Journal articles on the topic 'Interlaminar and intralaminar damage'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Interlaminar and intralaminar damage.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Keršienė, Neringa, and Antanas Žiliukas. "INTERLAMINAR AND INTRALAMINAR DAMAGE MECHANISMS OF IMPACT RESISTANT AIRCRAFT MATERIALS UNDER LOW‐ENERGY IMPACT." Aviation 10, no. 3 (September 30, 2006): 3–8. http://dx.doi.org/10.3846/16487788.2006.9635933.
Full textBruno, Domenico, Fabrizio Greco, and Paolo Lonetti. "Interaction Between Interlaminar and Intralaminar Damage in Fiber-Reinforced Composite Laminates." International Journal for Computational Methods in Engineering Science and Mechanics 9, no. 6 (September 30, 2008): 358–73. http://dx.doi.org/10.1080/15502280802365824.
Full textLi, N., P. H. Chen, and Q. Ye. "A damage mechanics model for low-velocity impact damage analysis of composite laminates." Aeronautical Journal 121, no. 1238 (March 6, 2017): 515–32. http://dx.doi.org/10.1017/aer.2017.6.
Full textLiao, BB, and PF Liu. "Finite element analysis of dynamic progressive failure properties of GLARE hybrid laminates under low-velocity impact." Journal of Composite Materials 52, no. 10 (August 10, 2017): 1317–30. http://dx.doi.org/10.1177/0021998317724216.
Full textDuplessis Kergomard, Y., J. Renard, A. Thionnet, and C. Landry. "Intralaminar and interlaminar damage in quasi-unidirectional stratified composite structures: Experimental analysis." Composites Science and Technology 70, no. 10 (September 30, 2010): 1504–12. http://dx.doi.org/10.1016/j.compscitech.2010.05.006.
Full textHassoon, Omar H., Mayyadah S. Abed, Jawad K. Oleiwi, and M. Tarfaoui. "Experimental and numerical investigation of drop weight impact of aramid and UHMWPE reinforced epoxy." Journal of the Mechanical Behavior of Materials 31, no. 1 (January 1, 2022): 71–82. http://dx.doi.org/10.1515/jmbm-2022-0008.
Full textZou, Z., S. R. Reid, S. Li, and P. D. Soden. "Modelling Interlaminar and Intralaminar Damage in Filament-Wound Pipes under Quasi-Static Indentation." Journal of Composite Materials 36, no. 4 (February 2002): 477–99. http://dx.doi.org/10.1177/0021998302036004539.
Full textBALZANI, CLAUDIO, and WERNER WAGNER. "NUMERICAL TREATMENT OF DAMAGE PROPAGATION IN AXIALLY COMPRESSED COMPOSITE AIRFRAME PANELS." International Journal of Structural Stability and Dynamics 10, no. 04 (October 2010): 683–703. http://dx.doi.org/10.1142/s0219455410003683.
Full textMeon, M. S., N. H. Mohamad Nor, S. Shawal, J. B. Saedon, M. N. Rao, and K. U. Schröder. "On the Modelling Aspect of Low-Velocity Impact Composite Laminates." journal of Mechanical Engineering 17, no. 2 (July 15, 2020): 13–25. http://dx.doi.org/10.24191/jmeche.v17i2.15297.
Full textTownsend, Patrick, Juan Carlos Suárez, Paz Pinilla, and Nadia Muñoz. "Insertion of a Viscoelastic Layer to Reduce the Propagation of Energy by Vertical Impacts of Slamming in Planing Hull Vessels." Key Engineering Materials 889 (June 16, 2021): 65–70. http://dx.doi.org/10.4028/www.scientific.net/kem.889.65.
Full textNikbakht, Masood, Hossein Hosseini Toudeshky, and Bijan Mohammadi. "Experimental validation of an empirical nonlinear shear failure model for laminated composite materials." Journal of Composite Materials 51, no. 16 (September 19, 2016): 2331–45. http://dx.doi.org/10.1177/0021998316669992.
Full textAiroldi, Alessandro, Chiara Mirani, and Lucia Principito. "A bi-phasic modelling approach for interlaminar and intralaminar damage in the matrix of composite laminates." Composite Structures 234 (February 2020): 111747. http://dx.doi.org/10.1016/j.compstruct.2019.111747.
