Academic literature on the topic 'Interferometric Synthetic Aperture Radar (InSAR)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Interferometric Synthetic Aperture Radar (InSAR).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Interferometric Synthetic Aperture Radar (InSAR)"

1

Lei, Kun Chao, Hui Li Gong, Xiao Juan Li, Bei Bei Chen, Ji Wei Li, and Liu Lin Song. "The Application of PS-InSAR Technology on Land Subsidence in Cangzhou Region." Advanced Materials Research 268-270 (July 2011): 1934–39. http://dx.doi.org/10.4028/www.scientific.net/amr.268-270.1934.

Full text
Abstract:
Land subsidence in Cangzhou of the North China Plain, has been an ongoing problem for the past four decades (since the later 1970s). With the development of new synthetic aperture radar(SAR)sensors and interferometric synthetic aperture radar(InSAR) techniques, the application of satellite Radar data have enhanced capabilities to detect and monitor ground displacements with centimeter to millimeter precision at greater spatial detail and higher temporal resolution. We use Permanent Scatterers interferometric synthetic aperture radar(PS-InSAR)technology (Hooper, A.2004) to detect and measure ground movement in this area(from2004 to 2007). Results of the cangzhou region study are reported and the utility of the InSAR methodology is discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Rott, Helmut. "Advances in interferometric synthetic aperture radar (InSAR) in earth system science." Progress in Physical Geography: Earth and Environment 33, no. 6 (October 12, 2009): 769–91. http://dx.doi.org/10.1177/0309133309350263.

Full text
Abstract:
During recent years, synthetic aperture radar (SAR) interferometry (InSAR) has become an important tool for precise measurements of the earth’s surface topography and deformation. This paper presents an overview on recent developments in InSAR applications, with emphasis on the use of satellite-borne sensors for applications in geoscience, topographic mapping, natural hazard monitoring and environmental research. InSAR measurement principles are briefly introduced. Recent results on the use of repeat-pass interferometry for mapping seismic and volcanic deformation, monitoring landslides and subsidence, and mapping glacier motion are described. Other InSAR applications introduced in the paper are: topographic mapping, retrieval of biogeophysical parameters on land surfaces, and measurements of water currents. Examples of interferometric products are shown for satellite-borne SAR systems operating at X-band, C-band and L-band radar frequencies. An outlook is provided on upcoming SAR systems which will spur further advances in InSAR techniques and applications.
APA, Harvard, Vancouver, ISO, and other styles
3

Xing, Mengdao, Zhong Lu, and Hanwen Yu. "InSAR Signal and Data Processing." Sensors 20, no. 13 (July 7, 2020): 3801. http://dx.doi.org/10.3390/s20133801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, X., P. Zhang, and Z. Sun. "MITIGATION ATMOSPHERIC EFFECTS IN INTERFEROGRAM WITH USING INTEGRATED MERIS/MODIS DATA AND A CASE STUDY OVER SOUTHERN CALIFORNIA." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-3 (April 30, 2018): 1799–803. http://dx.doi.org/10.5194/isprs-archives-xlii-3-1799-2018.

Full text
Abstract:
Interferometric synthetic aperture radar(InSAR), as a space geodetictechnology, had been testified a high potential means of earth observation providing a method fordigital elevation model (DEM) and surface deformation monitoring of high precision. However, the accuracy of the interferometric synthetic aperture radar is mainly limited by the effects of atmospheric water vapor. In order to effectively measure topography or surface deformations by synthetic aperture radar interferometry (InSAR), it is necessary to mitigate the effects of atmospheric water vapor on the interferometric signals. This paper analyzed the atmospheric effects on the interferogram quantitatively, and described a result of estimating Precipitable Water Vapor (PWV) from the the Medium Resolution Imaging Spectrometer (MERIS), Moderate Resolution Imaging Spectroradiometer (MODIS) and the ground-based GPS, compared the MERIS/MODIS PWV with the GPS PWV. Finally, a case study for mitigating atmospheric effects in interferogramusing with using the integration of MERIS and MODIS PWV overSouthern California is given. The result showed that such integration approach benefits removing or reducing the atmospheric phase contribution from the corresponding interferogram, the integrated Zenith Path Delay Difference Maps (ZPDDM) of MERIS and MODIS helps reduce the water vapor effects efficiently, the standard deviation (STD) of interferogram is improved by 23 % after the water vapor correction than the original interferogram.
APA, Harvard, Vancouver, ISO, and other styles
5

Gao, Q., M. Crosetto, O. Monserrat, R. Palama, and A. Barra. "INFRASTRUCTURE MONITORING USING THE INTERFEROMETRIC SYNTHETIC APERTURE RADAR (INSAR) TECHNIQUE." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2022 (May 30, 2022): 271–76. http://dx.doi.org/10.5194/isprs-archives-xliii-b3-2022-271-2022.

Full text
Abstract:
Abstract. This paper focuses on the application of spaceborne radar interferometry as a tool for assisting the monitoring different types of infrastructures, including railways and highways. The Persistent Scatterer Interferometry (PSI) technique, the most advanced class of differential interferometric Synthetic Aperture Radar techniques (DInSAR), is used to generate the deformation maps, including the time series and the displacement velocity for each measured persistent scatterers. The dataset considered in this work consists of 261 SAR IW-SLC images acquired by the Sentinel-1 A/B satellites, between January 2016 and September 2021, over the metropolitan area of Barcelona. The infrastructures, especially railways and highways, not only cross the cities, but also connect them crossing non-urban areas. One main technical issue of monitoring infrastructures is the low density of persistent scatterers (PS) in rural areas. To improve the density, the processing chain combines the interferograms selection based on the coherence threshold. Also, for a better point selection, the Equivalent Spatial Coherence (Omega Factor) is tested.
APA, Harvard, Vancouver, ISO, and other styles
6

Han, Song Tao, Ge Shi Tang, Yong Fei Mao, Lue Chen, and Mei Wang. "High Accuracy Algorithm of Airborne Interferometric Synthetic Aperture Radar." Applied Mechanics and Materials 128-129 (October 2011): 138–41. http://dx.doi.org/10.4028/www.scientific.net/amm.128-129.138.

Full text
Abstract:
Interferometric Synthetic Aperture Radar is one of the most important technologies for topographic mapping. The DEM quality of airborne InSAR system depends on both system hardware performance and data processing methods. To derive large scale topographic and thematic maps up to scale 1:50000 and 1:10000, the whole data processing methods were presented. The methods included SAR imaging, interferometric processing and cartographic processing. Special methods were induced to resolve the problems encountered in project applications. Results using X-band airborne InSAR system data showed validity of the algorithm.
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Genger. "InSAR terrain mapping error sources based on satellite interferometry." Open Physics 20, no. 1 (January 1, 2022): 668–79. http://dx.doi.org/10.1515/phys-2022-0064.

Full text
Abstract:
Abstract To improve the accuracy of interferometric synthetic aperture radar (InSAR) topographic mapping, an error source analysis method of InSAR topographic mapping based on satellite interferometry is proposed. According to the basic principle of InSAR altimetry, the preconditions of SAR satellite interferometry are quantitatively analyzed, and the phase error experiment is carried out. The error sources of formation satellite InSAR system are studied. Finally, the error sources affecting the formation satellite InSAR system are systematically analyzed. The experimental results show that this method has good analytical performance, quantitatively evaluates the propagation law of each error, and provides a basic reference for practical application.
APA, Harvard, Vancouver, ISO, and other styles
8

Balzter, H. "Forest mapping and monitoring with interferometric synthetic aperture radar (InSAR)." Progress in Physical Geography: Earth and Environment 25, no. 2 (June 2001): 159–77. http://dx.doi.org/10.1177/030913330102500201.

