, Huan Wang, Fabrizio Scarpa, Jixue Li, Raffaella Sesana, Francesca Cura, and Hua-Xin Peng. "Engineering Graphene Wrinkles for Large Enhancement of Interlaminar Friction Enabled Damping Capability." ACS Applied Materials & Interfaces 11, no. 33 (July 26, 2019): 30278–89. http://dx.doi.org/10.1021/acsami.9b09393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Badre-Alam, A., K. W. Wang, and F. Gandhi. "An analysis of interlaminar stresses in active constrained layer damping treatments." Journal of Sound and Vibration 269, no. 3-5 (January 2004): 965–90. http://dx.doi.org/10.1016/s0022-460x(03)00208-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yim, Jong Hee, B. Z. Jang, J. C. Suhling, and J. W. Gillespie. "Effects of interlaminar stresses on damping of 0-degree unidirectional laminated composites." Polymer Composites 20, no. 6 (December 1999): 796–803. http://dx.doi.org/10.1002/pc.10403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kumar, Raj, S. Mohan Kumar, M. E. Shashi Kumar, V. Ravi Kumar, Rajesh Kivade, Jonnalagadda Pavan, A. H. Seikh, M. H. Siddique, and Abdi Diriba. "Thermogravimetric Analysis and Mechanical Properties of Pebble Natural Filler-Reinforced Polymer Composites Produced through a Hand Layup Technique." Advances in Materials Science and Engineering 2022 (September 20, 2022): 1–8. http://dx.doi.org/10.1155/2022/1837741.

Full text
Abstract:
Using pebble and fibre in an epoxy matrix, the mechanical, dynamic, and thermal characteristics of a composite were examined. Tensile, flexural, impact, and interlaminar shear strengths are experimentally determined. In this study, we compare the mechanical performance of carbon fibre composites composed entirely of conventional epoxy (NE). The results of a comparative investigation using 15 and 20% carbon fibre in an epoxy matrix are presented. Additional categories for compressive strength and damping ratio were defined based on this performance. The epoxy resin was combined with carbon fibre (15 wt% and 20 wt%) in a unidirectional arrangement and manufactured with different fillers like pebble. The goal of this research is to better understand the bonding mechanisms between damping materials and the resin matrix in order to increase interfacial bonding performance. This information is required for both selecting the appropriate material for applications and developing a composite construction using that material.
APA, Harvard, Vancouver, ISO, and other styles
9

Pan, Jiao, Min Li, Shaokai Wang, Yizhuo Gu, Qingwen Li, and Zuoguang Zhang. "Hybrid effect of carbon nanotube film and ultrathin carbon fiber prepreg composites." Journal of Reinforced Plastics and Composites 36, no. 6 (December 15, 2016): 452–63. http://dx.doi.org/10.1177/0731684416684020.

Full text
Abstract:
This paper successfully interlaced floating catalyst chemical vapor deposition-grown carbon nanotube film and ultrathin carbon fiber prepreg to achieve strong and flexible carbon nanotube/carbon fiber hybrid composites with high carbon nanotube loading. Epoxidation was also introduced to improve interlaminar interfacial bonding. It was found that pristine carbon nanotube film/carbon fiber interply hybrid composite (carbon fiber/carbon nanotube/carbon fiber) showed sudden and brittle failure, while epoxidation caused a gradual failure behavior. Hybrid effect analysis suggested that the improved tensile performance and synergistic effect of epoxidized carbon nanotube film/carbon fiber hybrid composite were attributed to good load transfer and suppressed delamination induced by improved interfacial bonding. In addition carbon fiber/carbon nanotube/carbon fiber manifested excellent damping capacity with the maximum loss factor of 0.13. The in-plane electrical conductivity of composite with global carbon nanotube content of 21 wt% increased to the same order of magnitude as carbon nanotube film composite. The excellent mechanical, damping, and electrical properties demonstrated great potential for both structural and multifunctional applications of the resultant hybrid composites.
APA, Harvard, Vancouver, ISO, and other styles
10

Hong, Mi-Kyoung, Woong-Ki Choi, Jong-Hyun Park, Yun-Su Kuk, Byoung-Suhk Kim, and Min-Kang Seo. "Relationship Between Functionalized Multi-Walled Carbon Nanotubes and Damping Properties of Multi-Walled Carbon Nanotubes/Carbon Fiber-Reinforced Plastic Composites for Shaft." Journal of Nanoscience and Nanotechnology 20, no. 11 (November 1, 2020): 6862–70. http://dx.doi.org/10.1166/jnn.2020.18810.

Full text
Abstract:
The mechanical properties and damping behavior of carbon fiber-reinforced plastic composites with functionalized multi-walled carbon nanotubes were examined. The functionalized multi-walled carbon nanotubes were blended with epoxy resins to prepare multi-walled carbon nanotubes/carbon fiber-reinforced plastic composites. The dispersion properties of functionalized multi-walled carbon nanotubes in epoxy resins were examined using surface free energy. The mechanical properties of functionalized multi-walled carbon nanotubes/carbon fiber-reinforced plastic composites were measured by interlaminar shear strength and torsion strength. The functionalized multi-walled carbon nanotubes/carbon fiber-reinforced plastic composites had superior mechanical properties due to the increase in dispersion properties of functionalized multi-walled carbon nanotubes in epoxy resins. However, the tan delta values of damping behavior, analyzed by dynamic mechanical analysis, varied with the type of functional groups of functionalized multi-walled carbon nanotubes. The composites obtained from functionalized multi-walled carbon nanotubes obtained through spermidine amidation reaction and carbon fiber-reinforced plastic showed excellent tan delta values due to the flexible segments in side chains.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Interlaminar damping materials"

1

Badre-Alam, Askari, Farhan Gandhi, and Kon-Well Wang. "Improved constrained-layer damping treatment design for high damping and low interlaminar stresses." In SPIE's 7th Annual International Symposium on Smart Structures and Materials, edited by T. Tupper Hyde. SPIE, 2000. http://dx.doi.org/10.1117/12.384560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gibson, Ronald F., and Hui Zhao. "Improvement of Vibration Damping Capacity and Fracture Toughness in Composite Laminates by the Use of Polymeric Interleaves." In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0213.