Full textHu, Ping, Ditho Pulungan, Ran Tao, and Gilles Lubineau. "An experimental study on the influence of intralaminar damage on interlaminar delamination properties of laminated composites." Composites Part A: Applied Science and Manufacturing 131 (April 2020): 105783. http://dx.doi.org/10.1016/j.compositesa.2020.105783.
Full textJi, W., and A. M. Waas. "Progressive failure analysis for the interaction of interlaminar and intralaminar failure modes in composite structures with an initial delamination." Aeronautical Journal 117, no. 1187 (January 2013): 71–85. http://dx.doi.org/10.1017/s0001924000007764.
Full textToubia, Elias A., Sadra Emami, and Donald Klosterman. "Failure mechanism of woven roving fabric/vinyl ester composites in freeze–thaw saline environment." Journal of Composite Materials 51, no. 23 (November 30, 2016): 3269–80. http://dx.doi.org/10.1177/0021998316681860.
Full textAveiga, David, and Marcelo L. Ribeiro. "A Delamination Propagation Model for Fiber Reinforced Laminated Composite Materials." Mathematical Problems in Engineering 2018 (June 19, 2018): 1–9. http://dx.doi.org/10.1155/2018/1861268.
Full textTownsend, Patrick, Juan C. Suárez-Bermejo, and Álvaro Rodríguez-Ortíz. "A Methodology for Evaluating the Progression of Damage in a Glass Fibre Reinforced Polymer Laminate Subjected to Vertical Weight Drop Impacts." Polymers 13, no. 13 (June 29, 2021): 2131. http://dx.doi.org/10.3390/polym13132131.
Full textGao, Wei, Zhiqiang Yu, Aijie Ma, and Zhangxin Guo. "Numerical simulation of composite grid sandwich structure under low-velocity impact." Science and Engineering of Composite Materials 29, no. 1 (January 1, 2022): 516–28. http://dx.doi.org/10.1515/secm-2022-0176.
Full textTan, K. T., N. Watanabe, and Y. Iwahori. "Impact Damage Resistance, Response, and Mechanisms of Laminated Composites Reinforced by Through-Thickness Stitching." International Journal of Damage Mechanics 21, no. 1 (January 13, 2011): 51–80. http://dx.doi.org/10.1177/1056789510397070.
Full textSaeedifar, Milad, Mehdi Ahmadi Najafabadi, Dimitrios Zarouchas, Hossein Hosseini Toudeshky, and Meisam Jalalvand. "Clustering of interlaminar and intralaminar damages in laminated composites under indentation loading using Acoustic Emission." Composites Part B: Engineering 144 (July 2018): 206–19. http://dx.doi.org/10.1016/j.compositesb.2018.02.028.
Full textKhan, Sanan H., and Ankush P. Sharma. "Progressive damage modeling and interface delamination of cross-ply laminates subjected to low-velocity impact." Journal of Strain Analysis for Engineering Design 53, no. 6 (June 22, 2018): 435–45. http://dx.doi.org/10.1177/0309324718780598.
Full textTasdemir, Burcu, and Demirkan Coker. "Fatigue and static damage in curved woven fabric carbon fiber reinforced polymer laminates." Journal of Composite Materials 56, no. 11 (March 25, 2022): 1693–708. http://dx.doi.org/10.1177/00219983221078787.
Full textPietropaoli, Elisa, and Aniello Riccio. "A Global/Local Finite Element Approach for Predicting Interlaminar and Intralaminar Damage Evolution in Composite Stiffened Panels Under Compressive Load." Applied Composite Materials 18, no. 2 (April 15, 2010): 113–25. http://dx.doi.org/10.1007/s10443-010-9135-1.
Full textAmir, A. N., H. Ghazali, H. Wang, L. Ye, N. A. Fadi, W. F. F. W. Ali, and R. Yusoff. "Fracture energy for orthogonal cutting in unidirectional CFRP at different cutting directions." IOP Conference Series: Materials Science and Engineering 1217, no. 1 (January 1, 2022): 012011. http://dx.doi.org/10.1088/1757-899x/1217/1/012011.
Full textLiu, P. F., J. Yang, B. Wang, Z. F. Zhou, and J. Y. Zheng. "A Study on the Intralaminar Damage and Interlaminar Delamination of Carbon Fiber Composite Laminates Under Three-Point Bending Using Acoustic Emission." Journal of Failure Analysis and Prevention 15, no. 1 (November 11, 2014): 101–21. http://dx.doi.org/10.1007/s11668-014-9901-8.
Full textTan, W., F. Naya, L. Yang, T. Chang, B. G. Falzon, L. Zhan, J. M. Molina-Aldareguía, C. González, and J. Llorca. "The role of interfacial properties on the intralaminar and interlaminar damage behaviour of unidirectional composite laminates: Experimental characterization and multiscale modelling." Composites Part B: Engineering 138 (April 2018): 206–21. http://dx.doi.org/10.1016/j.compositesb.2017.11.043.
Full textWei, Guangkai, Kunkun Fu, and Yuan Chen. "Crashworthiness and Failure Analyses of FRP Composite Tubes under Low Velocity Transverse Impact." Sustainability 15, no. 1 (December 21, 2022): 56. http://dx.doi.org/10.3390/su15010056.
Full textRezasefat, Mohammad, Sandro Campos Amico, Marco Giglio, and Andrea Manes. "A Numerical Study on the Influence of Strain Rate in Finite-Discrete Element Simulation of the Perforation Behaviour of Woven Composites." Polymers 14, no. 20 (October 12, 2022): 4279. http://dx.doi.org/10.3390/polym14204279.
Full textHaldar, Sandip, Claudio S. Lopes, and Carlos Gonzalez. "Interlaminar and Intralaminar Fracture Behavior of Carbon Fiber Reinforced Polymer Composites." Key Engineering Materials 713 (September 2016): 325–28. http://dx.doi.org/10.4028/www.scientific.net/kem.713.325.
Full textMay, Michael, Sebastian Kilchert, and Tobias Gerster. "A Modified Compact Tension Test for Characterization of the Intralaminar Fracture Toughness of Tri-Axial Braided Composites." Materials 14, no. 17 (August 27, 2021): 4890. http://dx.doi.org/10.3390/ma14174890.
Full textGarg, Amar C. "Intralaminar and interlaminar fracture in graphite/epoxy laminates." Engineering Fracture Mechanics 23, no. 4 (January 1986): 719–33. http://dx.doi.org/10.1016/0013-7944(86)90118-9.
Full textMcCallum, Stuart, Takuhei Tsukada, and Nobuo Takeda. "The influence of skin-core residual stress and cooling rate on the impact response of carbon fibre/polyphenylenesulphide." Journal of Thermoplastic Composite Materials 31, no. 9 (November 20, 2017): 1232–51. http://dx.doi.org/10.1177/0892705717734607.
Full textAdams, Daniel O’Hare, and Michael W. Hyer. "Analysis of Layer Waviness in Flat Compression-Loaded Thermoplastic Composite Laminates." Journal of Engineering Materials and Technology 118, no. 1 (January 1, 1996): 63–70. http://dx.doi.org/10.1115/1.2805935.
Full textGarg, Amar C. "Interlaminar and intralaminar fracture surface morphology in graphite/epoxy laminates." Engineering Fracture Mechanics 23, no. 6 (January 1986): 1031–50. http://dx.doi.org/10.1016/0013-7944(86)90146-3.
Full textLi, Fei, AnZhong Deng, QiLin Zhao, and Jinhui Duan. "Research on Influence mechanism of composite interlaminar shear strength under normal stress." Science and Engineering of Composite Materials 27, no. 1 (May 4, 2020): 119–28. http://dx.doi.org/10.1515/secm-2020-0011.
Full textWicks, Sunny S., Roberto Guzman de Villoria, and Brian L. Wardle. "Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes." Composites Science and Technology 70, no. 1 (January 2010): 20–28. http://dx.doi.org/10.1016/j.compscitech.2009.09.001.
Full textde Moura, M. F. S. F., R. D. S. G. Campilho, A. M. Amaro, and P. N. B. Reis. "Interlaminar and intralaminar fracture characterization of composites under mode I loading." Composite Structures 92, no. 1 (January 2010): 144–49. http://dx.doi.org/10.1016/j.compstruct.2009.07.012.
Full textFerrer, Camilo, Helen Hsieh, and Lonnie P. Wollmuth. "Input-specific maturation of NMDAR-mediated transmission onto parvalbumin-expressing interneurons in layers 2/3 of the visual cortex." Journal of Neurophysiology 120, no. 6 (December 1, 2018): 3063–76. http://dx.doi.org/10.1152/jn.00495.2018.
Full textGu, Li, and Su. "A Continuum Damage Model for Intralaminar Progressive Failure Analysis of CFRP Laminates Based on the Modified Puck’s Theory." Materials 12, no. 20 (October 10, 2019): 3292. http://dx.doi.org/10.3390/ma12203292.
Full textSedlacek, Frantisek, Tomas Kalina, and Karel Raz. "Determination of Mode II Interlaminar Fracture Toughness of CFRP Composites Using Numerical Simulations." Key Engineering Materials 801 (May 2019): 71–76. http://dx.doi.org/10.4028/www.scientific.net/kem.801.71.
Full textGoyal, Vinay K., Navin R. Jaunky, Eric R. Johnson, and Damodar R. Ambur. "Intralaminar and interlaminar progressive failure analyses of composite panels with circular cutouts." Composite Structures 64, no. 1 (April 2004): 91–105. http://dx.doi.org/10.1016/s0263-8223(03)00217-4.
Full textMacedo, F. S., A. B. Pereira, and A. B. de Morais. "Mixed Bending-Tension (MBT) test for mode I interlaminar and intralaminar fracture." Composites Science and Technology 72, no. 9 (May 2012): 1049–55. http://dx.doi.org/10.1016/j.compscitech.2012.03.023.
Full textOtsuka, T., and Y. Kawaguchi. "Cortical Inhibitory Cell Types Differentially Form Intralaminar and Interlaminar Subnetworks withExcitatory Neurons." Journal of Neuroscience 29, no. 34 (August 26, 2009): 10533–40. http://dx.doi.org/10.1523/jneurosci.2219-09.2009.
Full textBazhenov, S. L. "Interlaminar and intralaminar fracture modes in 0/90 cross-ply glass/epoxy laminate." Composites 26, no. 2 (February 1995): 125–33. http://dx.doi.org/10.1016/0010-4361(95)90412-s.
Full textWang, Vincent Z., John D. Ginger, and Krishneel Narayan. "Intralaminar and interlaminar fracture characterization in glued-laminated timber members using image analysis." Engineering Fracture Mechanics 82 (March 2012): 73–84. http://dx.doi.org/10.1016/j.engfracmech.2011.11.024.
Full textVokoun, C. R., M. B. Jackson, and M. A. Basso. "Intralaminar and Interlaminar Activity within the Rodent Superior Colliculus Visualized with Voltage Imaging." Journal of Neuroscience 30, no. 32 (August 11, 2010): 10667–82. http://dx.doi.org/10.1523/jneurosci.1387-10.2010.
Full textChen, Fangliang, and Pizhong Qiao. "On the intralaminar and interlaminar stress analysis of adhesive joints in plated beams." International Journal of Adhesion and Adhesives 36 (July 2012): 44–55. http://dx.doi.org/10.1016/j.ijadhadh.2012.03.005.
Full textBarbosa Marques, Luís Felipe, Jonas Frank Reis, Ana Beatriz Ramos Moreira Abrahão, Luis Rogério D. Oliveira Hein, Edson Cocchieri Botelho, and Michelle L. Costa. "Interfacial, mechanical, and thermal behavior of PEI/glass fiber welded joints influenced by hygrothermal conditioning." Journal of Composite Materials 56, no. 2 (November 10, 2021): 239–49. http://dx.doi.org/10.1177/00219983211055826.
Full textMcDonald, Erin E., Landon F. Wallace, Gregory J. S. Hickman, and Kuang-Ting Hsiao. "Manufacturing and Shear Response Characterization of Carbon Nanofiber Modified CFRP Using the Out-of-Autoclave-Vacuum-Bag-Only Cure Process." Scientific World Journal 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/830295.
Full textYun, Kumchol, Songhun Kwak, Zhenqing Wang, Mengzhou Chang, Jonggun Kim, Jingbiao Liu, and Cholsu Ri. "A Damage Model Reflecting the Interaction between Delamination and Intralaminar Crack for Failure Analysis of FRP Laminates." Applied Sciences 9, no. 2 (January 16, 2019): 314. http://dx.doi.org/10.3390/app9020314.
Full text