Full text
Abstract:
A synthetic aperture radar (SAR) is an active sensor transmitting pulses of polarized electromagnetic waves and receiving the backscattered radiation. SAR sensors at different wavelengths and with different polarimetric capabilities are being used in remote sensing of the earth. The value of an analysis of backscattered energy alone is limited due to ambiguities in the possible ecological factor configurations causing the signal. From two SAR images taken from similar viewing positions with a short time-lag, interference between the two waves can be observed. By subtracting the two phases of the signals, it is feasible to eliminate the random contribution of the scatterers to the phase. The interferometric correlation and the interferometric phase contain additional information on the three-dimensional structure of the scattering elements in the imaged area. A brief review of SAR sensors is given, followed by an outline of the physical foundations of SAR interferometry and the practical data-processing steps involved. An overview of applications of InSAR to forest mapping and monitoring is given, covering tree-bole volume and biomass, forest types and land cover, fire scars, forest thermal state and forest canopy height.
APA, Harvard, Vancouver, ISO, and other styles
9

Jia, Hongguo, Hao Zhang, Luyao Liu, and Guoxiang Liu. "Landslide Deformation Monitoring by Adaptive Distributed Scatterer Interferometric Synthetic Aperture Radar." Remote Sensing 11, no. 19 (September 29, 2019): 2273. http://dx.doi.org/10.3390/rs11192273.

Full text
Abstract:
Landslide is the second most frequent geological disaster after earthquake, which causes a large number of casualties and economic losses every year. China frequently experiences devastating landslides in mountainous areas. Interferometric Synthetic Aperture Radar (InSAR) technology has great potential for detecting potentially unstable landslides across wide areas and can monitor surface displacement of a single landslide. However traditional time series InSAR technology such as persistent scatterer interferometry (PSI) and small-baseline subset (SBAS) cannot identify enough points in mountainous areas because of dense vegetation and steep terrain. In order to improve the accuracy of landslide hazard detection and the reliability of landslide deformation monitoring in areas lacking high coherence stability point targets, this study proposes an adaptive distributed scatterer interferometric synthetic aperture radar (ADS-InSAR) method based on the spatiotemporal coherence of the distributed scatterer (DS), which automatically adjusts its detection threshold to improve the spatial distribution density and reliability of DS detection in the landslide area. After time series network modeling and deformation calculation of the ADS target, the displacement deformation of the landslide area can be accurately extracted. Shuibuya Town in Enshi Prefecture, Hubei Province, China, was used as a case study, along with 18 Sentinal-1A images acquired from March 2016 to April 2017. The ADS-InSAR method was used to obtain regional deformation data. The deformation time series was combined with hydrometeorological and related data to analyze landslide deformation. The results show that the ADS-InSAR method can effectively improve the density of DS distribution, successfully detect existing ancient landslide groups and determine multiple potential landslide areas, enabling early warning for landslide hazards. This study verifies the reliability and accuracy of ADS-InSAR for landslide disaster prevention and mitigation.
APA, Harvard, Vancouver, ISO, and other styles
10

Grzesiak, Karolina, and Wojciech J. Milczarek. "LOS Displacements of Mauna Loa volcano, Hawaii Island, as determined using SBAS-InSAR." E3S Web of Conferences 55 (2018): 00006. http://dx.doi.org/10.1051/e3sconf/20185500006.

Full text
Abstract:
This paper presents an overview of the surface displacements retrieval capability of the Differential Synthetic Aperture Radar Interferometry algorithm, using Small Baseline Subset (SBAS) technique, in the context of active volcanic areas. Based on Sentinel-1A images, time series displacements fields of the Mauna Loa volcano area over a 2-year time interval (between 2015 and 2017) were received using batch processing. Based on 35 radar images, a total of 179 interferograms have been calculated. Methodology of Synthetic Aperture Radar (SAR) Sentinel-1 ESA satellite mission data processing with small base (SBAS) interferometric techniques from has been presented. The displacements calculated in the satellite’s Line of Sight (LOS) have been presented graphically on maps and graphs. Application of radar interferometry methods in the case of volcanic surface activity research creates new possibilities in the area of permanent monitoring of this type of areas.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Interferometric Synthetic Aperture Radar (InSAR)"

1

Becek, Kazimierz. "Biomass Representation in Synthetic Aperture Radar Interferometry Data Sets." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-62707.

Full text
Abstract:
This work makes an attempt to explain the origin, features and potential applications of the elevation bias of the synthetic aperture radar interferometry (InSAR) datasets over areas covered by vegetation. The rapid development of radar-based remote sensing methods, such as synthetic aperture radar (SAR) and InSAR, has provided an alternative to the photogrammetry and LiDAR for determining the third dimension of topographic surfaces. The InSAR method has proved to be so effective and productive that it allowed, within eleven days of the space shuttle mission, for acquisition of data to develop a three-dimensional model of almost the entire land surface of our planet. This mission is known as the Shuttle Radar Topography Mission (SRTM). Scientists across the geosciences were able to access the great benefits of uniformity, high resolution and the most precise digital elevation model (DEM) of the Earth like never before for their a wide variety of scientific and practical inquiries. Unfortunately, InSAR elevations misrepresent the surface of the Earth in places where there is substantial vegetation cover. This is a systematic error of unknown, yet limited (by the vertical extension of vegetation) magnitude. Up to now, only a limited number of attempts to model this error source have been made. However, none offer a robust remedy, but rather partial or case-based solutions. More work in this area of research is needed as the number of airborne and space-based InSAR elevation models has been steadily increasing over the last few years, despite strong competition from LiDAR and optical methods. From another perspective, however, this elevation bias, termed here as the “biomass impenetrability”, creates a great opportunity to learn about the biomass. This may be achieved due to the fact that the impenetrability can be considered a collective response to a few factors originating in 3D space that encompass the outermost boundaries of vegetation. The biomass, presence in InSAR datasets or simply the biomass impenetrability, is the focus of this research. The report, presented in a sequence of sections, gradually introduces terminology, physical and mathematical fundamentals commonly used in describing the propagation of electromagnetic waves, including the Maxwell equations. The synthetic aperture radar (SAR) and InSAR as active remote sensing methods are summarised. In subsequent steps, the major InSAR data sources and data acquisition systems, past and present, are outlined. Various examples of the InSAR datasets, including the SRTM C- and X-band elevation products and INTERMAP Inc. IFSAR digital terrain/surface models (DTM/DSM), representing diverse test sites in the world are used to demonstrate the presence and/or magnitude of the biomass impenetrability in the context of different types of vegetation – usually forest. Also, results of investigations carried out by selected researchers on the elevation bias in InSAR datasets and their attempts at mathematical modelling are reviewed. In recent years, a few researchers have suggested that the magnitude of the biomass impenetrability is linked to gaps in the vegetation cover. Based on these hints, a mathematical model of the tree and the forest has been developed. Three types of gaps were identified; gaps in the landscape-scale forest areas (Type 1), e.g. forest fire scares and logging areas; a gap between three trees forming a triangle (Type 2), e.g. depending on the shape of tree crowns; and gaps within a tree itself (Type 3). Experiments have demonstrated that Type 1 gaps follow the power-law density distribution function. One of the most useful features of the power-law distributed phenomena is their scale-independent property. This property was also used to model Type 3 gaps (within the tree crown) by assuming that these gaps follow the same distribution as the Type 1 gaps. A hypothesis was formulated regarding the penetration depth of the radar waves within the canopy. It claims that the depth of penetration is simply related to the quantisation level of the radar backscattered signal. A higher level of bits per pixels allows for capturing weaker signals arriving from the lower levels of the tree crown. Assuming certain generic and simplified shapes of tree crowns including cone, paraboloid, sphere and spherical cap, it was possible to model analytically Type 2 gaps. The Monte Carlo simulation method was used to investigate relationships between the impenetrability and various configurations of a modelled forest. One of the most important findings is that impenetrability is largely explainable by the gaps between trees. A much less important role is played by the penetrability into the crown cover. Another important finding is that the impenetrability strongly correlates with the vegetation density. Using this feature, a method for vegetation density mapping called the mean maximum impenetrability (MMI) method is proposed. Unlike the traditional methods of forest inventories, the MMI method allows for a much more realistic inventory of vegetation cover, because it is able to capture an in situ or current situation on the ground, but not for areas that are nominally classified as a “forest-to-be”. The MMI method also allows for the mapping of landscape variation in the forest or vegetation density, which is a novel and exciting feature of the new 3D remote sensing (3DRS) technique. Besides the inventory-type applications, the MMI method can be used as a forest change detection method. For maximum effectiveness of the MMI method, an object-based change detection approach is preferred. A minimum requirement for the MMI method is a time-lapsed reference dataset in the form, for example, of an existing forest map of the area of interest, or a vegetation density map prepared using InSAR datasets. Preliminary tests aimed at finding a degree of correlation between the impenetrability and other types of passive and active remote sensing data sources, including TerraSAR-X, NDVI and PALSAR, proved that the method most sensitive to vegetation density was the Japanese PALSAR - L-band SAR system. Unfortunately, PALSAR backscattered signals become very noisy for impenetrability below 15 m. This means that PALSAR has severe limitations for low loadings of the biomass per unit area. The proposed applications of the InSAR data will remain indispensable wherever cloud cover obscures the sky in a persistent manner, which makes suitable optical data acquisition extremely time-consuming or nearly impossible. A limitation of the MMI method is due to the fact that the impenetrability is calculated using a reference DTM, which must be available beforehand. In many countries around the world, appropriate quality DTMs are still unavailable. A possible solution to this obstacle is to use a DEM that was derived using P-band InSAR elevations or LiDAR. It must be noted, however, that in many cases, two InSAR datasets separated by time of the same area are sufficient for forest change detection or similar applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Khakim, Mokhamad Yusup Nur. "Synthetic Aperture Radar Interferometry for Natural Disaster and Reservoir Monitoring." 京都大学 (Kyoto University), 2012. http://hdl.handle.net/2433/157546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

FALABELLA, FRANCESCO. "Spaceborne and Terrestrial Synthetic Aperture Radar (SAR) Systems: Innovative Multi-temporal SAR Interferometric Methods and Applications." Doctoral thesis, Università degli studi della Basilicata, 2023. https://hdl.handle.net/11563/162987.

Full text
Abstract:
Le tecniche Multi-temporali SAR interferometriche (Mt-InSAR) rappresentano oggigiorno strumenti consolidati per mappare l’evoluzione temporale dei fenomeni di deformazione del suolo Terrestre. Queste tecniche utilizzano congiuntamente sets di interferogrammi SAR differenziali al fine di estrarre la componente legata alla deformazione e produrre così serie storiche di deformazione dei bersagli osservati dal sensore. L'affidabilità delle misure prodotte utilizzando algoritmi Mt-InSAR è strettamente legata alla capacità degli stessi algoritmi nell’isolare esclusivamente i segnali legati alla deformazione dal segnale complessivo interferometrico, e questa operazione diventa sempre più complessa all’aumentare dei livelli di rumore in ciascun interferogramma SAR coinvolto. Le tecniche Mt-InSAR canoniche sono altamente affidabili nel monitorare l'evoluzione dello spostamento dei target che risultano essere ampiamente stabili o coerenti per tutto il periodo di analisi. Diversamente, quando i bersagli sono particolarmente affetti da problemi di decorrelazione, le stime di deformazione ottenute risultano corrotte e inaffidabili. Questo pone le basi per lo sviluppo di processori Mt-InSAR avanzati che possano fornire stime accurate della deformazione del suolo anche in scenari con problemi di decorrelazione più o meno severi. In questo lavoro di tesi affronta dapprima lo studio dello stato dell’arte delle tecniche Mt-InSAR canoniche applicabili sia nel caso di piattaforme satellitare che terrestri, e dopodiché si propongono delle nuove tecniche Mt-InSAR per superare alcune delle criticità riscontrante. In particolare si studiano le tecniche convenzionali Mt-InSAR multigriglia per l'analisi dei target alla griglia di risoluzione spaziale più risoluta, evidenziandone le loro criticità in aree a media e bassa coerenza, e proprio in questo ambito è proposta una tecnica innovativa per meglio operare in ambienti decorrelati. Il metodo proposto si basa su efficienti operazioni con cui viene srotolata la fase (PhU) interferometrica eseguite alle scale spaziali native, ed in particolare, si srotolano dapprima gli interferogrammi alla scala di soluzione mediata (ML) attraverso algoritmi di PhU convenzionali (o avanzati). Successivamente, gli interferogrammi ML srotolati vengono utilizzati per facilitare le operazioni di PhU eseguite alla scala più fine (single-look). In dettaglio, gli interferogrammi multi-look srotolati vengono ricampionati alla griglia single-look e sottratti a modulo modulo-2π agli interferogrammi single-look. Gli interferogrammi epurati dai contributi a bassa frequenza vengono poi srotolati e aggiunti nuovamente agli interferogrammi multilook ricampionati alla griglia di risoluzione più fine. Per realizzare queste operazioni, a differenza dei metodi multigriglia canonici, non si utilizza alcun modello (lineare/non lineare) per recuperare le componenti di deformazione in alta frequenza. Infine, gli interferogrammi single-look srotolati sono opportunamente invertiti al fine di calcolare le serie storiche di deformazione del suolo attraverso un qualsiasi algoritmo a piccola baseline (SB) InSAR multi-temporale. I risultati sperimentali sono stati ottenuti elaborando una serie di dati SAR acquisiti dal sensore COSMO-SkyMed (banda X) sulla zona costiera di Shanghai, in Cina. La tesi prosegue analizzando le tecniche ai minimi quadrati pesate (WLS) e su come sono sfruttate nell’ambito InSAR al fine di migliorare l’operazione con cui si srotola la fase interferometrica e la generazione di serie storiche di deformazione. Proprio in questo contesto, utilizzando gli approcci WLS, si estende l'utilizzabilità dell'algoritmo Mt-InSAR Small BAseline Subset (SBAS) in aree caratterizzate da una coerenza spaziale medio-bassa. In particolare, pixel per pixel, si invertono esclusivamente le fasi interferometriche coerenti utilizzando una metrica a minimi quadrati pesati. Per cui attraverso una selezione adattiva, per ogni pixel si utilizzano ed invertono soltanto le fasi interferometriche coerenti, e tale caratterista può portare a diversi sottoinsiemi disgiunti di dati SAR, che sono poi invertiti sfruttando la Decomposizione a Valori Singolari Pesata (WSVD). Tuttavia, per taluni pixel, l’utilizzo esclusivo delle fasi interferometriche coerenti può portare in alcuni casi allo scarto di acquisizioni SAR particolarmente rumorose, il che si traduce in serie storiche di deformazione affidabili ma con campionamento temporale variabile. I risultati sperimentali sono stati condotti applicando la tecnica sviluppata ad un set di dati SAR acquisiti dai sensori COSMO-SkyMed (CSK) sulla regione Basilicata, nel sud Italia. Il lavoro di tesi continua analizzando le proprietà che ledono alla irrotazionalità delle triplette di fase di interferogrammi SAR multi-look. In particolare, si studiano le conseguenze delle incongruenze temporali di fase dei multi-look sulla generazione delle serie storiche di deformazione del suolo attraverso metodi SB Mt-InSAR. La ricerca condotta mostra come queste incongruenze di fase si possono propagare attraverso una rete temporale ridondante di interferogrammi SB, ed insieme agli errori di PhU, pregiudicano la qualità dei prodotti InSAR generati. In letteratura questo effetto va sotto il nome di bias di fase, il quale può pregiudicare l’affidabilità dei metodi SB quando si impostano delle soglie sulla massima baseline temporale troppo stringenti (nell’ordine di 30 giorni o meno). Proponiamo così, due nuovi metodi per la compensazione di tali fenomeni di bias, i quali metodi sono stati testati utilizzando dati SAR simulati e reali. I dati reali sono stati acquisiti dai sensori Sentinel-1A/B (banda C) sulle aree del Nevada (U.S.), e sulla zona del monte Etna in Sicilia, nel sud Italia. Dopo lo sviluppo di algoritmi per la parte satellitare, il lavoro si sposta sui sensori SAR terrestri (GB-SAR). In questo ambito proponiamo un metodo per stimare e compensare i disturbi introdotti dallo strato atmosferico (APS) in interferogrammi GB-SAR. Un’ambia analisi fisica, statistica e matematica dell'approccio presentato è fornita, discutendo inoltre le potenzialità e i limiti del metodo che a differenza di altri algoritmi, che stimano l'APS dai segnali di fase srotolati, nella metodologia proposta la compensazione avviene direttamente sul dato arrotolato, in modo tale che la stima non è affetta da nessun potenziale errore di PhU. Gli esperimenti eseguiti su dati InSAR GB-SAR simulati e reali confermano la validità della tecnica proposta, confermando inoltre che il metodo è vantaggioso nelle zone caratterizzate da una forte escursione di quota (come ad esempio nelle regioni Alpine e montuose). Infine, viene presentata un'applicazione SAR interferometrica per la stima delle deformazioni della superficie investigata in tre dimensioni (3-D) attraverso l'uso congiunto ed integrato di dati SAR acquisiti da piattaforme satellitari e terrestri. Più precisamente, la catena di combinazione interferometrica sviluppata si compone anche degli innovativi algoritmi Mt-InSAR sviluppati in questo lavoro di tesi, al fine di ottenere mappe di velocità media di deformazione 3-D direttamente alla griglia spaziale più risoluta possibile. Inoltre, in conclusione, vengono menzionate anche alcune interessanti applicazioni SAR satellitari in ambito di prevenzione ed analisi di particolari fenomeni naturali e indotti dall'uomo.
Multi-temporal SAR interferometric (Mt-InSAR) techniques are nowadays mature tools to measure the temporal evolution of the Earth’s surface with millimetric accuracy. The reliability of crustal measurements is closely related to the goodness of the used Mt-InSAR algorithms in isolating the deformation-related signal from the overall signal, and this becomes increasingly complex as the noise levels of each interferogram increase. Canonical techniques are highly reliable in monitoring the displacement evolution of targets that are found to be largely stable or coherent over the entire period of analysis. Otherwise, when the scatterers are particularly affected by decorrelation problems, the obtained deformation estimates turn out to be corrupted and unreliable. Thus, there is a strong demand for new advanced Mt-InSAR processors that can provide accurate estimates of crustal deformation even in scenarios with more or less severe decorrelation problems. This thesis work focuses on the study of multi-temporal InSAR techniques applicable in both satellite and terrestrial case. Specifically, the canonical Mt-InSAR multigrid techniques for analyzing targets at the finest resolution grid will be discussed extensively highlighting their criticality in medium to low coherence areas, and in this context an innovative technique is proposed to better operate in decorrelated environments. The new method relies on efficient phase-unwrapping (PhU) operations performed at the native spatial scales. In particular, a set of multi-look (ML) interferograms is first unwrapped using conventional (or advanced) PhU algorithms at the regional scale. Subsequently, ML unwrapped interferograms are used to facilitate the PhU operations performed at the local scale (single-look). Specifically, the unwrapped multi-look interferograms are resampled to the single-look grid and modulo-2π subtracted to the single-look interferograms. These phase residuals are then unwrapped and added back to the multi-look resampled interferograms. To accomplish these operations, at variance with alternative multiscale methods, no (linear/nonlinear) models are used to fit the spatial high-pass phase residuals. Finally, the unwrapped single-look interferograms are properly inverted to retrieve the ground displacement time series using any small baseline (SB)-oriented multitemporal InSAR tool. Experimental results are performed by processing a set of SAR data acquired by the X-band COSMO-SkyMed sensor over the coastal area of Shanghai, China. Then, the focusing moves on the Weighted Least-squares (WLS) techniques applied within the InSAR framework for improving the performance of the phase unwrapping operations as well as for better conveying the inversion of sequences of unwrapped interferograms to generate ground displacement maps. In both cases, the identification of low-coherent areas, where the standard deviation of the phase is high, is requested. Therefore, a WLS method that extends the usability of the Mt-InSAR Small BAseline Subset (SBAS) algorithm in regions with medium-to-low coherence is presented. In particular, the proposed method relies on the adaptive selection and exploitation, pixel-by-pixel, of the medium-to-high coherent interferograms, only, so as to discard the noisy phase measurements. The selected interferometric phase values are then inverted by solving a WLS optimization problem. Noteworthy, the adopted, pixel-dependent selection of the “good” interferograms to be inverted may lead the available SAR data to be grouped into several disjointed subsets, which are then connected, exploiting the Weighted Singular Value Decomposition (WSVD) method. However, in some critical noisy regions, it may also happen that discarding of the incoherent interferograms may lead to rejecting some SAR acquisitions from the generated ground displacement time-series, at the cost of the reduced temporal sampling of the data measurements. Thus, variable-length ground displacement time-series are generated. The presented experiments have been carried out by applying the developed technique to a SAR dataset acquired by the COSMO-SkyMed (CSK) sensors over the Basilicata region, Southern Italy. In the continuation of the thesis work, the properties characterizing the phase non-closure of multi-look SAR interferograms are explored. Precisely, we study the implications of multi-look phase time incongruences on the generation of ground displacement time-series through SB Mt-InSAR methods. Our research clarifies how these phase inconsistencies can propagate through a time-redundant network of SB interferograms and contribute, along with PhU errors, to the quality of the generated ground displacement products. Moreover, we analyze the effects of short-lived phase bias signals that could happen in sequences of short baseline interferograms and propose a strategy for their mitigation. The developed methods have been tested using both simulated and real SAR data. The latter were collected by the Sentinel-1A/B (C-band) sensors over the study areas of Nevada state, U.S., and Sicily Island, Italy. After the development of algorithms for the satellite part, the work veers to ground-based SAR (GB-SAR) sensors. In this field, we propose a method for estimating and compensating the atmospheric phase screen (APS) in sets of SAR interferograms generated with a GB-SAR instrument. We address the presented approach’s physical, statistical, and mathematical framework by discussing its potential and limitations. In contrast with other existing algorithms that estimate the APS from the unwrapped phase signals, our methodology is based on the straightforward analysis of the wrapped phases, directly. Therefore, the method is not affected by any potential phase unwrapping mistake, and it is suitable for Mt-InSAR applications. The effects of the local topography, the decorrelation noise, and the ground deformation on the APS estimates are deeply studied. Experiments performed on simulated and real GB-SAR InSAR data corroborate the validity of the theory. In particular, the simulated results show that the method is beneficial in zones with medium-to-high topographic slopes (e.g., for Alpine and mountainous regions). Further, an interferometric SAR application for the study of three-dimensional (3-D) deformation through the joint and integrated use of satellite and ground SAR data is presented. More precisely, the interferometric data-combining technique exploits the innovative Mt-InSAR algorithms mentioned above, and allows obtaining 3-D mean displacement velocity maps at the finest spatial grid among the available data. In conclusion, also some interested satellite SAR applications in prevention and analysis of particular natural and human-induced disasters are given.
APA, Harvard, Vancouver, ISO, and other styles
4

Palmer, Steven J. "Temporal fluctuations in the motion of Arctic ice masses from satellite radar interferometry." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4155.

Full text
Abstract:
This thesis considers the use of Interferometric Synthetic Aperture Radar (InSAR) for surveying temporal fluctuations in the velocity of glaciers in the Arctic region. The aim of this thesis is to gain a broader understanding of the manner in which the flow of both land- and marine-terminating glaciers varies over time, and to asses the ability of InSAR to resolve flow changes over timescales which provide useful information about the physical processes that control them. InSAR makes use of the electromagnetic phase difference between successive SAR images to produce interference patterns (interferograms) which contain information on the topography and motion of the Earth's surface in the direction of the radar line-of-sight. We apply established InSAR techniques (Goldstein et al., 1993) to (i) the 925 km2 LangjÖkull Ice Cap (LIC) in Iceland, which terminates on land (ii) the 8 500 km2 Flade Isblink Icecap (FIIC) in Northeast Greenland which has both land- and marine-terminating glaciers and (iii) to a 7 000 km2 land-terminating sector of the Western Greenland Ice Sheet (GrIS). It is found that these three regions exhibit velocity variations over contrasting timescales. At the LIC, we use an existing ice surface elevation model and dual-look SAR data acquired by the European Remote Sensing (ERS) satellite to estimate ice velocity (Joughin et al., 1998) during late-February in 1994. A comparison with direct velocity measurements determined by global positioning system (GPS) sensors during the summer of 2001 shows agreement (r2 = 0.86), suggesting that the LIC exhibits moderate seasonal and inter-annual variations in ice flow. At the FIIC, we difference pairs of interferograms (Kwok and Fahnestock, 1996) formed using ERS SAR data acquired between 15th August 1995 and 3rd February 1996 to estimate ice velocity on four separate days. We observe that the flow of 5 of the 8 outlet glaciers varies in latesummer compared with winter, although flow speeds vary by up to 20 % over a 10 day period in August 1995. At the GrIS, we use InSAR (Joughin et al., 1996) and ERS SAR data to reveal a detailed pattern of seasonal velocity variations, with ice speeds in latesummer up to three times greater than wintertime rates. We show that the degree of seasonal speedup is spatially variable and correlated with modeled runoff, suggesting that seasonal velocity changes are controlled by the routing of water melted at the ice sheet surface. The overall conclusion of this work is that the technique of InSAR can provide useful information on fluctuations in ice speed across a range of timescales. Although some ice masses exhibit little or no temporal flow variability, others show marked inter-annual, seasonal and even daily variations in speed. We observe variations in seasonality in ice flow over distances of ~ 10 km and over time periods of ~10 days during late-summer. With the aid of ancillary meteorological data, we are able to establish that rates of flow in western Greenland are strongly moderated by the degree of surface melting, which varies seasonally and secularly. Although the sampling of our data is insufficiently frequent and spans too brief a period for us to derive a general relationship between climate and seasonality of flow, we show that production of meltwater at the ice surface and its delivery to the ice bed play an important role in the modulation of horizontal flow speeds. We suggest that a similarly detailed investigation of other ice masses is required to reduce the uncertainty in predictions of the future Arctic land-ice contribution to sea level in a warming world.
APA, Harvard, Vancouver, ISO, and other styles
5

Bin, Che Amat Muhammad Asyran. "Assessment of long-term deformation in Johor, Malaysia using Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR)." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/47430/.

Full text
Abstract:
Information about deformation in an area has become vital not only for safety assessment but also for maintenance of geodetic infrastructures. The latter is necessary to support accurate surveying and mapping applications. This research exploits the complementary features of Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) techniques to assess the long-term deformation in Johor, Malaysia, which can be induced by natural and/or anthropogenic activities. Furthermore, modelling and mitigation of tropospheric effects in GPS and InSAR are addressed to achieve the best possible precision from the two techniques. Indeed, their modelling and mitigation improve the quality of the estimation as well as provide valuable resources for atmospheric studies. The assessment of long-term deformation in Johor is firstly made by analysing the five years (2007 - 2011) point-specific profile at eight Malaysia Real-Time Kinematic GNSS Network (MyRTKnet) stations. Two processing strategies, namely Precise Point Positioning (PPP) and Double-Difference (DD), are employed to assess their capability for deformation monitoring. The latter also make used of the GPS data from 27 IGb08 stations and 7 International GNSS Service (IGS) stations. Analysis of the results revealed deformation that can be explained by plate tectonic movement and earthquakes in the surrounding region. While results from the PPP processing showed a higher correlation with the recorded earthquakes, the results from DD have improved correlation coefficients at about 4% in the East-West and 5% in the Up-Down components. These improvements are valuable when the rate of deformation is the primary interest. In addition to the point-specific profile, the surrounding deformation of Johor has been assessed with the line-of-sight (LOS) velocity maps from the InSAR time-series. Two sets of ERS-1/2 data, consisting a total of 67 images acquired at two descending tracks (i.e. track 75 and 347), are utilised for the generation of the maps. Moreover, the feasibility of Sentinel-1 satellites is also tested, which revealed improved coherence owing to their short revisit cycle. Some part of Johor showed subsidence and uplift trends, which also agreed with the literature. This information cannot be perceived by the GPS alone due to its limited coverage; hence, further attests to the benefit of their joint analysis. Numerous developments have been implemented in the in-house software (i.e. Punnet) such as the implementation of tropospheric correction, outlier’s rejection scheme, statistical analysis to identify the control point for phase unwrapping, and a new method to retrieve temporal evolution of deformation for a rapidly deforming area.
APA, Harvard, Vancouver, ISO, and other styles
6

Arai, Rei. "Application of synthetic aperture radar interferometry (InSAR) in defining groundwater-withdrawal-related subsidence, Diamond Valley, Nevada." abstract and full text PDF (UNR users only), 2009. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1467741.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nikolaeva, Elena. "Landslide kinematics and interactions studied in central Georgia by using synthetic aperture radar interferometry, optical imagery and inverse modeling." Phd thesis, Universität Potsdam, 2014. http://opus.kobv.de/ubp/volltexte/2014/7040/.

Full text
Abstract:
Landslides are one of the biggest natural hazards in Georgia, a mountainous country in the Caucasus. So far, no systematic monitoring and analysis of the dynamics of landslides in Georgia has been made. Especially as landslides are triggered by extrinsic processes, the analysis of landslides together with precipitation and earthquakes is challenging. In this thesis I describe the advantages and limits of remote sensing to detect and better understand the nature of landslide in Georgia. The thesis is written in a cumulative form, composing a general introduction, three manuscripts and a summary and outlook chapter. In the present work, I measure the surface displacement due to active landslides with different interferometric synthetic aperture radar (InSAR) methods. The slow landslides (several cm per year) are well detectable with two-pass interferometry. In same time, the extremely slow landslides (several mm per year) could be detected only with time series InSAR techniques. I exemplify the success of InSAR techniques by showing hitherto unknown landslides, located in the central part of Georgia. Both, the landslide extent and displacement rate is quantified. Further, to determine a possible depth and position of potential sliding planes, inverse models were developed. Inverse modeling searches for parameters of source which can create observed displacement distribution. I also empirically estimate the volume of the investigated landslide using displacement distributions as derived from InSAR combined with morphology from an aerial photography. I adapted a volume formula for our case, and also combined available seismicity and precipitation data to analyze potential triggering factors. A governing question was: What causes landslide acceleration as observed in the InSAR data? The investigated area (central Georgia) is seismically highly active. As an additional product of the InSAR data analysis, a deformation area associated with the 7th September Mw=6.0 earthquake was found. Evidences of surface ruptures directly associated with the earthquake could not be found in the field, however, during and after the earthquake new landslides were observed. The thesis highlights that deformation from InSAR may help to map area prone landslides triggering by earthquake, potentially providing a technique that is of relevance for country wide landslide monitoring, especially as new satellite sensors will emerge in the coming years.
Erdrutsche zählen zu den größten Naturgefahren in Georgien, ein gebirgiges Land im Kaukasus. Eine systematische Überwachung und Analyse der Dynamik von Erdrutschen in Georgien ist bisher nicht vorhanden. Da Erdrutsche durch extrinsische Prozesse ausgelöst werden, wird ihre Analyse zusammen mit Niederschlag und Erdbeben zu einer besonderen Herausforderung. In dieser Dissertation beschreibe ich die Potenziale und Limitierungen der Fernerkundung für die Detektion und das Verständnis von Erdrutschen in Georgien. Die Arbeit ist in einer kumulativen Form geschrieben, und besteht aus einer allgemeinen Einführung, drei Manuskripten sowie einer Zusammenfassung und einem Ausblick. In der vorliegenden Arbeit, Gestimme ich die Oberflächenverschiebung von aktiven Erdrutschen mit Methoden der Radarinterferometrie (InSAR). Die langsamen Erdrutsche (cm pro Jahr) konnten im einfachen Vergleich zeitlich unterschiedlicher Radaraufnahmen (two-pass InSAR), gut nachgewiesen werden. Die extrem langsamen Erdrutsche (mm pro Jahr) konnten hingegen nur mit InSAR Zeitreihentechniken nachgewiesen werden. Der Erfolg der angewandten InSAR Techniken wird durch die erfolgreiche Identifikation von bisher unbekannten Erdrutschen in Zentral Georgien veranschaulicht. Sowohl das Ausmaß als auch die Verschiebungsrate der Erdrutsche wurden quantifiziert. Ferner, um die mögliche Tiefe und Lage von potentiellen Gleitflächen zu bestimmen, wurden inverse Modelle entwickelt. Inverse Modellierung sucht nach Parametern der Quelle, welche die beobachtete Verschiebungsverteilung reproduzieren können. Ferner habe ich anhand der ermittelten Verschiebungsverteilung aus InSAR in Verbindung mit der Morphologie aus Luftaufnahmen das Volumen der untersuchten Erdrutsche empirisch abgeleitet. Ich habe eine Volumenformel für unseren Fall angepasst, und die verfügbaren Datensätze bezüglich Seismizität und Niederschlag kombiniert, um potenzielle auslösende Faktoren zu analysieren. Eine leitende Frage hierbei war: Was sind die Ursachen für die Beschleunigung von Erdrutschen, wie sie in den InSAR Daten beobachtet werden konnte? Das Untersuchungsgebiet in Zentral Georgien ist seismisch sehr aktiv. Als zusätzlichen Produkt der InSAR Datenanalyse wurde ein Deformationsgebiet gefunden, welches im Zusammenhang mit dem Mw=6.0 Erdbeben vom 7. September 2009 zusammenhängt. Beweise für Oberflächenbrüche, die direkt mit dem Erdbeben zusammenhängen, konnten in dem Gebiet nicht gefunden werden, jedoch konnten während und nach dem Erdbeben neue Erdrutsche beobachtet werden. Die Dissertation unterstreicht, dass Verformungsinformationen aus InSAR Analysen helfen können ein Gebiet, welches von Erdbebeninduzierten Erdrutschen gefährdet ist, zu kartieren. Potenziell stellt InSAR eine Technik dar, die von Bedeutung für die landesweite Überwachung von Erdrutschen sein kann, insbesondere im Hinblick auf die neuen Satellitensensoren, die in den kommenden Jahren verfügbar sein werden.
APA, Harvard, Vancouver, ISO, and other styles
8

Zahiri, Hani. "Integration of Synthetic Aperture Radar Interferometry (InSAR) and Geographical Information Systems (GIS) for monitoring mining induced surface deformations." Thesis, Curtin University, 2012. http://hdl.handle.net/20.500.11937/1835.

Full text
Abstract:
Surface subsidence induced by mining is a source of risk to people, equipment and environment. It may also disrupt mining schedules and increase the cost of mine safety. To provide accurate assessment of the surface subsidence and its level of impact on mine production and environment, it is necessary to develop and introduce comprehensive subsidence monitoring systems. Current techniques for monitoring of surface deformation are usually based on classical survey principles. In general these techniques have disadvantages that limit their applicability: they follow point-by-point data collection techniques, they are relatively time-consuming and costly, they usually cover only a small area, they are not applicable for the monitoring of inaccessible areas and they are not able to collect data continuously.As a complementary or alternative technique, the thesis discusses the applicability of SAR interferometry for monitoring mining induced deformations. InSAR is a remote sensing technique that makes use of Synthetic Aperture Radar (SAR) observations to acquire change in terrain topography. In spite of the widespread application of the technique for monitoring large-scale deformations of the Earth crust, specific modifications are necessary for utilising the technology within a mining context. Limitations, such as difficulty to resolve deformation for a high gradient slope, difficulty to retrieve subsidence for localised highly dynamic ground movements and the unavailability of SAR images with the desired specifications restrict the potential to monitor high rate, localised mine subsidence on day-to-day basis.The secondary aim of the thesis is to present integration of InSAR and GIS in order to propose an optimum methodology for processing of InSAR data to determine mine subsidence. The presented research also involves detailed analysis of InSAR limitations. This in consequence has led to suggestions on how to improve current InSAR capability with respect to the mining needs.The thesis introduces a set of new GIS-based tools and methodologies that are integrated into a conventional InSAR processing technique, to further improve and facilitate application of InSAR in mining. The developed tools and techniques cover the three main stages of data processing (pre-processing, processing and postprocessing). The researcher tried to address InSAR.’s limitations associated with mining related applications and also to provide practical solutions to resolve these issues.
APA, Harvard, Vancouver, ISO, and other styles
9

Kim, Jin Woo. "Applications of Synthetic Aperture Radar (SAR)/ SAR Interferometry (InSAR) for Monitoring of Wetland Water Level and Land Subsidence." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1374107720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Baek, Sang-Ho. "DEM generation and ocean tide modeling over Sulzberger Ice Shelf, West Antarctica, using synthetic aperture radar interferometry." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1155745007.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Interferometric Synthetic Aperture Radar (InSAR)"

1

Karen, Fletcher, European Space Agency, and European Space Research and Technology Centre., eds. InSAR principles: Guidelines for SAR interferometry processing and interpretation. Noordwijk, the Netherlands: ESA Publications Division, , ESTEC, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dzurisin, Daniel. History of surface displacements at the Yellowstone Caldera, Wyoming, from leveling surveys and InSAR observations, 1923-2008. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

W, Wicks Charles, Poland Michael P, and Geological Survey (U.S.), eds. History of surface displacements at the Yellowstone Caldera, Wyoming, from leveling surveys and InSAR observations, 1923-2008. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Heywood, Charles E. Ground displacements caused by aquifer-system water-level variations observed using interferometric synthetic aperture radar near Albuquerque, New Mexico. Albuquerque, N.M: U.S. Dept. of the Interior, U.S. Geological Survey, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Heywood, Charles E. Ground displacements caused by aquifer-system water-level variations observed using interferometric synthetic aperture radar near Albuquerque, New Mexico. Albuquerque, N.M: U.S. Geological Survey, Water Resources Division, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Heywood, Charles E. Ground displacements caused by aquifer-system water-level variations observed using interferometric synthetic aperture radar near Albuquerque, New Mexico. Albuquerque, N.M: U.S. Geological Survey, Water Resources Division, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Heywood, Charles E. Ground displacements caused by aquifer-system water-level variations observed using interferometric synthetic aperture radar near Albuquerque, New Mexico. Albuquerque, N.M: U.S. Geological Survey, Water Resources Division, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Michelle, Sneed, Coachella Valley Water District (Calif.), and Geological Survey (U.S.), eds. Detection and measurement of land subsidence using Global Positioning System and interferometric synthetic aperture radar, Coachella Valley, California, 1996-98. Sacramento, Calif: U.S. Dept. of the Interior, U.S. Geological Survey, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bawden, Gerald W. Investigation of land subsidence in the Houston-Galveston Region of Texas by using the global positioning system and interferometric synthetic aperture radar, 1993-2000. Reston, Virginia: U.S. Department of the Interior, U.S. Geological Survey, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Land subsidence in southwest Utah from 1993 to 1998 measured with interferometric synthetic aperture radar (InSAR). Utah Geological Survey, 2006. http://dx.doi.org/10.34191/mp-06-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Interferometric Synthetic Aperture Radar (InSAR)"

1

Dzurisin, Daniel, and Zhong Lu. "Interferometric synthetic-aperture radar (InSAR)." In Volcano Deformation, 153–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-49302-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liang, Hongyu, Wenbin Xu, Xiaoli Ding, Lei Zhang, and Songbo Wu. "Urban Sensing with Spaceborne Interferometric Synthetic Aperture Radar." In Urban Informatics, 345–65. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8983-6_21.

Full text
Abstract:
AbstractSynthetic aperture radar (SAR) and interferometric SAR (InSAR) are state-of-the-art radar remote sensing technologies and are very useful for urban remote sensing. The technologies have some very special characteristics compared to optical remote sensing and are especially advantageous in cloudy regions due to the ability of the microwave radar signals used by the current SAR sensors to penetrate clouds. This chapter introduces the basic concepts of SAR, differential InSAR, and multi-temporal InSAR, and their typical applications in urban remote sensing. Examples of applying the various InSAR techniques in generating DEMs and monitoring ground and infrastructure deformation are given. The capabilities and limitations of InSAR techniques in urban remote sensing are briefly discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

Lu, Zhong, and Daniel Dzurisin. "Introduction to Interferometric Synthetic Aperture Radar." In InSAR Imaging of Aleutian Volcanoes, 1–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-00348-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lu, Zhong, Daniel Dzurisin, Charles Wicks, and John Power. "Interferometric synthetic aperture radar (InSAR): A long-term monitoring tool." In Monitoring Volcanoes in the North Pacific, 235–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-540-68750-4_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Selvakumaran, S., C. Rossi, E. Barton, and C. R. Middleton. "Interferometric Synthetic Aperture Radar (InSAR) in the Context of Bridge Monitoring." In Advances in Remote Sensing for Infrastructure Monitoring, 183–209. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59109-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Manzoni, Marco. "Fast and Robust Estimation of Atmospheric Phase Screens Using C-Band Spaceborne SAR and GNSS Calibration." In Special Topics in Information Technology, 131–40. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15374-7_11.

Full text
Abstract:
AbstractOver the last few years, a growing interest has been observed in the field of Interferometric Synthetic Aperture Radar (InSAR) meteorology. The atmosphere has always been seen as a disturbance in interpreting interferograms (the output product of InSAR processing). A space-borne radar, however, can sense the refractive index of the medium it travels. The refractive index, in turn, is sensitive to pressure, temperature, and humidity of the air. Therefore, SAR data contains information about the atmosphere’s status and can be exploited by Numerical Weather Prediction Models (NWPM) as additional information to improve weather forecasts. This chapter investigates a fast and robust method for generating the so-called Atmospheric Phase Screens (APS) from InSAR data. The method exploits both Permanent Scatterers (PS) and Distributed Scatterers (DS) in an optimal way leading to wide and dense APS maps. When operating at large scales, it is also mandatory to calibrate the data using a network of Global Navigation Satellite System (GNSS) receivers. The calibration can remove the so-called Orbital Phase Screens (OPS) that otherwise severely corrupt the atmospheric measurements. Results using real data acquired by the European Sentinel-1 mission show the potential of InSAR meteorology to provide valuable data to improve weather forecasts.
APA, Harvard, Vancouver, ISO, and other styles
7

Lu, Zhong, Daniel Dzurisin, Charles Wicks, John Power, Ohig Kwoun, and Russell Rykhus. "Diverse deformation patterns of Aleutian Volcanoes from satellite Interferometric Synthetic Aperture Radar (InSAR)." In Volcanism and Subduction: The Kamchatka Region, 249–61. Washington, D. C.: American Geophysical Union, 2007. http://dx.doi.org/10.1029/172gm18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Huntley, David, Drew Rotheram-Clarke, Roger MacLeod, Robert Cocking, Philip LeSueur, Bill Lakeland, and Alec Wilson. "Scalable Platform for UAV Flight Operations, Data Capture, Cloud Processing and Image Rendering of Landslide Hazards and Surface Change Detection for Disaster-Risk Reduction." In Progress in Landslide Research and Technology, Volume 1 Issue 2, 2022, 49–61. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-18471-0_4.

Full text
Abstract:
AbstractThis International Programme on Landslide (IPL) Project 202 paper presents a scalable remote piloted aircraft system (RPAS) platform that streamlines unoccupied aerial vehicle (UAV) flight operations for data capture, cloud processing and image rendering to inventory and monitor slow-moving landslides along the national railway transportation corridor in southwestern British Columbia, Canada. Merging UAV photogrammetry, ground-based real-time kinematic global navigation satellite system (RTK-GNSS) measurements, and satellite synthetic aperture radar interferometry (InSAR) datasets best characterizes the distribution, morphology and activity of landslides over time. Our study shows that epochal UAV photogrammetry, benchmarked with periodic ground-based RTK-GNSS measurements and satellite InSAR platforms with repeat visit times of weeks (e.g., RADARSAT-2 and SENTINEL-1) to days (e.g. RADARSAT Constellation Mission) provides rapid landslide monitoring capability with cm-scale precision and accuracy.
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Ruliang, Bowei Dai, Lulu Tan, Xiuqing Liu, Zhen Yang, and Haiying Li. "Polarimetric Interferometric Synthetic Aperture Radar." In Polarimetric Microwave Imaging, 123–43. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8897-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shafai, Shahid Shuja, Shashi Kumar, Hossein Aghababaei, and Anurag Kulshrestha. "Polarimetric Interferometric Decomposition." In Spaceborne Synthetic Aperture Radar Remote Sensing, 45–87. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003204466-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Interferometric Synthetic Aperture Radar (InSAR)"

1

Li, Hai, Guisheng Liao, and Renbiao Wu. "A robust estimation method for InSAR interferometric phase." In 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar (APSAR). IEEE, 2009. http://dx.doi.org/10.1109/apsar.2009.5374259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Evans, J. R., F. A. Kruse, D. L. Bickel, and Ralf Dunkel. "Determining snow depth using Ku-band interferometric synthetic aperture radar (InSAR)." In SPIE Defense + Security, edited by Kenneth I. Ranney and Armin Doerry. SPIE, 2014. http://dx.doi.org/10.1117/12.2049711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shabelansky, Andrey Hanan, Kurt Nihei, Zhishuai Zhang, Dimitri Bevc, William Milliken, and Gwyn Mali. "Geomechanic Interferometry: Theory and Application to Time-Lapse InSAR Data for Separating Displacement Signal Between Overburden and Reservoir Sources." In SPE Western Regional Meeting. SPE, 2022. http://dx.doi.org/10.2118/209257-ms.

Full text
Abstract:
Abstract Interferometric synthetic aperture radar (InSAR) data provides a measurement of the Earth's surface displacements to monitor reservoir stresses, fluid pressure and volume changes. However, the InSAR measurements may suffer from poor sensitivity and resolution. To improve the sensitivity of the InSAR data and localize the effects of the near-surface overburden, we employ a Green's function retrieval (GFR) approach that uses time-lapse InSAR data. In this work, we derive the equations and compute the sensitivity between InSAR displacements caused by the reservoir changes with respect to observation points (i.e., virtual sources) at the surface. We present this method with time-lapse InSAR data from an oil field in the San-Joaquin Valley to demonstrate improved resolution of the GFR-InSAR measurements for subsurface imaging and continuous reservoir monitoring with applications to development, production, and subsurface integrity.
APA, Harvard, Vancouver, ISO, and other styles
4

Moore, Sarah C., Shelley E. Olds, Scott Baker, and Donna Charlevoix. "PRODUCING AN INFORMATION GRAPHIC ON INTERFEROMETRIC SYNTHETIC APERTURE RADAR (INSAR) FOR A BROAD AUDIENCE." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-286633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Ke, Jingyi Chen, Amin Kiaghadi, and Clint Dawson. "A New Algorithm for Estimating Surface Roughness Using Interferometric Synthetic Aperture Radar (InSAR) Data." In IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2020. http://dx.doi.org/10.1109/igarss39084.2020.9323083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ruiz-Armenteros, Antonio Miguel, José Manuel Delgado-Blasco, Matus Bakon, Milan Lazecky, Miguel Marchamalo-Sacristán, Francisco Lamas-Fernández, Ana Ruiz-Constán, et al. "MONITORING CRITICAL INFRASTRUCTURE EXPOSED TO ANTHROPOGENIC AND NATURAL HAZARDS USING SATELLITE RADAR INTERFEROMETRY." In 3rd Congress in Geomatics Engineering. Valencia: Universitat Politècnica de València, 2021. http://dx.doi.org/10.4995/cigeo2021.2021.12736.