Full text
Abstract:
Abstract It is shown that simultaneous improvement of vibration damping capacity and interlaminar fracture toughness in composite laminates can be achieved by using polymeric interleaves between the composite laminae. The specific case of Mode II interlaminar fracture toughness and flexural damping capacity of interleaved composite laminates is studied. Graphite/epoxy, E-glass/epoxy and E-glass/polyetherimide composite laminates with polymeric interleaves of several different thicknesses and materials were tested using both the end notch flexure (ENF) test for Mode II fracture toughness and the impulse-frequency response test for flexural damping capacity. The Mode II energy release rate GIIc for all three composites increased linearly with increasing interleaf thickness up to a critical thickness, then dropped off with further increases in thickness. The damping loss factor η for all three composites increased linearly with increasing interleaf thickness up to the maximum thickness. Analytical models for predicting the influence of interleaves on GIIc and η are developed, along with a hypothesis for the critical thickness effect with regard to fracture toughness.
APA, Harvard, Vancouver, ISO, and other styles
3

Ferrero, Laura, and Ugo Icardi. "Optimization of Multi-Core Sandwich Composites Undergoing Impact Loads." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42851.

Full text
Abstract:
In this paper, multiple cores sandwich composites undergoing impact loads are optimized in order to improve their resistance to the impact-induced delamination. This peculiar type of composites is characterized by one internal face splitting the core in two parts. Owing to their architecture with an intermediate and two external faces, their additional tailoring capability offers potential advantages in terms of energy absorption capability and damage tolerance behavior over conventional sandwich composites. Obviously, an accurate assessment of the interfacial stress fields, of their damage accumulation mechanisms and of their post-failure behavior are fundamental to fully exploit their potential advantages. Despite it is evident that structural models able to accurately describe the local behavior are needed to accomplish this task, the analysis is commonly still carried out using simplified sandwich models which postulate the overall variation of displacements and stresses across the thickness, because more detailed models could make the computational effort prohibitively large. No attempt is here made to review the ample literature about the sandwich composite models, since a plenty of comprehensive bibliographical review papers and monographs are available in the specialized literature. Likewise, no attempt is made for reviewing the methods used to model the damage. It is just remarked that the models to date available range from detailed models which discretize the real structure of the core, to FEM models by brick elements, to discrete-layer models and to sublaminate models. In these paper, two different models are used, to achieve a compromise between accuracy and limitation of costs. The time history of the contact force is computed by a C° eight-node plate element based on a 3D zig-zag model, in order to achieve the best accuracy using a plate model with the customary five functional d.o.f. This model is also used in the optimization process, since it is mathematically easily treatable and accurately describes the strain energy. In addition, it enables a comparison with the classical plate models, since they can be particularized from it. The counterpart plate element of this zig-zag model, which is obtained from a standard C° plate element through a strain energy updating (which successfully described the impact induced damage as shown by the comparison with the damage detected by c-scanning in a previous paper), is used for computing the contact force time history, to reach a good compromise between accuracy and computational costs. A mixed brick element with the three displacements and the three interlaminar stresses as nodal d.o.f. is used to compute the damage at each time step. The onset of damage is predicted in terms of matrix and fibers failure, cracks, delamination, rippling, wrinkling and face damping using different stress-based criteria. In this paper the effects of the accumulated damage are accounted for through the ply-discount theory, i.e. using reduced elastic properties for the layers and the cores that failed, although it is known that some cases exist for which this material degradation model could be unable to describe the real loss of load carrying capacity. The optimization technique recently proposed by the authors is used in this paper for optimizing the energy absorption properties of multi-core sandwiches undergoing impact loads. The effect of this technique is to act as an energy absorption tuning, since it minimizes or maximizes the amount of energy absorbed by specific modes through a suited in-plane variation of the plate stiffness properties (e.g., bending, in-plane and out-of-plane shears and membrane energies). The appropriate in-plane variable distributions of stiffness properties, making certain strain energy contributions of interest extremal, are found solving the Euler-Lagrange equations resulting from assumption of the laminate stiffness properties as the master field and setting to zero the first variation of wanted and unwanted strain energy contributions (e.g., bending, in-plane and out-of-plane shears and membrane energies). Our purpose is to minimize the energy absorbed through unwanted modes (i.e., involving interlaminar strengths) and maximize that absorbed through desired modes (i.e., involving membrane strengths). The final result is a ply with variable stiffness coefficient over its plane which is able to consistently reduce the through-the-thickness interlaminar stress concentrations, with beneficial effects on the delamination strength. All the solutions proposed can be obtained either varying the orientation of the reinforcement fibers, the fiber volume rate or the constituent materials by currently available manufacturing processes. The coefficients of the involved stiffness terms are computed enforcing conditions which range from the thermodynamic constraints, to imposition of the mean stiffness, to the choice of a convex or a concave shape (in order to minimize or maximize the energy contributions of interest). Two solutions of technical interest will be proposed, which both are based on a parabolic distribution of stiffness coefficients. The former reduces the bending of a lamina with moderately increasing the shear stresses, the second one reduces these stresses with a low increment in the bending contribution. The effects of the incorporation of these layers (with the same mean properties of the layers they replace) is shown hereafter.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography