Academic literature on the topic 'Interferon Regulator Faktor 1'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Interferon Regulator Faktor 1.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Interferon Regulator Faktor 1"
Xu, Xiao, Keli Chai, Yuhang Chen, Yongquan Lin, Suzhen Zhang, Xin Li, Wentao Qiao, and Juan Tan. "Interferon activates promoter of Nmi gene via interferon regulator factor-1." Molecular and Cellular Biochemistry 441, no. 1-2 (September 14, 2017): 165–71. http://dx.doi.org/10.1007/s11010-017-3182-y.
Full textYan, Rui, Matijs van Meurs, Eliane R. Popa, Rianne M. Jongman, Peter J. Zwiers, Anita E. Niemarkt, Timara Kuiper, et al. "Endothelial Interferon Regulatory Factor 1 Regulates Lipopolysaccharide-Induced VCAM-1 Expression Independent of NFκB." Journal of Innate Immunity 9, no. 6 (2017): 546–60. http://dx.doi.org/10.1159/000477211.
Full textHector, Andreas, Michael Kormann, Julia Kammermeier, Sofia Burdi, Veronica Marcos, Nikolaus Rieber, Lauren Mays, et al. "Expression and Regulation of Interferon-Related Development Regulator–1 in Cystic Fibrosis Neutrophils." American Journal of Respiratory Cell and Molecular Biology 48, no. 1 (January 2013): 71–77. http://dx.doi.org/10.1165/rcmb.2012-0061oc.
Full textBlanco, Jorge C. G., Cristina Contursi, Cindy A. Salkowski, David L. DeWitt, Keiko Ozato, and Stefanie N. Vogel. "Interferon Regulatory Factor (Irf)-1 and Irf-2 Regulate Interferon γ–Dependent Cyclooxygenase 2 Expression." Journal of Experimental Medicine 191, no. 12 (June 19, 2000): 2131–44. http://dx.doi.org/10.1084/jem.191.12.2131.
Full textRubinstein, Yaffa R., Kimberle N. Proctor, Michael Bergel, Barbara Murphy, and Alfred C. Johnson. "Interferon regulatory factor-1 is a major regulator of epidermal growth factor receptor gene expression." FEBS Letters 431, no. 2 (July 17, 1998): 268–72. http://dx.doi.org/10.1016/s0014-5793(98)00774-1.
Full textQian, Wei, Xiaoqin Wei, Yongtao Li, Kelei Guo, Zhong Zou, Hongbo Zhou, and Meilin Jin. "Duck interferon regulatory factor 1 acts as a positive regulator in duck innate antiviral response." Developmental & Comparative Immunology 78 (January 2018): 1–13. http://dx.doi.org/10.1016/j.dci.2017.09.004.
Full textQi, Zhihong, Fang Wang, Guotao Yu, Di Wang, Yingpeng Yao, Menghao You, Jingjing Liu, et al. "SRSF1 serves as a critical posttranscriptional regulator at the late stage of thymocyte development." Science Advances 7, no. 16 (April 2021): eabf0753. http://dx.doi.org/10.1126/sciadv.abf0753.
Full textvon Gamm, Matthias, Annalisa Schaub, Alisha N. Jones, Christine Wolf, Gesine Behrens, Johannes Lichti, Katharina Essig, et al. "Immune homeostasis and regulation of the interferon pathway require myeloid-derived Regnase-3." Journal of Experimental Medicine 216, no. 7 (May 24, 2019): 1700–1723. http://dx.doi.org/10.1084/jem.20181762.
Full textPark, Hyun-Jung, Won-Young Lee, Ha-Yeon Jeong, Hee-Seol Kang, Jong-Bo Kim, and Hyuk Song. "Mitochondrial interferon-induced transmembrane protein-1 is a critical regulator of cell death in MPRO cells." Biotechnology and Bioprocess Engineering 21, no. 4 (August 2016): 561–66. http://dx.doi.org/10.1007/s12257-016-0253-y.
Full textArockiaraj, Jesu, Sarasvathi Easwvaran, Puganeshwaran Vanaraja, Arun Singh, Rofina Yasmin Othman, and Subha Bhassu. "First report on interferon related developmental regulator-1 from Macrobrachium rosenbergii: Bioinformatic analysis and gene expression." Fish & Shellfish Immunology 32, no. 5 (May 2012): 929–33. http://dx.doi.org/10.1016/j.fsi.2012.02.011.
Full textDissertations / Theses on the topic "Interferon Regulator Faktor 1"
Michaelis, Cornelia. "Charakterisierung des patho-physiologischen Stellenwertes des Transkriptionsfaktors Interferon-Regulator-Faktor-1 (IRF-1) bei der Coxsackievirus-Infektion der Maus." Diss., lmu, 2004. http://nbn-resolving.de/urn:nbn:de:bvb:19-25537.
Full textJung, Joo-Yong. "INTERLEUKIN-10 AS A NEGATIVE REGULATOR OF INTERFERON-MEDIATED IMMUNITY IN CHLAMYDIAL INFECTIONS." Miami University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=miami1196971379.
Full textWorschech, Andrea. "Oncolytic Therapy with Vaccinia Virus GLV-1h68 - Comparative Microarray Analysis of Infected Xenografts and Human Tumor Cell Lines -." Doctoral thesis, 2010. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-45338.
Full textZiel dieser Arbeit war, die Beteiligung des Wirts-eigenen Immunsystems bei der Tumoregression zu analysieren. Mittels eines Wildtyp-Regressionsmodells, wurde der Anteil des adaptiven Immunsystems studiert (Research-Artikel 1). Mit Hilfe von Organismus-spezifischen Mikroarrays und Genexpressionsanalysen konnte in einem Nacktmausmodell gezeigt werden, dass erfolgreiche, durch onkolytische VACV-vermittelte Tumortherapie auch ohne Beteiligung des adaptiven Immunsystems möglich ist (Research Artikel 2). In einer dritten Studie wurden 75 humane Tumorzelllinien auf ihren intrinsischen Entzündungsstatus hin getestet und bezüglich eines Zusammenhanges von diesem mit der Replikationsfähigkeit von VACV und Adenovirus 5 (Ad5) analysiert (Manuskript für den Research-Artikel 3). Obwohl Xenografts allein kein ausreichendes „Gefahrsignal“ geben und durch das Fehlen einer pro-inflammatorischen Stimulierung keine akute Entzündung verursachen können, ist die Infektion mit onkolytischem VACV ausreichend, um den Gewebe-spezifischen „Trigger“ darzustellen. In diesem Fall wird die Immunantwort aktiviert und nach der Hypothese des „Immunologic Constant of Rejection“ (ICR) geschieht dies, wenn eine chronische in eine akute Inflammation verändert wird. In dem beschriebenen onkolytischen Regressionsmodell ist die Präsenz des Virus ausreichend, um das Immunsystem zu aktivieren, d.h. die chronische Entzündung im Tumor in eine akute umzuwandeln. Dabei ist die adaptive Immunität mit T- und B-Zell-Aktivierung nicht notwendig für die Rückbildung des Tumors. In Abwesenheit eines solchen Stimulus, wie in der ersten Studie mit neu-exprimierenden MMCs, wird die Spezifität der adaptiven Immunantwort benötigt, um die akute Inflammation anzustoßen und die Tumorregression voranzutreiben. Zusammengefasst unterstützt diese Arbeit die Hypothese, dass die Mechanismen, die zu „tissue specific destruction“ (TSD) führen, in verschiedenen immunologischen Erkrankungen zwar divergieren, der Effektor-Mechanismus aber stets der Gleiche ist. Es zeigte sich, dass in Anwesenheit eines „triggers“, wie z.B. der VACV-Infektion und intakten „danger signaling pathways“ der Tumorzellen, die angeborene Immunität allein ausreicht, um die Tumorrückbildung zu vermitteln
Michaelis, Cornelia [Verfasser]. "Charakterisierung des patho-physiologischen Stellenwertes des Transkriptionsfaktors Interferon-Regulator-Faktor-1 (IRF-1) bei der Coxsackievirus-Infektion der Maus / von Cornelia Michaelis." 2004. http://d-nb.info/972495843/34.
Full textBergfeld, Arne. "Das pH-regulierte Protein 1 (Pra1) von \(Candida\) \(albicans\) moduliert CD4\(^+\) T-Zell-Antworten der Maus in vitro durch direkte Bindung an die T-Zell-Oberfläche." Doctoral thesis, 2018. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-169716.
Full textInfections caused by C. albicans on mucosal surfaces are a common disease in patients suffering from suppression of the T cell immune defense. Blood stream infections by the yeast C. albicans (candedemia) represent still a severe complication in patients in intensive care units with high rates of lethality. The pH-regulated antigen 1 (Pra1) is a protein produced by C. albicans which is present on the surface of the fungi and is secreted into the supernatant of fungal cultures as well. Pra1 can bind to human T cells via the surface protein CD46. It is known, that this protein can also bind to certain immune cells of mice (monocytes and phagocytes). Binding to T cells of mice is not yet known. A characterization of the interaction of Pra1 with immune cells of mice would be valuable, because mice act as a biological model system for the investigation of infections with C. albicans. In this paper, it could be shown that recombinant Pra1 (rPra1) can bind to mouse CD4+ T cells as well. After the finding that rPra1 can bind to CD4+ T cells, different parameters determining this binding have been studied. Zinc was found to be one influencing factor on the binding. Pra1 can bind free zinc ions and by the addition of ZnCl2 while incubating T cells with Pra1 the signal of bound Pra1 to CD4+ T cells could be increased. Aspf2, a protein from Aspergillus fumigatus with high homology to Pra1, was not able to bind to these cells. In in-vivo-experiments with animals infected with C. albicans, no wild-typic secreted Pra1 was found bound to T cells. Supernatant from C. albicans cultures produced, after incubation in vitro, a signal for cell-bound Pra1 on CD4+ T cells. Kinetics of the binding of rPra1 to T cells showed a constant increase of signal over the time of incubation. The off-kinetics revealed a decrease of cell-bound rPra1 over time to the edge of detectability. The receptor of Pra1 on T cells has not been identified yet. The structurally and functionally comparable surface proteins Crry, CD59a and CD55 were tested in knockout mice for each of these proteins and could be excluded as possible receptors. After binding of secreted Pra1 to neutrophilic granulocytes these cells experience a decreased capacity to phagocytose pathogens. The binding of Pra1 to CD4+ T cells leads to a costimulation of T cells, which results in increased cell activation and proliferation. This costimulatory capacity of Pra1 can be augmented by adding 10 μM zinc chloride. During activation of naïve CD4+ T cells Pra1 reduces the secretion of IFN-γ. The reduction of IFN-γ-producing cells is not due to an influence of Pra1 during cell activation of naive CD4+ T cells to Th1 cells and is also not due to induction of apoptosis in IFN-γ-producing Th1 cells. The binding of Pra1 to ex-vivo isolated CD4+ T cells reduces the in vitro secretion of IFN-γ after stimulating these cells via their T cell receptor. Additionally, the secretion of IL-2 and TNF-α was reduced
Langa, Bridget Cebisile. "Genomic instability in South African breast cancer patients." 2013. http://hdl.handle.net/11394/3600.
Full textBreast cancer (BC) is one of the most common malignancies in women. Death results from treatment failure and metastatic disease. Thousands of lives might be saved if it was possible to detect and eliminate occult metastatic cells before they become clinically evident. Therefore, there is a critical need to identify new markers to improve treatment options for these patients. Genomic instability is the earliest indication of breast cancer and the use of genomic methodologies is a progress towards early detection and treatment, through the identification of biomarkers that can be translated into novel therapy targets. The interferon regulatory factor-1(IRF-1) gene, localized on chromosome 5q31.1, is believed to act as a tumor suppressor gene in breast cancer. The IRF-1 was found to be inactivated by single nucleotide polymorphism (SNP) in breast cancer suggesting that the loss of its function might be critical to the development of the disease. The phosphatidylinositol 3-kinase (PIK3) signaling pathway mediates key cellular functions and alterations of genes in this pathway, including PIK3CA, serine-threonine protein kinases (AKT1and AKT2), phosphatase and tensin homolog (PTEN), fibroblast growth factor receptor 2 (FGFR2) and ERBB2, whose expression have been demonstrated to be altered in breast cancer patients. In addition, these genes are linked to treatment resistance. vi In this study, we have investigated allelic loss of IRF-1 gene in primary tumors obtained from patients undergoing mastectomy at Groote Schuur hospital (Cape Town, South Africa). These samples were then further analyzed for the DNA copy number changes of specific genes involved in the PIK3/AKT signaling pathway. Statistical analysis has been performed in order to correlate genomic findings with clinical-histopathological and follow up information from the patients and to establish whether these genes can predict prognosis. Our data analysis has indicated that 46 cases (45.5%) out of 101 cases were informative for the IRF-1 dinucleotide marker used for LOH analysis (Figure 3.1). LOH was detected in 23 of these informative cases (23/46; 50%). No statistical significance was found between LOH at the IRF-1 locus and age (≤50 years or >50 years) (P value = 1.0000) and earlier stage (Stages I and II) (P value= 0.4982) based on Fisher’s exact test. Patients presented a high level of DNA copy number changes in genes involved in the PIK3/AKT pathway. The most frequent changes were observed in the PIK3CA and PTEN genes. PIK3CA presented high copy number in 36.8% of the cases. PTEN was observed with low copy number in 47.5% of the cases. This dissertation shows the effectiveness of genomic methodologies as means for the detection of early breast cancer progression in South African women. The PIK 3/AKT genes can validate the usefulness of breast cancer therapies.
Book chapters on the topic "Interferon Regulator Faktor 1"
Realini, C. A., and M. C. Rechsteiner. "Proposed Role of a γ-Interferon Inducible Proteasome-Regulator in Antigen Presentation." In Intracellular Protein Catabolism, 51–61. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0335-0_6.
Full textConference papers on the topic "Interferon Regulator Faktor 1"
Wu, L., B. Qu, Y. Qin, and N. Shen. "23 Cyclin dependent kinase 1 : a novel regulator controlling type i interferon signaling and potential target for therapeutic intervention in sle." In LUPUS 2017 & ACA 2017, (12th International Congress on SLE &, 7th Asian Congress on Autoimmunity). Lupus Foundation of America, 2017. http://dx.doi.org/10.1136/lupus-2017-000215.23.
Full text