Full text
Abstract:
Synthetic Aperture Radar Interferometry (InSAR) is a remote sensing technique very effective for the measure of smalldisplacements of the Earth’s surface over large areas at a very low cost as compared with conventional geodetictechniques. Advanced InSAR time series algorithms for monitoring and investigating surface displacement on Earth arebased on conventional radar interferometry. These techniques allow us to measure deformation with uncertainties of 1mm/year, interpreting time series of interferometric phases at coherent point scatterers (PS) without the need for humanor special equipment presence on the site. By applying InSAR processing techniques to a series of radar images over thesame region, it is possible to detect line-of-sight (LOS) displacements of infrastructures on the ground and therefore identifyabnormal or excessive movement indicating potential problems requiring detailed ground investigation. A major advantageof this technology is that a single radar image can cover a major area of up to 100 km by 100 km or more as, for example,Sentinel-1 C-band satellites data cover a 250 km wide swath. Therefore, all engineering infrastructures in the area, suchas dams, dikes, bridges, ports, etc. subject to terrain deformation by volcanos, landslides, subsidence due to groundwater,gas, or oil withdrawal could be monitored, reducing operating costs effectively. In this sense, the free and open accessCopernicus Sentinel-1 data with currently up to 6-days revisit time open new opportunities for a near real-time landmonitoring. In addition, the new generation of high-resolution radar imagery acquired by SAR sensors such as TerraSARX,COSMO-SkyMed, and PAZ, and the development of multi-interferogram techniques has enhanced our capabilities inrecent years in using InSAR as deformation monitoring tool. In this paper, we address the applicability of using spaceborneSAR sensors for monitoring infrastructures in geomatics engineering and present several cases studies carried out by ourgroup related to anthropogenic and natural hazards, as well as monitoring of critical infrastructures.
APA, Harvard, Vancouver, ISO, and other styles
7

Wei, Shunjun, Xiaoling Zhang, Jun Shi, Hu Kebin, and Zhang Bojun. "Complex trajectory millimeter-wave InSAR interferometry using maximum sharpness BP autofocusing algorithm." In 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). IEEE, 2015. http://dx.doi.org/10.1109/apsar.2015.7306156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yanan Dang, Huili Gong, Xiaojuan Li, Beibei Chen, and Jiwei Li. "The analysis of land subsidence in Tianjin basing on interferometric synthetic aperture radar (InSAR) technique." In 2011 International Conference on Multimedia Technology. IEEE, 2011. http://dx.doi.org/10.1109/icmt.2011.6001939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Conway, Brian D. "ARIZONA DEPARTMENT OF WATER RESOURCES LAND SUBSIDENCE MONITORING PROGRAM USING INTERFEROMETRIC SYNTHETIC APERTURE RADAR (INSAR) DATA." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-330452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bruckno, Brian, Edward Hoppe, Andrea Vaccari, Scott Acton, and Elizabeth Campbell. "Integration and Delivery of Interferometric Synthetic Aperture Radar [InSAR] Data Into Stormwater Planning Within Karst Terranes." In National Cave and Karst Research Institute Symposium 5. University of South Florida Tampa Library, 2015. http://dx.doi.org/10.5038/9780991000951.1020.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Interferometric Synthetic Aperture Radar (InSAR)"

1

Foxall, W., D. Templton, and A. Ramirez. Annotated Bibliography: Empirical and Analytical Methods for Geomechanical Modeling of Underground Structural Excavations, Stochastic Inversions Techniques, and Recent Developments in Interferometric Synthetic Aperture Radar (InSAR). Office of Scientific and Technical Information (OSTI), May 2009. http://dx.doi.org/10.2172/956834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yocky, David. Source Physics Experiment: Rock Valley Interferometric Synthetic Aperture RADAR Earthquake Detection Study. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1821315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lukowski, T. I., and F. Charbonneau. Synthetic Aperture Radar and Search and Rescue: detection of crashed aircraft using imagery and interferometric methods. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2002. http://dx.doi.org/10.4095/219846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bickel, Douglas, and John DeLaurentis. Extension of Interferometric Synthetic Aperture Radar to Multiple Phase- Centers: Midyear LDRD Final Report ? second edition. Office of Scientific and Technical Information (OSTI), September 2022. http://dx.doi.org/10.2172/1889085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dudley, J. P., and S. V. Samsonov. SAR interferometry with the RADARSAT Constellation Mission. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329396.

Full text
Abstract:
The RADARSAT Constellation Mission (RCM) is Canada's latest system of C-band Synthetic Aperture Radar (SAR) Earth observation satellites. The system of three satellites, spaced equally in a common orbit, allows for a rapid four-day repeat interval. The RCM has been designed with a selection of stripmap, spotlight, and ScanSAR beam modes which offer varied combinations of spatial resolution and coverage. Using Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques, the growing archive of SAR data gathered by RCM can be used for change detection and ground deformation monitoring for diverse applications in Canada and around the world. In partnership with the Canadian Space Agency (CSA), the Canada Centre for Mapping and Earth Observation (CCMEO) has developed an automated system for generating standard and advanced deformation products and change detection from SAR data acquired by RCM and RADARSAT-2 satellites using DInSAR processing methodology. Using this system, this paper investigates four key interferometric properties of the RCM system which were not available on the RADARSAT-1 or RADARSAT-2 missions: The impact of the high temporal resolution of the four-day repeat cycle of the RCM on temporal decorrelation trends is tested and fitted against simple temporal decay models. The effect of the normalization and the precision of the radiometric calibration on interferometric spatial coherence is investigated. The performance of the RCM ScanSAR mode for wide area interferometric analysis is tested. The performance of the novel RCM Compact-polarization (CP) mode for interferometric analysis is also investigated.
APA, Harvard, Vancouver, ISO, and other styles
6

Dudley, J. P., and S. V. Samsonov. Système de traitement automatisé du gouvernement canadien pour la détection des variations et l'analyse des déformations du sol à partir des données de radar à synthèse d'ouverture de RADARSAT-2 et de la mission de la Constellation RADARSAT : description et guide de l'utilisateur. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/329134.

Full text
Abstract:
Remote sensing using Synthetic Aperture Radar (SAR) offers powerful methods for monitoring ground deformation from both natural and anthropogenic sources. Advanced analysis techniques such as Differential Interferometric Synthetic Aperture Radar (DInSAR), change detection, and Speckle Offset Tracking (SPO) provide sensitive measures of ground movement. With both the RADARSAT-2 and RADARSAT Constellation Mission (RCM) SAR satellites, Canada has access to a significant catalogue of SAR data. To make use of this data, the Canada Centre for Mapping and Earth Observation (CCMEO) has developed an automated system for generating standard and advanced deformation products from SAR data using both DInSAR and SPO methods. This document provides a user guide for this automated processing system.
APA, Harvard, Vancouver, ISO, and other styles
7

Ground displacements caused by aquifer-system water-level variations observed using interferometric synthetic aperture radar near Albuquerque, New Mexico. US Geological Survey, 2002. http://dx.doi.org/10.3133/wri024235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Detection and measurement of land subsidence using Global Positioning System and interferometric synthetic aperture radar, Coachella Valley, California, 1996-98. US Geological Survey, 2001. http://dx.doi.org/10.3133/wri014193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Detection and measurement of land subsidence using global positioning system and Interferometric Synthetic Aperture Radar, Coachella Valley, California, 1998-2000. US Geological Survey, 2002. http://dx.doi.org/10.3133/wri024239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Detection and measurement of land subsidence using interferometric synthetic aperture radar and Global Positioning System, San Bernardino County, Mojave Desert, California. US Geological Survey, 2003. http://dx.doi.org/10.3133/wri034015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography