To see the other types of publications on this topic, follow the link: Interference Mitigation.

Dissertations / Theses on the topic 'Interference Mitigation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Interference Mitigation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Kim, Kihong. "Interference Mitigation in Wireless Communications." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7647.

Full text
Abstract:
The primary objective of this thesis is to design advanced interference resilient schemes for asynchronous slow frequency hopping wireless personal area networks (FH-WPAN) and time division multiple access (TDMA) cellular systems in interference dominant environments. We also propose an interference-resilient power allocation method for multiple-input-multiple-output (MIMO) systems. For asynchronous FH-WPANs in the presence of frequent packet collisions, we propose a single antenna interference canceling dual decision feedback (IC-DDF) receiver based on joint maximum likelihood (ML) detection and recursive least squares (RLS) channel estimation. For the system level performance evaluation, we propose a novel geometric method that combines bit error rate (BER) and the spatial distribution of the traffic load of CCI for the computation of packet error rate (PER). We also derived the probabilities of packet collision in multiple asynchronous FH-WPANs with uniform and nonuniform traffic patterns. For the design of TDMA receivers resilient to CCI in frequency selective channels, we propose a soft output joint detection interference rejection combining delayed decision feedback sequence estimation (JD IRC-DDFSE) scheme. In the proposed scheme, IRC suppresses the CCI, while DDFSE equalizes ISI with reduced complexity. Also, the soft outputs are generated from IRC-DDFSE decision metric to improve the performance of iterative or non-iterative type soft-input outer code decoders. For the design of interference resilient power allocation scheme in MIMO systems, we investigate an adaptive power allocation method using subset antenna transmission (SAT) techniques. Motivated by the observation of capacity imbalance among the multiple parallel sub-channels, the SAT method achieves high spectral efficiency by allocating power on a selected transmit antenna subset. For 4 x 4 V-BLAST MIMO systems, the proposed scheme with SAT showed analogous results. Adaptive modulation schemes combined with the proposed method increase the capacity gains. From a feasibility viewpoint, the proposed method is a practical solution to CCI-limited MIMO systems since it does not require the channel state information (CSI) of CCI.
APA, Harvard, Vancouver, ISO, and other styles
2

Mitchell, Daniel Allan. "Interference Mitigation in Radio Astronomy." Thesis, The University of Sydney, 2004. http://hdl.handle.net/2123/693.

Full text
Abstract:
This thesis investigates techniques and algorithms for mitigating radio frequency interference (RFI) affecting radio astronomy observations. In the past radio astronomy has generally been performed in radio-quiet geographical locations and unused parts of the radio spectrum, including small protected frequency bands. The increasing use of the entire spectrum and global transmitters such as satellites are forcing the astronomy community to begin implementing active interference cancelling. The amount of harmful interference affecting observations will also increase as future instruments such as the Square Kilometre Array (SKA) are required to use larger bandwidths to reach up to 100 times the current sensitivity levels, and as spectral line observations require observing in bands licensed to other spectrum users. Particular attention is paid to interference cancellation algorithms which make use of reference beams. This has proven to be successful in removing interference from the contaminated astronomical data. Reference antenna cancellers are closely analysed, leading to filters and techniques that can offer improved RFI excision for some important applications. It is shown that pre- and post-correlation reference antenna cancellers give similar results, and an important aspect of the cancellers is the use of a second reference signal when the reference interference-to-noise ratio is low. These modified filters can theoretically offer infinite interference suppression in the voltage domain, equivalent to that of post-correlation interference cancellers, and their internal structure can offer an understanding of the residual RFI and added receiver noise components of a variety of reference antenna techniques. The effect of variable geometric delays is also considered and various filters are compared as a function of the geometric fringe rate.
APA, Harvard, Vancouver, ISO, and other styles
3

Mitchell, Daniel Allan. "Interference Mitigation in Radio Astronomy." University of Sydney. Physics, 2004. http://hdl.handle.net/2123/693.

Full text
Abstract:
This thesis investigates techniques and algorithms for mitigating radio frequency interference (RFI) affecting radio astronomy observations. In the past radio astronomy has generally been performed in radio-quiet geographical locations and unused parts of the radio spectrum, including small protected frequency bands. The increasing use of the entire spectrum and global transmitters such as satellites are forcing the astronomy community to begin implementing active interference cancelling. The amount of harmful interference affecting observations will also increase as future instruments such as the Square Kilometre Array (SKA) are required to use larger bandwidths to reach up to 100 times the current sensitivity levels, and as spectral line observations require observing in bands licensed to other spectrum users. Particular attention is paid to interference cancellation algorithms which make use of reference beams. This has proven to be successful in removing interference from the contaminated astronomical data. Reference antenna cancellers are closely analysed, leading to filters and techniques that can offer improved RFI excision for some important applications. It is shown that pre- and post-correlation reference antenna cancellers give similar results, and an important aspect of the cancellers is the use of a second reference signal when the reference interference-to-noise ratio is low. These modified filters can theoretically offer infinite interference suppression in the voltage domain, equivalent to that of post-correlation interference cancellers, and their internal structure can offer an understanding of the residual RFI and added receiver noise components of a variety of reference antenna techniques. The effect of variable geometric delays is also considered and various filters are compared as a function of the geometric fringe rate.
APA, Harvard, Vancouver, ISO, and other styles
4

Rahman, Md Jahidur. "Interference mitigation and alignment for interference-limited communication systems." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/64173.

Full text
Abstract:
With limited availability of the communication spectrum and ever-increasing demands for high-data-rate services, it is natural to reuse the same time-frequency resource to the greatest degree possible. Depending on the nature of transmission and reception of the users, this leads to different instances of interference, e.g., inter-user interference in an interference network and self-interference in a Full-Duplex (FD) transmission. With a goal to mitigate such interference, in this thesis we investigate emerging interference-limited communication systems, such as FD, Device-to-Device (D2D), and Power Line Communication (PLC). To this end, we propose advanced solutions, namely self-interference mitigation and Interference Alignment (IA). With an objective to reduce the power consumption, we study transceiver design for FD multi-cell Multi-Input Multi-Output (MIMO) systems with guaranteed Quality of Service (QoS). Considering realistic self-interference models and robustness against Channel State Information (CSI) uncertainty, our numerical results reveal transmission scenarios and design parameters for which replacing half-duplex with FD systems is beneficial in terms of power minimization. If the system is not power constrained, however, a natural objective is to optimize the total throughput given a power budget. Nonetheless, throughput maximization underserves the users that experience poor channels, which leads to QoS unfairness. Therefore, we propose a fair transceiver design for FD multi-cell MIMO systems, which can be implemented in a distributed manner. We further extend our design to enforce robustness against CSI uncertainty. As a second contribution within this design theme, the concept of robust fair transceiver design is also extended for D2D communications, where unlike the self-interference in FD transmission, the users suffer from strong inter-user interference. Recognizing that simultaneous multiple connections in PLC contribute to (interuser) interference-limited communication, we introduce IA techniques for PLC networks, for which the results confirm a significant sum-rate improvement. To overcome the implementation burden of CSI availability for IA techniques, we then study Blind Interference Alignment (BIA) for PLC X-network, and show that the characteristics of the PLC channel thwart simple implementation of this technique via impedance modulation. We therefore resort to a transmission scheme with multiple receiving ports, which can achieve the maximum multiplexing gain for this network.
Applied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
5

Jaramillo, Ramirez Daniel. "Interference mitigation techniques for 4G networks." Thesis, Supélec, 2014. http://www.theses.fr/2014SUPL0002/document.

Full text
Abstract:
Les communications sans fils sont devenues un outil fondamental pour les sociétés modernes. Les réseaux cellulaires sont le moyen préféré pour l’accès à Internet. L’augmentation de la capacité du réseau est étroitement liée au problème des interférences. Les réseaux coopératifs ont été largement étudiés dans les années récentes. Cette thèse porte sur deux techniques de coopération dans la voie descendante :La première partie étudie les effets de quantification et délais sur les informations de retour nécessaires pour la mise en opération des différentes techniques d’émission coordonnée, connues sous le nom de CoMP (Coordinated Multipoint Transmission). Cette technique qui promet des augmentations importantes sur la capacité du réseau en conditions idéales, or ses vrais résultats sous le feedback limité doivent être encore décrits de manière analytique. En particulier, pour les modes d’émission connus comme JT (Joint Transmission) et CBF (Coordinated Beamforming), des expressions analytiques ont été déduites pour calculer la capacité du réseau et la probabilité de succès de transmission.Finalement une nouvelle technique de coopération de réseau pour les récepteurs avancés du type SIC (Successive Interference Cancellation) est présentée. La condition mathématique qui garantit des gains de capacité grâce à l’utilisation des récepteurs SIC est obtenue. Pour en profiter, une méthode de coopération est nécessaire pour assurer une adaptation de lien adéquate pour que l’interférence soit décodable et le débit somme soit supérieur à celui atteint avec des récepteurs traditionnels. Cette technique montre des gains importants de capacité pour des utilisateurs en bordure de cellule
Wireless communications have become a fundamental feature of any modern society. In particular, cellular networks are essential for societal welfare but the increasing demand for data traffic set enormous scientific challenges. Increasing the network capacity is closely related to the problem of interference mitigation. In this regard, network cooperation has been studied in recent years and several different techniques have been proposed. In the first part, different transmission techniques commonly referred to as Coordinated Multi-Point Transmission (CoMP), are studied under the effect of feedback quantization and delay, unequal pathloss and other-cell interference (OCI). An analytical framework is provided, which yields closed-form expressions to calculate the ergodic throughput and outage probabilities of Coordinated Beamforming (CBF) and Joint Transmission (JT). The results indicate the optimal configuration for a system using CoMP and provide guidelines and answers to key questions, such as how many transmitters to coordinate, how many antennas to use, how many users to serve, which SNR regime is more convenient, whether to apply CBF or prefer a more complex JT, etc. Second, a new coordination technique at the receiver side is proposed to obtain sum-rate gains by means of Successive Interference Cancellation (SIC). The conditions that guarantee network capacity gains by means of SIC at the receiver are provided. To take advantage of these conditions, network coordination is needed to adapt the rates to be properly decoded at the different users involved. This technique is named Cooperative SIC and is shown to provide significant throughput gains for cell-edge users
APA, Harvard, Vancouver, ISO, and other styles
6

Kpojime, Harold Orduen. "Interference mitigation in cognitive femtocell networks." Thesis, University of Bedfordshire, 2015. http://hdl.handle.net/10547/603521.

Full text
Abstract:
Femtocells have been introduced as a solution to poor indoor coverage in cellular communication which has hugely attracted network operators and stakeholders. However, femtocells are designed to co-exist alongside macrocells providing improved spatial frequency reuse and higher spectrum efficiency to name a few. Therefore, when deployed in the two-tier architecture with macrocells, it is necessary to mitigate the inherent co-tier and cross-tier interference. The integration of cognitive radio (CR) in femtocells introduces the ability of femtocells to dynamically adapt to varying network conditions through learning and reasoning. This research work focuses on the exploitation of cognitive radio in femtocells to mitigate the mutual interference caused in the two-tier architecture. The research work presents original contributions in mitigating interference in femtocells by introducing practical approaches which comprises a power control scheme where femtocells adaptively controls its transmit power levels to reduce the interference it causes in a network. This is especially useful since femtocells are user deployed as this seeks to mitigate interference based on their blind placement in an indoor environment. Hybrid interference mitigation schemes which combine power control and resource/scheduling are also implemented. In a joint threshold power based admittance and contention free resource allocation scheme, the mutual interference between a Femtocell Access Point (FAP) and close-by User Equipments (UE) is mitigated based on admittance. Also, a hybrid scheme where FAPs opportunistically use Resource Blocks (RB) of Macrocell User Equipments (MUE) based on its traffic load use is also employed. Simulation analysis present improvements when these schemes are applied with emphasis in Long Term Evolution (LTE) networks especially in terms of Signal to Interference plus Noise Ratio (SINR).
APA, Harvard, Vancouver, ISO, and other styles
7

Batra, Arun. "Mitigation techniques for severe narrowband interference." Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3356201.

Full text
Abstract:
Thesis (Ph. D.)--University of California, San Diego, 2009.
Title from first page of PDF file (viewed June 15, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 129-139).
APA, Harvard, Vancouver, ISO, and other styles
8

Geng, Zhe. "Radar Signal Processing for Interference Mitigation." FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3571.

Full text
Abstract:
It is necessary for radars to suppress interferences to near the noise level to achieve the best performance in target detection and measurements. In this dissertation work, innovative signal processing approaches are proposed to effectively mitigate two of the most common types of interferences: jammers and clutter. Two types of radar systems are considered for developing new signal processing algorithms: phased-array radar and multiple-input multiple-output (MIMO) radar. For phased-array radar, an innovative target-clutter feature-based recognition approach termed as Beam-Doppler Image Feature Recognition (BDIFR) is proposed to detect moving targets in inhomogeneous clutter. Moreover, a new ground moving target detection algorithm is proposed for airborne radar. The essence of this algorithm is to compensate for the ground clutter Doppler shift caused by the moving platform and then to cancel the Doppler-compensated clutter using MTI filters that are commonly used in ground-based radar systems. Without the need of clutter estimation, the new algorithms outperform the conventional Space-Time Adaptive Processing (STAP) algorithm in ground moving target detection in inhomogeneous clutter. For MIMO radar, a time-efficient reduced-dimensional clutter suppression algorithm termed as Reduced-dimension Space-time Adaptive Processing (RSTAP) is proposed to minimize the number of the training samples required for clutter estimation. To deal with highly heterogeneous clutter more effectively, we also proposed a robust deterministic STAP algorithm operating on snapshot-to-snapshot basis. For cancelling jammers in the radar mainlobe direction, an innovative jamming elimination approach is proposed based on coherent MIMO radar adaptive beamforming. When combined with mutual information (MI) based cognitive radar transmit waveform design, this new approach can be used to enable spectrum sharing effectively between radar and wireless communication systems. The proposed interference mitigation approaches are validated by carrying out simulations for typical radar operation scenarios. The advantages of the proposed interference mitigation methods over the existing signal processing techniques are demonstrated both analytically and empirically.
APA, Harvard, Vancouver, ISO, and other styles
9

Foutekova, Ellina P. "Interference mitigation and interference avoidance for cellular OFDMA-TDD networks." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3810.

Full text
Abstract:
In recent years, cellular systems based on orthogonal frequency division multiple access – time division duplex (OFDMA-TDD) have gained considerable popularity. Two of the major reasons for this are, on the one hand, that OFDMA enables the receiver to effectively cope with multipath propagation while keeping the complexity low. On the other hand, TDD offers efficient support for cell-specific uplink (UL)/downlink (DL) asymmetry demands by allowing each cell to independently set its UL/DL switching point (SP). However, cell-independent SP gives rise to crossed slots. In particular, crossed slots arise when neighbouring cells use the same slot in opposing link directions, resulting in base station (BS)-to-BS interference and mobile station (MS)-to-MS interference. BS-to-BS interference, in particular, can be quite detrimental due to the exposed location of BSs, which leads to high probability of line-of-sight (LOS) conditions. The aim of this thesis is to address the BS-to-BS interference problem in OFDMA-TDDcellular networks. A simulation-based approach is used to demonstrate the severity of BS-to-BS interference and a signal-to-interference-plus-noise ratio (SINR) equation for OFDMA is formulated to aid system performance analysis. The detrimental effects of crossed slot interference in OFDMA-TDD cellular networks are highlighted by comparing methods specifically targeting the crossed slots interference problem. In particular, the interference avoidance method fixed slot allocation (FSA) is compared against state of the art interference mitigation approaches, viz: random time slot opposing (RTSO) and zone division (ZD). The comparison is done based on Monte Carlo simulations and the main comparison metric is spectral efficiency calculated using the SINR equation formulated in this thesis. The simulation results demonstrate that when LOS conditions among BSs are present, both RTSO and ZD perform worse than FSA for all considered performance metrics. It is concluded from the results that current interference mitigation techniques do not offer an effective solution to the BS-to-BS interference problem. Hence, new interference avoidance methods, which unlike FSA, do not sacrifice the advantages of TDD are open research issues addressed in this thesis. The major contribution of this thesis is a novel cooperative resource balancing technique that offers a solution to the crossed slot problem. The novel concept, termed asymmetry balancing, is targeted towards next-generation cellular systems, envisaged to have ad hoc and multi-hop capabilities. Asymmetry balancing completely avoids crossed slots by keeping the TDD SPs synchronised among BSs. At the same time, the advantages of TDD are retained, which is enabled by introducing cooperation among the entities in the network. If a cell faces resource shortage in one link direction, while having free resources in the opposite link direction, the free resources can be used to support the overloaded link direction. In particular, traffic can be offloaded to near-by mobile stations at neighbouring cells that have available resources. To model the gains attained with asymmetry balancing, a mathematical framework is developed which is verified by Monte Carlo simulations. In addition, asymmetry balancing is compared against both ZD and FSA based on simulations and the results demonstrate the superior performance of asymmetry balancing. It can be concluded that the novel interference avoidance approach is a very promising candidate to.
APA, Harvard, Vancouver, ISO, and other styles
10

Jamp, Joe Izu. "Interference mitigation techniques for ultra-wideband systems." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3254427.

Full text
Abstract:
Thesis (Ph. D.)--University of California, San Diego, 2007.
Title from first page of PDF file (viewed May 2, 2007). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 126-129).
APA, Harvard, Vancouver, ISO, and other styles
11

Dartmann, Guido [Verfasser]. "Interference mitigation in multicell networks / Guido Dartmann." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2013. http://d-nb.info/1046651927/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Zhou, Jun. "Antenna aided interference mitigation for cognitive radio." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/10676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Chen, Zhe. "Interference mitigation techniques for optical attocell networks." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/22868.

Full text
Abstract:
The amount of wireless data traffic has been increasing exponentially. This results in the shortage of radio frequency (RF) spectrum. In order to alleviate the looming spectrum crisis, visible light communication (VLC) has emerged as a supplement to RF techniques. VLC uses light emitting diodes (LEDs) for transmission and employs photodiodes (PDs) for detection. With the advancement of the LED technology, LEDs can now fulfil two functions at the same time: illumination and high-speed wireless communication. In a typical indoor scenario, each single light fixture can act as an access point (AP), and multiple light fixtures in a room can form a cellular wireless network. We refer to this type of networks as ‘optical attocell network’. This thesis focuses on interference mitigation in optical attocell networks. Firstly, the downlink inter-cell interference (ICI) model in optical attocell networks is investigated. The conventional ray-tracing channel model for non-line-of-sight (NLOS) path is studied. Although this model is accurate, it leads to time-consuming computer simulations. In order to reduce the computational complexity, a simplified channel model is proposed to accurately characterise NLOS ICI in optical attocell networks. Using the simplified model, the received signal-to-interference-plus-noise ratio (SINR) distribution in optical attocell networks can be derived in closed-form. This signifies that no Monte Carlo simulation is required to evaluate the user performance in optical attocell networks. Then, with the knowledge of simplified channel model, interference mitigation techniques using angle diversity receivers (ADRs) are investigated in optical attocell networks. An ADR typically consists of multiple PDs with different orientations. By using proper signal combining schemes, ICI in optical attocell networks can be significantly mitigated. Also, a novel double-source cell configuration is proposed. This configuration can further mitigate ICI in optical attocell networks in conjunction with ADRs. Moreover, an analytical framework is proposed to evaluate the user performance in optical attocell networks with ADRs. Finally, optical space division multiple access (SDMA) using angle diversity transmitters is proposed and investigated in optical attocell networks. Optical SDMA can exploit the available bandwidth resource in spatial dimension and mitigate ICI in optical attocell networks. Compared with optical time division multiple access (TDMA), optical SDMA can significantly improve the throughput of optical attocell networks. This improvement scales with the number of LED elements on each angle diversity transmitter. In addition, the upper bound and the lower bound of optical SDMA performance are derived analytically. These bounds can precisely evaluate the performance of optical SDMA systems. Furthermore, optical SDMA is shown to be robust against user position errors, and this makes optical SDMA suitable for practical implementations.
APA, Harvard, Vancouver, ISO, and other styles
14

Siswanto, Diky. "Interference mitigation in cognitive small cell networks." Thesis, University of Leeds, 2017. http://etheses.whiterose.ac.uk/19000/.

Full text
Abstract:
The increasing demand for high-speed data service triggers researchers investigating and developing mobile wireless technology for indoor services. Some types of small cellular networks (small cells) are designed for indoor and random deployment with minimal operator involvement. The random deployment feature raises the probability of both co-tier and cross-tier interference. It enforces the small cells to have a feature of self-organisation. Hence, the research question going to be solved is "how to mitigate interference in small cells subject to the spectrum scarcity, random deployment, dynamic wireless channel, and complexity of the heterogeneous cellular networks (HetNet)?" Considering the complexity problem, researchers consider a concept with a comprehensive approach to addressing those problems, e.g. cognitive small cell or cognitive interference management. To simplify and speed up information exchange among base-stations (BSs) and to consider channel gain for resource allocation, some methods called spectrum splitting based-cognitive interference management (SSCIM) are proposed in this thesis. The methods start with recognising subchannel gain, in which each BS broadcasts pilot signals. Then each user terminal will receive the pilot and transmit back to its serving BS. Base on the pilot, the macro cellular BS (macro-BS) will identify and classify the resource blocks based on an assigned threshold, map and schedule the resource allocation. Subsequently, the macro-BS broadcasts the control channel and followed by data broadcasting. Meanwhile, small-BSs sense and analyse the macro-BS's control channel and then calculate and decide to occupy the idle spectra by using some power allocation techniques. The simulation results show that SSCIM methods outperform both non-interference management and interfering resource blocking-based-CIM for the allocated subcarriers. Moreover, SSCIM methods have better spectrum efficiency than two others. However, the results are penalised by less macrocell performance. Additionally, the SSCIM's cell capacity is less than two others because of less allocated subchannels. Furthermore, a sub-optimal spectrum and power allocation (sOSPA) method is also proposed to maximise sum rate in a simple HetNet model. SOSPA combines some techniques, such as local search and penalty function, to solve the nonlinear and nonconvex optimisation problem. sOSPA achieves the near optimum by finding out equilibrium of equal power allocation in each subchannel of the mutual interfering networks and sets either less or no power for violated subchannels. In the high-interference environment, with the proper SINR threshold, sOSPA achieves higher rate than the other methods. Additionally, sOSPA achieves the near optimum by considering both channel gain and inter-cell interference with a high rate of convergence.
APA, Harvard, Vancouver, ISO, and other styles
15

Grotz, Joel. "Interference Mitigation and Synchronization for Satellite Communications." Doctoral thesis, Stockholm : Elektro- och systemteknik, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Rameez, Muhammad. "Interference Mitigation Techniques in FMCW Automotive Radars." Licentiate thesis, Blekinge Tekniska Högskola, Institutionen för matematik och naturvetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-19362.

Full text
Abstract:
Radar has emerged as an important sensor for scenario perception in automated driving and surveillance systems. The exponential increase of radar units in traffic and their operating frequency limitations have given rise to the problem of mutual interference. Radar's performance degrades in the presence of interference, which can result in false alarms and missed detections. In the case of safety-oriented systems (such as automatic emergency braking, blind-spot detection and obstacle detection at level crossings), radar's degraded performance can result in accidents. Therefore, it is important to mitigate the effect of mutual interference to make modern radar applications safe and reliable. The goal of this work is to develop signal processing techniques for interference mitigation in frequency modulated continuous wave (FMCW) radars operating at 77-81 GHz. The thesis investigates radar interference suppression in the spatial domain, using antenna arrays. The interference is suppressed by placing notches in the antenna radiation pattern in the direction of the interference source by employing digital beamforming. The array aperture (size) determines the beam-width and notch resolution of the receiving antenna. Narrow notches are desirable since they lead to a smaller suppressed region in the radar's field of view. It is demonstrated that an extended virtual aperture in a multiple-input-multiple-output (MIMO) FMCW radar does not offer an improved notch resolution for interference suppression due to a non-coherent interference signal in the virtual aperture. Moreover, it is shown that the calibration mismatches of the receiving array completely change the final antenna beam-pattern compared to the theoretical one. Additionally, an adaptive beamforming approach of interference suppression based on the least mean squares (LMS) algorithm is presented, which is evaluated using outdoor measurements from a 77GHz FMCW radar. The results demonstrate that the proposed technique suppresses interference successfully, resulting in a signal to interference plus noise ratio (SINR) improvement. It is also shown that complex-baseband (IQ) receivers achieve better interference suppression compared to real-baseband receivers when spatial domain methods are employed. The final research publication deals with interference mitigation in the time-domain intermediate frequency signal. The disturbed samples in the received signal are detected, removed, and reconstructed based on an estimated autoregressive (AR) signal model. The baseband signal coherence in both fast- and slow-time makes it possible to perform signal reconstruction in both dimensions. With the help of outdoor measurements covering selected scenarios, it is demonstrated that by carefully selecting the signal reconstruction dimension, a better SINR and side-lobe suppression can be achieved.
APA, Harvard, Vancouver, ISO, and other styles
17

Khatri, Himanshu. "Interference mitigation techniques for SAW-less CDMA receivers." Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3355071.

Full text
Abstract:
Thesis (Ph. D.)--University of California, San Diego, 2009.
Title from first page of PDF file (viewed June 10, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 126-133).
APA, Harvard, Vancouver, ISO, and other styles
18

Nilsson, Rickard. "Multicarrier modulation : duplexing design and interference/distortion mitigation." Doctoral thesis, Luleå tekniska universitet, Signaler och system, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-25669.

Full text
Abstract:
Aspects of modern communication systems is the overall theme of this thesis with emphasis placed on multicarrier modulation. The work considers four facets of such systems; namely duplexing design, interference mitigation, channel estimation and multiuser detection. The first area deals with duplexing design for very high bit rate digital subscriber lines (VDSL) using discrete multitone modulation (DMT). We present a novel method based on DMT - the Zipper duplex method. Zipper is proposed for VDSL in different standardization bodies worldwide - International (ITU), North America (ANSI) and in Europe (ETSI) where it also has been accepted as a part of the VDSL standard. Zipper has superior flexibility and spectrum efficiency. This is obtained by freely assigning different subcarriers for the up- and downstream direction. In one design Zipper operates fully network synchronized by using a masterclock. In an asynchronous design Zipper operates without any reference to a masterclock which is a requirement for unbundled networks but reduces some of the flexibility. To obtain highest flexibility in unbundled networks, without using a masterclock, an algorithm is derived that self-synchronizes all Zipper modems. Another area deals with interference- and distortion mitigation. Narrowband interference (NBI) in orthogonal frequency division multiplexing- (OFDM) and DMT-based systems is considered. NBI can be very harmful for both radio- and wireline systems. We introduce two efficient NBI cancellers for OFDM and DMT. One canceller is based on a deterministic polynomial model of the NBI. The other canceller models it as a narrowband stochastic process and use the linear minimum mean square error (LMMSE) criterion for the cancellation. We lower its complexity by using the theory of optimal rank reduction. Impulse noise is a different type of harmful interference that can be encountered in VDSL. In this thesis we study the effects of impulse noise in DMT-based VDSL systems and present a robust generalized likelihood ratio test for detecting impulse noise. It is used for obtaining reliable erasures in a Reed-Solomon decoding scheme which reduces the probability of symbol errors significantly. Pilot symbol assisted modulation (PSAM) can be used in OFDM for tracking the distortion variations in a fading radio channel. We analyze the pilot symbol spacing in PSAM as a trade-off between high effective SNR and good channel tracking capabilities for two channel estimators with different complexities. Code division multiple access (CDMA) is part of the standard for the third generation of mobile phones. In this thesis we present a low complexity multiuser detector for a wireless DS-CDMA system. With a pipelined structure it can produce maximum likelihood sequence detector (MLSD) decisions on many of the received bits by only performing additions after the front end matched filters.
Godkänd; 2001; 20061113 (haneit)
APA, Harvard, Vancouver, ISO, and other styles
19

Patterson, John E. "Co-channel interference mitigation using satellite based receivers." Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/44642.

Full text
Abstract:
Approved for public release; distribution is unlimited
This thesis investigates a means to mitigate co-channel interference from fourth generation cellular signals in order to support passive synthetic aperture radar (SAR) imaging using those same signals. Synthetic aperture radar is a staple of the military and intelligence communities, but the active transmission required for such images informs the target of the imaging process. Use of passive signals, such as the orthogonal frequency-division multiplexing (OFDM) signals of fourth generation cellular systems, is an attractive option, but co-channel interference mitigation is required. A method to separate the transmitted signals that leverages the estimated signal delays between multiple transmitters and receivers is examined for narrowband and wideband signals. Multiple methods of assessing recovery performance are proposed. The impact of noise is considered, as is the impact of collection geometry on recovery perfor-mance, and recovery of OFDM signals is evaluated. Signal interpolation is a critical element of the proposed recovery process, and two methods are compared for accuracy and speed of computation.
APA, Harvard, Vancouver, ISO, and other styles
20

Gutierrez, Estevez David Manuel. "Interference analysis and mitigation for heterogeneous cellular networks." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53009.

Full text
Abstract:
The architecture of cellular networks has been undergoing an extraordinarily fast evolution in the last years to keep up with the ever increasing user demands for wireless data and services. Motivated by a search for a breakthrough in network capacity, the paradigm of heterogeneous networks (HetNets) has become prominent in modern cellular systems, where carefully deployed macrocells coexist with layers of irregularly deployed cells of reduced coverage sizes. Users can thus be offloaded from the macrocell and the capacity of the network increases. However, universal frequency reuse is usually employed to maximize capacity gains, thereby introducing the fundamental problem of inter-cell interference (ICI) in the network caused by the sharing of the spectrum among the different tiers of the HetNet. The objective of this PhD thesis is to provide analysis and mitigation techniques for the fundamental problem of interference in heterogeneous cellular networks. First, the interference of a two-tier network is modeled and analyzed by making use of spatial statistics tools that allow the reconstruction of complete coverage maps. A correlation analysis is then performed by deriving a spatial coverage cross-tier correlation function. Second, a novel architecture design is proposed to minimize interference in HetNets whose base stations may be equipped with very large antenna arrays, another key technology of future wireless systems. Then, we present interference mitigation techniques for different types of small cells, namely picocells and femtocells. In the third contribution of this thesis, we analyze the case of clustered deployments by proposing and comparing techniques suitable for this scenario. Fourth, we tackle the case of femtocell deployments by analyzing the degrading effect of interference and proposing new mitigation methods. Fifth, we introduce femtorelays, a novel small cell access technology that combats interference in femtocell networks and provides higher backhaul capacity.
APA, Harvard, Vancouver, ISO, and other styles
21

Cheng, Cheng. "GNSS Multipath and Interference Mitigation Using Bayesian Methods." Thesis, Toulouse, ISAE, 2015. http://www.theses.fr/2015ESAE0011.

Full text
Abstract:
Les récepteurs GNSS sont utilisés pour estimer la position et la vitesse d’un véhicule à partir de signauxtransmis par des satellites. L’estimation est habituellement réalisée en plusieurs étapes. Lesparamètres des signaux qui concernent le délai de propagation, la phase et la fréquence Dopplerde la porteuse, sont estimés et exploités pour estimer des mesures de pseudo-distances et de delta-distances.Ces mesures sont ensuite utilisées comme observation de la position et de la vitesse parl’algorithme de navigation qui délivre l’état du véhicule. En environnement GNSS dégradé les signauxémis par les satellites GPS peuvent subir des réflexions, des réfractions, et suivre ainsi deschemins multiples, communément connus sous le nom de multi-trajets. Ces signaux induisent desdéformations du signal à différents niveaux dans les récepteurs. En particulier il en résulte une distorsiondes fonctions de corrélation et des fonctions de discrimination, ce qui conduit à des erreursdans les estimées de pseudo-distances et de delta-distances et, en conséquence, à une erreur depositionnement. Bénéficiant d’un état de l’art des approches développées pour l’atténuation deseffets des interférences, de nouvelles techniques sont proposées dans cette thèse afin de réduirel’impact des MT sur les performances des récepteurs, et d’améliorer ainsi la précision de positionnementGPS
Global Navigation Satellite Systems (GNSS) receivers calculate the user position, velocity and timeby using the signals received from a set of navigation satellites. In constricted environments, suchas urban canyons or other intensive obstruction scenarios, the signal transmitted by the satelliteis subject to reflection or diffraction and can follow different paths, commonly known as multipath(MP) interferences, before arriving at the antenna of the GNSS receiver. The MP interferencesaffect the signal processing results at different stages in the receiver. For instance, MP signals modifythe correlation and discriminator functions and can introduce errors in pseudo-range (PR) andcarrier phase measurements, resulting finally in GNSS-based positioning errors. Therefore the MPinterference can be considered as a dominant error source in these complex situations. This thesisinvestigates MP mitigation techniques based on signal processing methods at different stages ofthe GNSS receiver. By analyzing and comparing the state-of-the-art MP mitigation approaches, innovativeMP mitigation techniques are proposed in order to reduce the impact of MP interferenceson the GNSS receiver, and to improve the positioning accuracy based on GNSS
APA, Harvard, Vancouver, ISO, and other styles
22

Bartolucci, Marco <1988&gt. "Cooperative Interference Detection, Localization, and Mitigation in GNSS." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amsdottorato.unibo.it/7826/1/bartolucci_marco_tesi.pdf.

Full text
Abstract:
Due to the low cost of GNSS receivers and their consequent diffusion, a wide range of location-aware applications are arising. Some of these applications are critical and have strict requirements in terms of availability, integrity and reliability. Examples of critical applications are precision landing and en-route navigation in air transportations; automated highways and mileage-based toll in road transportations; search and rescue in safety of life applications. A failure in fulfilling one or more requirements of a critical application may have dramatic consequences and cause serious damage. One of the most challenging threats for critical GNSS application, is represented by interference. In particular, jamming devices, operating inside GNSS bands, are easily and cheaply purchasable on the Internet. These devices transmit disturbing signals with the aim of preventing the correct operations of GNSS receivers. In order to satisfy the requirements of critical applications, it is necessary to promptly detect, localize and remove such interfering sources. Moreover, it is important to characterize the interfering signals in order to develop interference avoidance and mitigation techniques that ensure robustness of GNSS receivers to interference. This thesis studies the problem of interference in GNSS, from a cooperative perspective.
APA, Harvard, Vancouver, ISO, and other styles
23

Cai, Kan. "Interference mitigation and detection in wifi networks under congestion." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/53933.

Full text
Abstract:
In IEEE 802.11, nodes regulate access to the airspace they share in a decentralized fashion using CSMA/CA. The goal of this approach is to share the common airspace fairly and efficiently without requiring centralized channel administration or direct coordination among peer nodes. However, it is well known that strong interference, as consequence of this de-centralized coordination scheme, can lead to extremely unfair network bandwidth allocation between competing devices. Interference detection and mitigation has posed great challenges. The cause of interference is complicated, involving many networking factors such as topology and traffic, and the interference relationship changes all the time. This thesis addresses these challenges by proposing a throttling based interference mitigation system (Shaper) and an online passive interference detection system (VOID). The main contribution of this thesis is to point out the correlated relationship between interference and congestion. First, this thesis provides a more thorough analysis on the impact of node topology, traffic type and signal strength on wireless performance. We came up with 9 UDP models and 10 TCP models just for two competing flow scenarios. The outcome of wireless interference can get harder to predict, however, as we introduce more factors into the interference model such as more competing nodes, sending rate, signal propagation model, etc. On the other hand, this thesis identifies the immediate cause to the unfair bandwidth distribution under interference: 802.11 network congestion. We observed and explained that all competing devices are able to perform well regardless of topology or traffic class, as long as there is sufficiently more bandwidth than the aggregate throughput demands. Therefore, we propose to trade the aggregate throughput to mitigate the impact of interference and prove its effectiveness through simulation and emulation. Finally, the key to successful addressing the interference is an accurate and fast interference detection mechanism and this thesis proposes such a system called VOID. It deploys the correlation between congestion and interference to infer the interference relationship from the ip-layer throughput variations. It is fast, accurate and more importantly, very easy to deploy in existing WiFi networks.
Science, Faculty of
Computer Science, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
24

Kogon, Stephen Michel. "Adaptive array processing tecniques for terrain scattered interference mitigation." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/14927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Mills, Ashley. "Scheduling strategies and interference mitigation for OFDMA cellular networks." Thesis, University of Bath, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.547625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Halls, David Edwin. "Interference characterisation and mitigation in mobile broadband wireless networks." Thesis, University of Bristol, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.559706.

Full text
Abstract:
Multiple-Input Multiple-Output (MIMO) techniques are widely touted as the technology that will enable the high wireless cellular network capacities demanded by the huge growth in demand for the 'triple play' of voice, data and media. Without suitable interference management, however, multi-billion dollar MIMO Mobile Wireless Broadband Networks (MWBNs) can collapse under the strain of heavy traffic loads. Fully loaded interference studies cannot be performed on the network until it has been fully deployed. As such, interference characterisation and mitigation must be accurately performed pre-deployment using detailed network simulators. The development of a detailed MWBN simulator is investigated in this thesis. The model includes an extremely Uplink (UL) and Downlink (DL) Mobile WiMAX system-level simulator with full support for a wide range of MIMO technologies. The impact of inter-cell interference is characterised and results show that it is the fluctuation in interference power, rather than signal power, that dominates the inaccuracies seen in the link adaptation algorithm. These error lead to reduced system throughput. It is found that the Modulation and Coding Scheme (MCS) errors increase with Channel State Information (CSI) delay and that the effect is exacerbated by high mobile velocity. With a 3-frame delay at vehicular speeds the CSI delay causes an average 31 % loss in DL throughput. It is found that 2 x 2 closed-loop MIMO systems can double the system capacity in high interference conditions but the MIMO techniques in high interference are used to exploit diversity, and not multiplexing, gain. The gains provided by closed-loop MIMO are only available to slow moving or stationary users. Interference management techniques can be divided into: interference randomisation, interference cancellation and interference mitigation. It is shown that the use of interference randomisation reduces MCS error and improves user throughput. Significant performance gains are achieved in this work using higher order MIMO configurations and interference cancellation schemes. The gains are particularly significant at the cell edge on the DL. They are also effective on the UL, where unlike the DL they are robust to delayed CSI at the transmitter. A 5-fold increase over the single antenna case is obtained using a 2 x 8 MIMO system with interference cancellation. The use of interference coordination combined with interference cancellation further enhances performance, particularly on the DL. Adding the " combined mitigation scheme to the 4 x 2 MIMO case improves the average cell throughput by 70% and the cell edge throughput by 370%. This rigorous study has shown that to perform effectively in interference-limited scenarios, future MWBNs should employ 8x 2 MIMO with interference cancellation and interference coordination. This can provide Base Station (BS) throughput gains of up to 4-fold on the DL and 5-fold on the UL over a single antenna implementation.
APA, Harvard, Vancouver, ISO, and other styles
27

Hinton, Michael Glenn. "Inter-Core Interference Mitigation in a Mixed Criticality System." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8648.

Full text
Abstract:
In this thesis, we evaluate how well isolation can be achieved between two virtual machines within a mixed criticality system on a multi-core processor. We achieve this isolation with Jailhouse, an open-source, minimalist hypervisor. We then enhance Jailhouse with core throttling, a technique we use to minimize inter-core interference between VMs. Then, we run workloads with and without core throttling to determine the effect throttling has on interference between a non-real time VM and a real-time VM. We find that Jailhouse provides excellent isolation between VMs even without throttling, and that core throttling suppresses the remaining inter-core interference to a large extent.
APA, Harvard, Vancouver, ISO, and other styles
28

Stemmons, Alan J. "Radio frequency interference mitigation on the very small array /." Diss., CLICK HERE for online access, 2009. http://contentdm.lib.byu.edu/ETD/image/etd3025.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Stemmons, Alan Joseph. "Radio Frequency Interference Mitigation on the Very Small Array." BYU ScholarsArchive, 2009. https://scholarsarchive.byu.edu/etd/1856.

Full text
Abstract:
Radio astronomical synthesis imaging arrays can create images with resolution much higher than can single dish telescopes. However, one of the biggest problems that imaging arrays face is radio frequency interference (RFI). This interference corrupts signals and prevents accurate image creation. Therefore, it is necessary to remove this interference. This thesis discusses the synthesis imaging procedure and array spatial filter­ing methods to remove interference, including Multiple Sidelobe Canceller (MSC), Subspace Projection (SP), and Cross­-Subspace Projection (CSP). The CLEAN algorithm, an image restoration technique, is also discussed. Various improvements to the VSA are discussed, including upgrades to the hardware and software and addition of a fifth antenna to the array. Calibration techniques for the VSA are presented. Successful image synthesis for deep-­space sources of Cassiopeia A and Cygnus A are shown and phase errors that have caused difficulties with imaging are considered. The previously mentioned algorithms are successfully applied to data gathered by the Very Small Array (VSA), allowing images to be created in environments with interference. An improved method for bias correction for both SP and CSP is demonstrated. The CLEAN algorithm is demonstrated on two different images.
APA, Harvard, Vancouver, ISO, and other styles
30

Seco, Granados Gonzalo. "Antenna arrays for multipath and interference mitigation in GNSS receivers." Doctoral thesis, Universitat Politècnica de Catalunya, 2000. http://hdl.handle.net/10803/6876.

Full text
Abstract:
Esta tesis aborda la sincronización de una o varias réplicas de una señal conocida recibidas en un entorno con propagación multicamino e interferencias direccionales. Uno de los hilos conductores de este trabajo es la aplicación sistemática del principio de máxima verosimilitud (ML) junto con un modelo de señal en el cual las armas espaciales no tienen estructura, y en cual el ruido es Gaussiano y presenta una matriz de correlación desconocida. Esta última suposición es fundamental a la hora de obtener estimadores capaces de atenuar las señales interferentes que presentan algún tipo de estructura, y esto se consigue sin necesidad de recurrir a la estimación de ciertos parámetros de dichas señales. Por otra parte, la suposición de que las armas espaciales carecen de estructura tiene ventajas desde un punto de vista práctico, al mismo tiempo que simplifica la estimación del resto de parámetros ya que las estimaciones de estas firmas se pueden calcular de forma cerrada. Esto constituye un primer paso hacia la eliminación de las búsquedas en múltiples dimensiones, que es otro de los objetivos perseguidos en este trabajo.

En la primera parte de la tesis se deduce la solución de máxima verosimilitud para el problema general de estimación de retardos cuando el ruido tiene correlación espacial desconocida. Se demuestra que el criterio resultante para los retardos es consistente y asintóticamente eficiente, pero también es altamente no-lineal debido a la presencia del determinante de una matriz y no permite, por tanto, el uso de procedimientos sencillos de optimización. Asimismo, se demuestra y se argumenta intuitivamente que el criterio _ optimo ML se puede aproximar por una función de coste más sencilla que es asintóticamente equivalente. A diferencia de otros problemas de estimación, en el caso tratado aquí, el primer término del desarrollo de Taylor del estimador ML no conserva la eficiencia asintótica. La característica esencial de la nueva función de coste es que depende linealmente de la matriz de proyección sobre el subespacio de las señales y, por lo tanto, admite ser minimizada mediante el algoritmo IQML, que es eficiente desde el punto de vista computacional. Además, la existencia de métodos de inicialización sencillos y robustos a las interferencias, los cuales se basan en el uso de una matriz de pesos igual a la identidad y posiblemente también en el algoritmo ESPRIT, hace que el esquema de estimación propuesto pueda ser viable para un diseño práctico. La nueva función de coste se puede aplicar de la misma manera a la estimación del retardo en un canal FIR. En este caso, el algoritmo IQML se puede modificar de forma que, en cada iteración, la estimación del retardo se obtiene a partir de las raíces de un polinomio cuyo orden es igual a la longitud del canal.

El objetivo perseguido por los estimadores presentados en la segunda parte de la tesis es aprovechar una particularidad de los sistemas GNSS (Global Navigation Satellite Systems), que consiste en que la dirección de llegada de la señal directa puede ser conocida a priori. Basándose en esta información adicional y suponiendo que el array está calibrado, se propone un modelo simplificado, aunque al mismo tiempo aproximado, para la señal recibida. En este modelo todas las señales excepto la señal directa se engloban en un término con correlación espacial desconocida. Se analizan los estimadores ML del retardo y de la fase de portadora de la señal directa. El sesgo producido por las componentes multicamino al utilizar estos estimadores se reduce de forma muy importante con respecto al sesgo que sufren otros métodos. De hecho, el error cuadrático medio de los estimadores propuestos es en muchas ocasiones muy próximo o incluso inferior al mínimo error que se puede alcanzar con modelos más detallados del canal multicamino. Asimismo, se presentan dos algoritmos de estimación del retardo basados en el cálculo de las raíces de un polinomio. Se demuestra también que las estimaciones ML se pueden obtener a partir de la señal de salida de un conformador de haz híbrido. Debido a que el propio conformador depende de las estimaciones del retardo y de la amplitud de la señal directa, el uso de un algoritmo iterativo surge de forma natural. La formulación mediante el conformador híbrido proporciona una interpretación alternativa interesante de la estimación ML, y podrá ser apropiada para una realización práctica. Finalmente, se demuestra analíticamente y numéricamente que el estimador propuesto para el retardo es robusto frente a errores en el valor nominal del vector de enfoque de la señal directa, y se presenta una manera de extender el margen tolerable de errores de apuntamiento.

En la última parte de la tesis se trata la sincronización de un usuario deseado que transmite una secuencia de entrenamiento conocida en un sistema de comunicaciones DS-CDMA.
El modelo de señal utilizado agrupa el ruido, y la interferencia externa y de acceso múltiple en un término de ruido equivalente que presenta una matriz de correlación espacio-temporal desconocida. Partiendo de este modelo, se deduce un estimador del retardo que es una aproximación para un numero grande de muestras del estimador ML exacto y que es apropiado para canales con desvanecimientos lentos y noselectivos en frecuencia. El estimador propuesto es una técnica de un solo usuario y es resistente al efecto near-far. Su importancia radica en el hecho de que aprovecha la estructura de las señales en el dominio temporal y espacial, lo que contrasta con otros métodos existentes que, a pesar de utilizar un array de antenas, sólo utilizan la estructura de las señales en uno de los dos dominios. En un sistema de comunicaciones móviles, el usuario deseado está interferido por un número generalmente elevado de señales de otros usuarios y por posibles interferencias externas. En concordancia con este hecho, los resultados numéricos han mostrado que el uso conjunto de todos los grados de libertad espacio-temporales es indispensable para la correcta adquisición y seguimiento del retardo en sistemas con una carga elevada de usuarios y/o en presencia de interferencias externas.
The thesis deals with the synchronization of one or several replicas of a known signal received in a scenario with multipath propagation and directional interference. A connecting theme along this work is the systematic application of the maximum likelihood (ML) principle together with a signal model in which the spatial signatures are unstructured and the noise term is Gaussian with an unknown correlation matrix. This last assumption is key in obtaining estimators that are capable of mitigating the disturbing signals that exhibit certain structure. On the other hand, the assumption of unstructured spatial signatures is interesting from a practical standpoint and facilitates the estimation. The elimination of the multidimensional searches required by many estimators is one of the main objectives of the thesis.

In the first part of the thesis, the maximum likelihood solution to the general time delay estimation problem for the case of noise with unknown spatial correlation is derived. The resulting criterion for the delays is shown to be consistent and asymptotically efficient; but it is highly non-linear, and does not lead to simple optimization procedures. It is shown that the optimal ML criterion can be approximated by an asymptotically equivalent cost function. The cost function depends linearly on the projection matrix onto the subspace spanned by the signals, and hence it can be minimized using the IQML algorithm. The existence of simple initialization schemes based on identity weightings or ESPRIT makes the approach viable for practical implementation. The proposed cost function can be applied to the estimation of the delay in a FIR channel. In this case, each iteration of IQML comes down to rooting a polynomial.

The goal of the estimators presented in the second part of the thesis is to take advantage of one particularity of the GNSS (Global Navigation Satellite Systems) systems, such as GPS and GLONASS, consisting in that the direction-of-arrival of the line-of-sight signal may be known a priori. A simplified and approximate model for the received signal is proposed. The ML estimators of the time delay and carrier phase of the direct signal largely reduce the bias produced by multipath components. Their RMSE is in many situations very close to or even better than the best possible performance attainable with more detailed models of the multipath channel. It is also shown that the ML estimates can be obtained from the output signal of a hybrid beamformer.

In the last part of the thesis, the synchronization of a desired user transmitting a known training sequence in a DS-CDMA communication system is addressed. Multiple-access interference, external interference and noise are assumed to have unknown space-time correlation. A large-sample ML code-timing estimator that operates in frequency-nonselective, slowly fading channels is derived. It is a single-user and near-far resistant method. It is shown that the use of all spatial and temporal degrees of freedom is indispensable for the correct acquisition and tracking of the synchronization parameters in heavily loaded systems and/or in the presence of external interference.
APA, Harvard, Vancouver, ISO, and other styles
31

Rahim, Md Abdur. "Interference mitigation techniques to support coexistence of ultra-wideband systems." Dresden Vogt, 2009. http://d-nb.info/1001706250/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Yao, Fang. "Interference mitigation strategy design and applications for wireless sensor networks." Thesis, Loughborough University, 2010. https://dspace.lboro.ac.uk/2134/7193.

Full text
Abstract:
The Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard presents a very useful technology for implementing low-cost, low-power, wireless sensor networks. Its main focus, which is to applications requiring simple wireless connectivity with relaxed throughout and latency requirements, makes it suitable for connecting devices that have not been networked, such as industrial and control instrumentation equipments, agricultural equipments, vehicular equipments, and home appliances. Its usage of the license-free 2.4 GHz frequency band makes the technique successful for fast and worldwide market deployments. However, concerns about interference have arisen due to the presence of other wireless technologies using the same spectrum. Although the IEEE 802.15.4 standard has provided some mechanisms, to enhance capability to coexist with other wireless devices operating on the same frequency band, including Carrier Sensor Multiple Access (CSMA), Clear Channel Assessment (CCA), channel alignment, and low duty cycle, it is essential to design and implement adjustable mechanisms for an IEEE 802.15.4 based system integrated into a practical application to deal with interference which changes randomly over time. Among the potential interfering systems (Wi-Fi, Bluetooth, cordless phones, microwave ovens, wireless headsets, etc) which work on the same Industrial, Scientific, and Medical (ISM) frequency band, Wi-Fi systems (IEEE 802.11 technique) have attracted most concerns because of their high transmission power and large deployment in both residential and office environments. This thesis aims to propose a methodology for IEEE 802.15.4 wireless systems to adopt proper adjustment in order to mitigate the effect of interference caused by IEEE 802.11 systems through energy detection, channel agility and data recovery. The contribution of this thesis consists of five parts. Firstly, a strategy is proposed to enable IEEE 802.15.4 systems to maintain normal communications using the means of consecutive transmissions, when the system s default mechanism of retransmission is insufficient to ensure successful rate due to the occurrence of Wi-Fi interference. Secondly, a novel strategy is proposed to use a feasible way for IEEE 802.15.4 systems to estimate the interference pattern, and accordingly adjust system parameters for the purpose of achieving optimized communication effectiveness during time of interference without relying on hardware changes and IEEE 802.15.4 protocol modifications. Thirdly, a data recovery mechanism is proposed for transport control to be applied for recovering lost data by associating with the proposed strategies to ensure the data integrity when IEEE 802.15.4 systems are suffering from interference. Fourthly, a practical case is studied to discuss how to design a sustainable system for home automation application constructed on the basis of IEEE 802.15.4 technique. Finally, a comprehensive design is proposed to enable the implementation of an interference mitigation strategy for IEEE 802.15.4 based ad hoc WSNs within a structure of building fire safety monitoring system. The proposed strategies and system designs are demonstrated mainly through theoretical analysis and experimental tests. The results obtained from the experimental tests have verified that the interference caused by an IEEE 802.11 system on an IEEE 802.15.4 system can be effectively mitigated through adjusting IEEE 802.15.4 system s parameters cooperating with interference pattern estimation. The proposed methods are suitable to be integrated into a system-level solution for an IEEE 802.15.4 system to deal with interference, which is also applicable to those wireless systems facing similar interference issues to enable the development of efficient mitigation strategies.
APA, Harvard, Vancouver, ISO, and other styles
33

Shah, Syed Ibrahim Asghar [Verfasser]. "Recursive Spatial Multiplexing for Interference Mitigation / Syed Ibrahim Asghar Shah." Kassel : Kassel University Press, 2019. http://d-nb.info/1186928646/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kurda, Reben. "Cooperation strategies for inter-cell interference mitigation in OFDMA systems." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112032/document.

Full text
Abstract:
Récemment, l'utilisation des réseaux cellulaires a radicalement changé avec l’émergence de la quatrième génération (4G) de systèmes de télécommunications mobiles LTE/LTE-A (Long Term Evolution-Advanced). Les réseaux de générations précédentes (3G), initialement conçus pour le transport de la voix et les données à faible et moyen débits, ont du mal à faire face à l’augmentation accrue du trafic de données multimédia tout en répondant à leurs fortes exigences et contraintes en termes de qualité de service (QdS). Pour mieux répondre à ces besoins, les réseaux 4G ont introduit le paradigme des Réseaux Hétérogènes (HetNet).Les réseaux HetNet introduisent une nouvelle notion d’hétérogénéité pour les réseaux cellulaires en introduisant le concept des smalls cells (petites cellules) qui met en place des antennes à faible puissance d’émission. Ainsi, le réseau est composé de plusieurs couches (tiers) qui se chevauchent incluant la couverture traditionnelle macro-cellulaire, les pico-cellules, les femto-cellules, et les relais. Outre les améliorations des couvertures radio en environnements intérieurs, les smalls cells permettent d’augmenter la capacité du système par une meilleure utilisation du spectre et en rapprochant l’utilisateur de son point d’accès au réseau. Une des conséquences directes de cette densification cellulaire est l’interférence générée entre les différentes cellules des diverses couches quand ces dernières réutilisent les mêmes fréquences. Aussi, la définition de solutions efficaces de gestion des interférences dans ce type de systèmes constitue un de leurs défis majeurs. Cette thèse s’intéresse au problème de gestion des interférences dans les systèmes hétérogènes LTE-A. Notre objectif est d’apporter des solutions efficaces et originales au problème d’interférence dans ce contexte via des mécanismes d’ajustement de puissance des petites cellules. Nous avons pour cela distingués deux cas d’étude à savoir un déploiement à deux couches macro-femtocellules et macro-picocellules. Dans la première partie dédiée à un déploiement femtocellule et macrocellule, nous concevons une stratégie d'ajustement de puissance des femtocellules assisté par la macrocellule et qui prend en compte les performances des utilisateurs des femtocells tout en atténuant l'interférence causée aux utilisateurs des macrocellules sur leurs liens montants. Cette solution offre l’avantage de la prise en compte de paramètres contextuels locaux aux femtocellules (tels que le nombre d’utilisateurs en situation de outage) tout en considérant des scénarios de mobilité réalistes. Nous avons montré par simulation que les interférences sur les utilisateurs des macrocellules sont sensiblement réduites et que les femtocellules sont en mesure de dynamiquement ajuster leur puissance d'émission pour atteindre les objectifs fixés en termes d’équilibre entre performance des utilisateurs des macrocellules et celle de leurs propres utilisateurs. Dans la seconde partie de la thèse, nous considérons le déploiement de picocellules sous l'égide de la macrocellule. Nous nous sommes intéressés ici aux solutions d’extension de l’aire picocellulaire qui permettent une meilleure association utilisateur/cellule permettant de réduire l’interférence mais aussi offrir une meilleure efficacité spectrale. Nous proposons donc une approche basée sur un modèle de prédiction de la mobilité des utilisateurs qui permet de mieux ajuster la proportion de bande passante à partager entre la macrocellule et la picocellule en fonction de la durée de séjour estimée de ces utilisateurs ainsi que de leur demandes en bande passante. Notre solution a permis d’offrir un bon compromis entre les débits réalisables de la Macro et des picocellules
Recently the use of modern cellular networks has drastically changed with the emerging Long Term Evolution Advanced (LTE-A) technology. Homogeneous networks which were initially designed for voice-centric and low data rates face unprecedented challenges for meeting the increasing traffic demands of high data-driven applications and their important quality of service requirements. Therefore, these networks are moving towards the so called Heterogeneous Networks (HetNets). HetNets represent a new paradigm for cellular networks as their nodes have different characteristics such as transmission power and radio frequency coverage area. Consequently, a HetNet shows completely different interference characteristics compared to homogeneous deployment and attention must be paid to these disparities when different tiers are collocated together. This is mostly due to the potential spectrum frequency reuse by the involved tiers in the HetNets. Hence, efficient inter-cell interference mitigation solutions in co-channel deployments of HetNets remain a challenge for both industry and academic researchers. This thesis focuses on LTE-A HetNet systems which are based on Orthogonal Frequency Division Multiplexing Access (OFDMA) modulation. Our aim is to investigate the aggressive interference issue that appears when different types of base stations are jointly deployed together and especially in two cases, namely Macro-Femtocells and Macro-Picocells co-existence. We propose new practical power adjustment solutions for managing inter-cell interference dynamically for both cases. In the first part dedicated to Femtocells and Macrocell coexistence, we design a MBS-assisted femtocell power adjustment strategy which takes into account femtocells users performance while mitigating the inter-cell interference on victim macrocell users. Further, we propose a new cooperative and context-aware interference mitigation method which is derived for realistic scenarios involving mobility of users and their varying locations. We proved numerically that the Femtocells are able to maintain their interference under a desirable threshold by adjusting their transmission power. Our strategies provide an efficient means for achieving the desired level of macrocell/femtocell throughput trade-off. In the second part of the studies where Picocells are deployed under the umbrella of the Macrocell, we paid a special attention and efforts to the interference management in the situation where Picocells are configured to set up a cell range expansion. We suggest a MBS-assisted collaborative scheme powered by an analytical model to predict the mobility of Macrocell users passing through the cell range expansion area of the picocell. Our goal is to adapt the muting ratio ruling the frequency resource partitioning between both tiers according to the mobility behavior of the range-expanded users, thereby providing an efficient trade-off between Macrocell and Picocell achievable throughputs
APA, Harvard, Vancouver, ISO, and other styles
35

Musgrove, Cameron H. "Interference mitigation effects on synthetic aperture radar coherent data products." Thesis, Oklahoma State University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10140020.

Full text
Abstract:

Both radio frequency interference from sources external to the synthetic aperture radar system and techniques to mitigate radio frequency interference can degrade the quality of the image products. Often it is the second order data products derived from the images that are of the most value for a synthetic aperture radar system. Preserving the quality of these data products, in the presence of radio frequency interference, is paramount to maintaining the utility of the sensor.

This dissertation examines the effects of interference mitigation upon coherent data products of fine-resolution, high frequency synthetic aperture radars using stretch processing. Novel interference mitigation techniques are introduced that operate on single or multiple apertures of data that increase average coherence compared to existing techniques. A novel contrast metric is combined with existing image quality and average coherence metrics to compare multiple mitigation techniques. The characteristics of interference mitigation techniques that restore coherence are revealed.

APA, Harvard, Vancouver, ISO, and other styles
36

Al-Aaloosi, A. B. A. "Inter-cell interference mitigation in LTE-advanced heterogeneous mobile networks." Thesis, University of Salford, 2017. http://usir.salford.ac.uk/44581/.

Full text
Abstract:
Heterogeneous Networks are one of the most effective solutions for enhancing the network performance of mobile systems, by deploying small cells within the coverage of the ordinary Macro cells. The goals of deploying such networks are to offload data from the possibly congested Macro cells towards the small cells and to achieve enhancements for outdoor/ indoor coverage in a cost-effective way. Moreover, heterogeneous networks aim to maximise the system capacity and to provide lower interference by reducing the distance between the transmitter and the receiver. However, inter-cell interference is a major technical challenge in heterogeneous networks, which mainly affects system performance and may cause a significant degradation in network throughput (especially for the edge users) in co-channel deployment. So, to overcome the aforementioned problem, both researchers and telecommunication operators are required to develop effective approaches that adapt different mobile system scenarios. The research study presented in this thesis provides a novel interference mitigation scheme, based on power control and time-domain inter-cell interference coordination to improve cell and users’ throughputs. In addition, powerful scheduling algorithms have been developed and optimised to adapt the proposed scheme for both macro and small cells. It is responsible for the optimum resource allocation to minimise the inter-cell interference to the minimum ranges. The focus of this work is for downlink inter-cell interference in Long Term Evolution (LTE- Advanced) mobile networks, as an example of OFDMA (orthogonal frequency division multiple access)-based networks. More attention is paid to the Pico cell as an important cell type in heterogeneous deployment, due to the direct backhauling with the macro cell to coordinate the resource allocation among cells tightly and efficiently. The intensive simulations and results analyses show that the proposed scheme demonstrates better performance with less complexity in terms of user and cell throughputs, and spectral efficiency, as compared with the previously employed scheme.
APA, Harvard, Vancouver, ISO, and other styles
37

Pitakanda, Pitakandage Tinith Asanga. "Cooperative uplink Inter-Cell Interference (ICI) mitigation in 5G networks." Thesis, University of Hertfordshire, 2017. http://hdl.handle.net/2299/17958.

Full text
Abstract:
In order to support the new paradigm shift in fifth generation (5G) mobile communication, radically different network architectures, associated technologies and network operation algorithms, need to be developed compared to existing fourth generation (4G) cellular solutions. The evolution toward 5G mobile networks will be characterized by an increasing number of wireless devices, increasing device and service complexity, and the requirement to access mobile services ubiquitously. To realise the dramatic increase in data rates in particular, research is focused on improving the capacity of current, Long Term Evolution (LTE)-based, 4G network standards, before radical changes are exploited which could include acquiring additional spectrum. The LTE network has a reuse factor of one; hence neighbouring cells/sectors use the same spectrum, therefore making the cell-edge users vulnerable to heavy inter cell interference in addition to the other factors such as fading and path-loss. In this direction, this thesis focuses on improving the performance of cell-edge users in LTE and LTE-Advanced networks by initially implementing a new Coordinated Multi-Point (CoMP) technique to support future 5G networks using smart antennas to mitigate cell-edge user interference in uplink. Successively a novel cooperative uplink inter-cell interference mitigation algorithm based on joint reception at the base station using receiver adaptive beamforming is investigated. Subsequently interference mitigation in a heterogeneous environment for inter Device-to-Device (D2D) communication underlaying cellular network is investigated as the enabling technology for maximising resource block (RB) utilisation in emerging 5G networks. The proximity of users in a network, achieving higher data rates with maximum RB utilisation (as the technology reuses the cellular RB simultaneously), while taking some load off the evolved Node B (eNodeB) i.e. by direct communication between User Equipment (UE), has been explored. Simulation results show that the proximity and transmission power of D2D transmission yields high performance gains for D2D receivers, which was demonstrated to be better than that of cellular UEs with better channel conditions or in close proximity to the eNodeB in the network. It is finally demonstrated that the application, as an extension to the above, of a novel receiver beamforming technique to reduce interference from D2D users, can further enhance network performance. To be able to develop the aforementioned technologies and evaluate the performance of new algorithms in emerging network scenarios, a beyond the-state-of-the-art LTE system-level-simulator (SLS) was implemented. The new simulator includes Multiple-Input Multiple-Output (MIMO) antenna functionalities, comprehensive channel models (such as Wireless World initiative New Radio II i.e. WINNER II) and adaptive modulation and coding schemes to accurately emulate the LTE and LTE-A network standards.
APA, Harvard, Vancouver, ISO, and other styles
38

Lee, Kyehun. "Coherent Mitigation of Radio Frequency Interference in 10-100 MHz." Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/28929.

Full text
Abstract:
This dissertation describes methods of mitigating radio frequency interference(RFI) in the frequency range 10-100 MHz, developing and evaluating coherent methods with which RFI is subtracted from the afflicted data, nominally resulting in no distortion of the underlying signals. This approach is of interest in weak signal applications such as radio astronomy, where the signal of interest may have interference-to-noise ratio much less than one, and so can be easily distorted by other methods. Environmental noise in this band is strong and non-white, so a realistic noise model is developed, with which we characterize the performance of signal parameter estimation, a key component of the proposed algorithms. Two classes of methods are considered: "generic" parameter estimation/subtraction (PE/S) and a modulation-specific form known as demodulation-remodulation ("demod--remod") PE/S. It is demonstrated for RFI in the form of narrowband FM and Broadcast FM that generic PE/S has the problem of severely distorting underlying signals of interest and demod-remod PE/S is less prone to this problem. Demod-remod PE/S is also applied and evaluated for RFI in the form of Digital TV signals. In both cases, we compare the performance of the demod-remod PE/S with that of a traditional adaptive canceling method employing a reference antenna, and propose a hybrid method to further improve performance. A new metric for "toxicity" is defined and employed to determine the degree to which RFI mitigation damages the underlying signal of interest.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
39

Amin, Farooq Ul. "Integrated Tunable LC Higher-Order Microwave Filters for Interference Mitigation." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/91481.

Full text
Abstract:
Modern and future communication and radar systems require highly reconfigurable RF front-ends to realize the vision of Software-Defined Radio (SDR), where a single digitally-enabled radio is able to cover multiple bands and multiple operating standards. However, in the increasingly hostile RF environment, filtering becomes a bottleneck for SDRs as the traditional off-chip filters are fixed frequency and bulky. Therefore, tunable filtering is a critical building block for the reconfigurable RF front-ends and on-chip implementations are needed to meet size and weight constraints. On-chip passive components are lossy, especially inductors, and to fulfill the tunability requirements a number of active circuit techniques, e.g. N-path, Q-enhanced, discrete-time filters etc., have been developed. Most of these active filtering techniques, however, are limited to RF frequency range of few GHz and below. Additionally, these techniques lack or have very limited bandwidth tunability. On the other hand, Q-enhanced tunable LC filtering has the potential to be implemented at Microwave frequencies from 4~20 GHz and beyond. In this dissertation, a number of Q-enhanced parallel synthesis techniques have been proposed and implemented to achieve high-order, frequency tunable, and wide bandwidth tunable filters. First, a tunable 4th-order BPF was proposed and implemented in Silicon Germanium (SiGe) BiCMOS technology. Along with center frequency tuning, the filter achieves first ever reported 3-dB bandwidth tuning from 2% to 25%, representing 120 MHz to 1.5 GHz of bandwidth at 6 GHz. A new set of design equations were developed for the 4th-order parallel synthesis of BPF. A practical switched varactor control scheme is proposed for large tuning ratio varactors to reduce the nonlinear contribution from the varactor substantially which improves the tunable LC BPF filter linearity. Second, parallel addition and subtraction techniques were proposed to realize tunable dual-band filters. The subtraction technique is implemented in SiGe BiCMOS technology at X and Ku bands with more than 50 dB of out-of-band attenuation. Finally, a true wideband band-reject filter technique was proposed for microwave frequencies using parallel synthesis of two band-pass filters and an all-pass path. The proposed band-reject scheme is tunable and wide 20 dB attenuation bandwidths on the order of 10s of MHz to 100s of MHz can be achieved using this scheme. The implementation of the proposed parallel synthesis techniques in silicon technology along with measured results demonstrate that Q-enhanced filtering is favorable at higher microwave frequencies. Therefore, such implementations are suitable for future wireless communication and radar systems particularly wide bandwidth systems on the order of 100s of MHz to GHz. Future research includes, high-order reconfigurable band-pass and band-reject filters, automatic tuning control, and exploring the parallel synthesis techniques in Gallium Nitride (GaN) technology for high RF power applications.
PHD
APA, Harvard, Vancouver, ISO, and other styles
40

Dalal, Avani. "Interference Analysis and Mitigation in a Cellular Network with Femtocells." University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1313756831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ali, Syed Saqlain. "Physical-layer cooperative interference mitigation techniques for wireless heterogeneous systems." Doctoral thesis, Universidade de Aveiro, 2018. http://hdl.handle.net/10773/23812.

Full text
Abstract:
Doutoramento em Telecomunicações Departamento de Electrónica
O tráfego móvel com origem em redes celulares está a aumentar exponencialmente, principalmente devido ao uso de serviços de dados como o vídeo. Uma forma efetiva de lidar com essas exigências é reduzir o tamanho da célula, implementando células pequenas (SCs), ao longo da área de cobertura do atual sistema macro-celular. A implementação de SCs melhora a cobertura de forma significativa. No entanto, como as licenças de espectro adicionais são difíceis e caras de adquirir, espera-se que a macro e as pequenas células possam coexistir sob o mesmo espectro. A coexistência dos dois sistemas resulta em interferências entre eles. Neste contexto, esta tese foca-se no projeto de várias técnicas de mitigação de interferência em redes heterogéneas (HetNets) sob requisitos de coordenação limitados. A primeira parte da tese foca-se no projeto de várias técnicas baseadas no alinhamento de interferência (IA) para o sentido descendente do sistema heterogéneo. Mais especificamente, são propostos esquemas baseados no alinhamento de interferência com diferentes níveis de coordenação intersistema e a restrição de que o desempenho do sistema macro-célula é mantido próximo do caso em que o sistema SCs é desligado. A segunda parte da tese centra-se no projeto conjunto de técnicas baseadas no IA e códigos por bloco no espaço -frequência (SFBCs) para o sentido descendente. Mais especificamente, é apresentado o projeto do esquema de IA com SFBCs orientado para se obter diversidade. A principal motivação para o projeto conjunto do IA com SFBCs, é permitir a coexistência dos dois sistemas, considerando uma pequena troca de informação entre sistemas. As células pequenas apenas precisam de saber que o SFBC é usado pelo sistema macro-celular, não sendo necessária a troca de nenhum canal inter-sistema, contrariamente aos outros esquemas propostos na primeira parte da tese. A parte final da tese apresenta a aplicação do alinhamento de sinal (SA) e codificação de rede física (PNC) para a ligação ascendente do sistema heterogéneo. A principal motivação por detrás do projeto conjunto SA-PNC é aproveitar o alinhamento do sinal e codificação de rede física, para utilizar a interferência como um sinal útil, permitindo que mais utilizadores possam estar ativos simultaneamente. Os resultados numéricos mostram claramente que os métodos propostos fornecem um desempenho próximo do ótimo, com o mínimo de troca de informação entre sistemas.
Mobile tra c in cellular based networks is increasing exponentially, mainly due to the use of data intensive services like video. One e ective way to cope with these demands is to reduce the cell-size by deploying small-cells (SCs) along the coverage area of the current macro-cell system. The deployment of SCs signi cantly improves the coverage. Nevertheless, as additional spectrum licenses are di cult and expensive to acquire, it is expected that the macro and small-cells will coexist under the same spectrum. The coexistence of the two systems results in co-tier/intra-system and crosstier/ inter-system interference. In this context, this thesis focuses on the design of several interference mitigation techniques in order to cancel the interference in heterogeneous networks (HetNets) under limited coordination requirements. The rst part of the thesis focuses on the design of several interference alignment (IA) based techniques for the downlink of HetNets. More specifically, we design IA based schemes under di erent levels of inter-system coordination and the constraint that the performance of macro-cell system is kept close to the case where SC system is switched-o . The second part of the thesis focuses on the joint design of IA and spacefrequency block codes (SFBCs) for the downlink of HetNet. More specifically, the design of diversity-oriented IA scheme with SFBCs is presented. The main motivation for joint IA with SFBCs is to allow the coexistence of two systems under minor inter-system information exchange. The SCs just need to know what SFBC is used by the macro-cell system and no inter-system channels need to be exchanged, contrarily to other schemes proposed in the rst part of the thesis. The nal part of the thesis presents the application of joint signal alignment (SA) and physical network coding (PNC) for the uplink of HetNets. The main motivation behind the joint design of SA-PNC is to take advantage of SA and PNC to utilize the interference as a useful signal that allows the network to achieve high degree of freedom (DoF) by serving more users. The numerical results clearly show that the proposed methods provide close to optimal performance with minor overheads.
APA, Harvard, Vancouver, ISO, and other styles
42

Ali, Mohamad Jaafar. "Wireless body area networks : co-channel interference mitigation & avoidance." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCB252/document.

Full text
Abstract:
L’amélioration de la qualité et de l’efficacité en santé est un réel enjeu sociétal. Elle implique la surveillance continue des paramètres vitaux ou de l’état mental du sujet. Les champs d’applications sont vastes : l’application la plus importante est la surveillance des patients à distance. Les avancées en micro-électronique, capteurs et réseaux sans-fil permettent aujourd’hui le développement de systèmes ambulatoires performants pour le monitoring de paramètres physiologiques, capables de prendre en compte d’importantes contraintes techniques : forte intégration pour la réduction de la taille et faible consommation pour une plus grande autonomie [1]. Cependant, la conception de ce type de réseaux de capteurs médicaux WBANs (Wireles Body Area Networks) se heurte à un certain nombre de difficultés techniques, provenant des contraintes imposées par les capacités réduites des capteurs individuels : basse puissance, énergie limitée et faible capacité de stockage. Ces difficultés requièrent des solutions différentes, encore très embryonnaires, selon l’application visée (monitoring à but médical). La forte mobilité et le changement rapide de la topologie du réseau dévoilent un verrou scientifique et social. En outre, l’interférence de différents capteurs constituant le WBAN augmente la difficulté de la mise en place de ce type de réseaux. De nombreuses solutions dans la littérature ont été étudiées, comme nous allons illustrer dans ce manuscrit, néanmoins elles restent limitées. Nous nous intéresserons tout particulièrement à la gestion des interférences Intra- et Inter-WBAN, leur impacte sur la fiabilité des transmissions (des liens) et la durée de vie de ce type de réseaux. Plus précisément, nous abordons ces problématiques en se basant sur des modélisations théoriques et analytiques et avec une conception pratique des solutions proposées. Afin d’atteindre les objectifs cités ci-dessous, nous abordons quatre solutions : • Une gestion des interférences intra-WBAN • Une gestion coopérative des interférences Inter-WBAN • Une gestion non coopérative des interférences, Inter-WBAN • Une gestion des interférences WBAN dans un contexte IoT Dans la première partie de cette thèse et afin de répondre en partie aux problèmes de gestion des interférences Intra-WBAN. Nous présentons deux mécanismes pour le WBAN : (a) CFTIM qui alloue dynamiquement des slots et des canaux dit- stables (avec un taux d’interférences le bas possible dans le temps) pour réduire les interférences intra-WBAN. (b) IAA ajuste dynamiquement la taille du superframe et limite le nombre de canaux à 2 pour abaisser les interférences Intra-WBAN et ainsi économiser l’énergie. Une validation avec un model probabiliste est proposé afin de valider théoriquement l’efficacité de notre solution. Les résultats de la simulation démontrent l’efficacité du CFTIM et de l’IAA en termes de réduction de la probabilité d’interférence, l’extension de la durée de vie du réseau et l’amélioration du débit et de la fiabilité des transmissions. Notre seconde contribution, propose une gestion coopératives des interférences Inter-WBAN en utilisant des codes orthogonaux. Motivé par un approvisionnement temporel distribué basé sur la norme [2] IEEE 802.15.6, nous proposons deux solutions. (a) DTRC qui fournit à chaque WBAN les connaissances sur les superframes qui se chevauchent. Le second, (b) OCAIM qui attribue des codes orthogonaux aux capteurs appartenant à deux listes de groupe de capteur en interférences de deux WBAN différents (SIL). Les résultats démontrent qu’OCAIM diminue les interférences, améliore le débit et préserve la ressources énergétiques. La troisième partie nous a permis d’aborder la gestion des interférences, mais cette fois ci d’une manière non-coopérative en se basant sur l’affectation couple Slot/Canal. Plus précisément, nous proposons deux schémas basés sur les carrés latins. (...)
A Wireless Body Area Network (WBAN) is a short-range network that consists of a coordinator (Crd) and a collection of low-power sensors that can be implanted in or attached to the human body. Basically, WBANs can provide real-time patient monitoring and serve in various applications such as ubiquitous health-care, consumer electronics, military, sports, etc. [1]. As the license-free 2.4 GHz ISM band is widely used among WBANs and across other wireless technologies, the fundamental problem is to mitigate the resulting co-channel interference. Other serious problems are to extend the network lifetime and to ensure reliable transmission within WBANs, which is an urgent requirement for health-care applications. Therefore, in this thesis, we conduct a systematic research on a few number of research problems related to radio co-channel interference, energy consumption, and network reliability. Specifically, we address the following problems ranging from theoretical modeling and analysis to practical protocol design: • Intra-WBAN interference mitigation and avoidance • Cooperative inter-WBAN interference mitigation and avoidance • Non-cooperative inter-WBAN interference mitigation and avoidance • Interference mitigation and avoidance in WBANs with IoT Firstly, to mitigate the intra-WBAN interference, we present two mechanisms for a WBAN. The first is called CSMA to Flexible TDMA combination for Interference Mitigation, namely, CFTIM, which dynamically allocates time-slots and stable channels to lower the intra-WBAN interference. The second is called Interference Avoidance Algorithm, namely IAA that dynamically adjusts the superframe length and limits the number of channels to 2 to lower the intra-WBAN interference and save energy. Theoretically, we derive a probabilistic model that proves the SINR outage probability is lowered. Simulation results demonstrate the effectiveness and the efficiency of CFTIM and IAA in terms of lowering the probability of interference, extending network lifetime, improving throughput and reliability. Secondly, we address the problem of interference among cooperative WBANs through using orthogonal codes. Motivated by distributed time provisioning supported in IEEE 802.15.6 standard [2], we propose two schemes. The first is called Distributed Time Correlation Reference, namely, DTRC that provides each WBAN with the knowledge about which superframes overlap with each other. The second is called Orthogonal Code Allocation Algorithm for Interference Mitigation, namely, OCAIM, that allocates orthogonal codes to interfering sensors belonging to sensor interference lists (SILs), which are generated based on the exchange of power-based information among WBANs. Mathematically, we derive the successful and collision probabilities of frames transmissions. Extensive simulations are conducted and the results demonstrate that OCAIM can diminish the interference, improve the throughput and save the power resource. Thirdly, we address the problem of co-channel interference among non-cooperative WBANs through time-slot and channel hopping. Specifically, we propose two schemes that are based on Latin rectangles. The first is called Distributed Algorithm for Interference mitigation using Latin rectangles, namely, DAIL that allocates a single channel to a timeslot combination to each sensor to diminish inter-WBAN interference and to yield better schedules of the medium access within each WBAN. The second is called Channel Hopping for Interference Mitigation, namely, CHIM, which generates a predictable interference free transmission schedule for all sensors within a WBAN. CHIM applies the channel switching only when a sensor experiences interference to save the power resource. Furthermore, we present an analytical model that derives bounds on collision probability and throughput for sensors transmissions. (...)
APA, Harvard, Vancouver, ISO, and other styles
43

Ali, Mohamad Jaafar. "Wireless body area networks : co-channel interference mitigation & avoidance." Electronic Thesis or Diss., Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCB252.

Full text
Abstract:
L’amélioration de la qualité et de l’efficacité en santé est un réel enjeu sociétal. Elle implique la surveillance continue des paramètres vitaux ou de l’état mental du sujet. Les champs d’applications sont vastes : l’application la plus importante est la surveillance des patients à distance. Les avancées en micro-électronique, capteurs et réseaux sans-fil permettent aujourd’hui le développement de systèmes ambulatoires performants pour le monitoring de paramètres physiologiques, capables de prendre en compte d’importantes contraintes techniques : forte intégration pour la réduction de la taille et faible consommation pour une plus grande autonomie [1]. Cependant, la conception de ce type de réseaux de capteurs médicaux WBANs (Wireles Body Area Networks) se heurte à un certain nombre de difficultés techniques, provenant des contraintes imposées par les capacités réduites des capteurs individuels : basse puissance, énergie limitée et faible capacité de stockage. Ces difficultés requièrent des solutions différentes, encore très embryonnaires, selon l’application visée (monitoring à but médical). La forte mobilité et le changement rapide de la topologie du réseau dévoilent un verrou scientifique et social. En outre, l’interférence de différents capteurs constituant le WBAN augmente la difficulté de la mise en place de ce type de réseaux. De nombreuses solutions dans la littérature ont été étudiées, comme nous allons illustrer dans ce manuscrit, néanmoins elles restent limitées. Nous nous intéresserons tout particulièrement à la gestion des interférences Intra- et Inter-WBAN, leur impacte sur la fiabilité des transmissions (des liens) et la durée de vie de ce type de réseaux. Plus précisément, nous abordons ces problématiques en se basant sur des modélisations théoriques et analytiques et avec une conception pratique des solutions proposées. Afin d’atteindre les objectifs cités ci-dessous, nous abordons quatre solutions : • Une gestion des interférences intra-WBAN • Une gestion coopérative des interférences Inter-WBAN • Une gestion non coopérative des interférences, Inter-WBAN • Une gestion des interférences WBAN dans un contexte IoT Dans la première partie de cette thèse et afin de répondre en partie aux problèmes de gestion des interférences Intra-WBAN. Nous présentons deux mécanismes pour le WBAN : (a) CFTIM qui alloue dynamiquement des slots et des canaux dit- stables (avec un taux d’interférences le bas possible dans le temps) pour réduire les interférences intra-WBAN. (b) IAA ajuste dynamiquement la taille du superframe et limite le nombre de canaux à 2 pour abaisser les interférences Intra-WBAN et ainsi économiser l’énergie. Une validation avec un model probabiliste est proposé afin de valider théoriquement l’efficacité de notre solution. Les résultats de la simulation démontrent l’efficacité du CFTIM et de l’IAA en termes de réduction de la probabilité d’interférence, l’extension de la durée de vie du réseau et l’amélioration du débit et de la fiabilité des transmissions. Notre seconde contribution, propose une gestion coopératives des interférences Inter-WBAN en utilisant des codes orthogonaux. Motivé par un approvisionnement temporel distribué basé sur la norme [2] IEEE 802.15.6, nous proposons deux solutions. (a) DTRC qui fournit à chaque WBAN les connaissances sur les superframes qui se chevauchent. Le second, (b) OCAIM qui attribue des codes orthogonaux aux capteurs appartenant à deux listes de groupe de capteur en interférences de deux WBAN différents (SIL). Les résultats démontrent qu’OCAIM diminue les interférences, améliore le débit et préserve la ressources énergétiques. La troisième partie nous a permis d’aborder la gestion des interférences, mais cette fois ci d’une manière non-coopérative en se basant sur l’affectation couple Slot/Canal. Plus précisément, nous proposons deux schémas basés sur les carrés latins. (...)
A Wireless Body Area Network (WBAN) is a short-range network that consists of a coordinator (Crd) and a collection of low-power sensors that can be implanted in or attached to the human body. Basically, WBANs can provide real-time patient monitoring and serve in various applications such as ubiquitous health-care, consumer electronics, military, sports, etc. [1]. As the license-free 2.4 GHz ISM band is widely used among WBANs and across other wireless technologies, the fundamental problem is to mitigate the resulting co-channel interference. Other serious problems are to extend the network lifetime and to ensure reliable transmission within WBANs, which is an urgent requirement for health-care applications. Therefore, in this thesis, we conduct a systematic research on a few number of research problems related to radio co-channel interference, energy consumption, and network reliability. Specifically, we address the following problems ranging from theoretical modeling and analysis to practical protocol design: • Intra-WBAN interference mitigation and avoidance • Cooperative inter-WBAN interference mitigation and avoidance • Non-cooperative inter-WBAN interference mitigation and avoidance • Interference mitigation and avoidance in WBANs with IoT Firstly, to mitigate the intra-WBAN interference, we present two mechanisms for a WBAN. The first is called CSMA to Flexible TDMA combination for Interference Mitigation, namely, CFTIM, which dynamically allocates time-slots and stable channels to lower the intra-WBAN interference. The second is called Interference Avoidance Algorithm, namely IAA that dynamically adjusts the superframe length and limits the number of channels to 2 to lower the intra-WBAN interference and save energy. Theoretically, we derive a probabilistic model that proves the SINR outage probability is lowered. Simulation results demonstrate the effectiveness and the efficiency of CFTIM and IAA in terms of lowering the probability of interference, extending network lifetime, improving throughput and reliability. Secondly, we address the problem of interference among cooperative WBANs through using orthogonal codes. Motivated by distributed time provisioning supported in IEEE 802.15.6 standard [2], we propose two schemes. The first is called Distributed Time Correlation Reference, namely, DTRC that provides each WBAN with the knowledge about which superframes overlap with each other. The second is called Orthogonal Code Allocation Algorithm for Interference Mitigation, namely, OCAIM, that allocates orthogonal codes to interfering sensors belonging to sensor interference lists (SILs), which are generated based on the exchange of power-based information among WBANs. Mathematically, we derive the successful and collision probabilities of frames transmissions. Extensive simulations are conducted and the results demonstrate that OCAIM can diminish the interference, improve the throughput and save the power resource. Thirdly, we address the problem of co-channel interference among non-cooperative WBANs through time-slot and channel hopping. Specifically, we propose two schemes that are based on Latin rectangles. The first is called Distributed Algorithm for Interference mitigation using Latin rectangles, namely, DAIL that allocates a single channel to a timeslot combination to each sensor to diminish inter-WBAN interference and to yield better schedules of the medium access within each WBAN. The second is called Channel Hopping for Interference Mitigation, namely, CHIM, which generates a predictable interference free transmission schedule for all sensors within a WBAN. CHIM applies the channel switching only when a sensor experiences interference to save the power resource. Furthermore, we present an analytical model that derives bounds on collision probability and throughput for sensors transmissions. (...)
APA, Harvard, Vancouver, ISO, and other styles
44

Forte, Véliz Giuseppe Francesco. "Contributions to radio frequency interference detection and mitigation in Earth observation." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/285320.

Full text
Abstract:
Radio Frequency Interference (RFI) is the most common problem for electronic measuring systems. The presence of those electromagnetic waves can harm the measurements taken from very sensitive instruments, like microwave radiometry or navigation systems. The accuracy and precision are compromised. A first step to mitigate those unwanted effects is to study the RFI properties. Different algorithms have been proposed to detect the interferences, but there is no method that works in all cases. The scope of this dissertation is the design, implementation and testing of different detection and mitigation methods in real-time. Performed surveys and characterization of RFI sources provide a great contribution to optimize the current mitigation techniques. In the mitigation area, two real-time hardware systems have been implemented: a wavelet denoise system to model the RFI and mitigate it, and a circuit to allow a navigation system to continue operational under the effects of a jammer.
El problema més comú en els sistemes electrònics de mesura són les interferències electromagnètiques. La presència d'aquests senyals pot danyar les mesures preses per instruments molt sensibles, com radiòmetres de microones o sistemes de navegació. L'exactitud i precisió es veuen compromeses. El primer pas per mitigar aquests efectes no desitjats és estudiar les propietats de les interferències electromagnètiques. Diversos algoritmes han estat proposats per detectar interferències, però no hi ha mètode que funcioni bé en tots els casos . Aquest treball comprèn el disseny, implementació i comprovació de diferents mètodes de detecció i mitigació en temps real. Els estudis i caracterització de les fonts d'interferències són una gran contribució per a optimitzar les tècniques de mitigació actuals. En el tema de mitigació, dos sistemes en temps real han estat implementats en hardware: un sistema que utilitza wavelets per modelar la interferència i mitigar-la, i un circuit que permet a un sistema de navegació continuar funcionant sota els efectes d'un interferidor comercial ( jammer ).
APA, Harvard, Vancouver, ISO, and other styles
45

Gong, Xitao [Verfasser]. "Spectrum sensing and interference mitigation in cognitive radio networks / Xitao Gong." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2014. http://d-nb.info/1052160514/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Selig, Marc [Verfasser]. "Interference Mitigation with Selective Retransmissions in Wireless Sensor Networks / Marc Selig." Kassel : Kassel University Press, 2016. http://d-nb.info/1119922429/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Pradhan, Shristi Nhuchhe. "Scheduling and power allocation for interference mitigation in heterogeneous cellular networks." Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/45988.

Full text
Abstract:
The wireless industry is confronted with an exponentially increasing demand for ubiquitous wireless coverage and larger data rates. Recent studies have shown that the spectral efficiency of a point-to-point link in cellular networks has approached its theoretical limit. This demands an increase in the node density in order to further improve the network capacity. However, today's network already has dense deployments and high intercell interference severely limits the cell splitting gains. Moreover, high capital and operational expenditure associated further limit the deployment of high power macro nodes. In this thesis, we investigate on Heterogeneous Networks (HetNets), a new paradigm for increasing cellular capacity and coverage to meet the forecasted explosion of data traffic. HetNets consist of low power nodes such as pico and femto overlaid over a macrocell network. Nevertheless, the deployment of large number of small cells overlaying macrocells presents new technical challenges. We focus on interference management issues in HetNets and present user scheduling and power allocation schemes for interference mitigation. We investigate the performance of user scheduling and power allocation techniques for interference mitigation in HetNets. We present analytical modeling and propose improved solutions using results from the model and computer simulations. First, we propose a scheme to jointly minimize network outage probability and power consumption. Second, we propose a scheme to jointly maximize network throughput and minimize power consumption. Both these schemes guarantee Quality of Service (QoS) provisioning in HetNets. We analyze the intrinsic trade-off between network performance parameters, i.e., outage and power consumption; throughput and power consumption using multi-objective optimization approach. Different user scheduling schemes have been adopted such as best user selection, proportional fairness and round-robin. Thirdly, we also propose an energy efficient power allocation method and analyze its performance with guaranteed QoS provisioning. For all the proposed algorithms and schemes we provide extensive simulation based results.
APA, Harvard, Vancouver, ISO, and other styles
48

Shahriar, Chowdhury. "Mitigation of Interference From Iridium Satellites by Parametric Estimation and Subtraction." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/36161.

Full text
Abstract:
Radio astronomy is the science of observing the universe at radio frequencies. In recent years, radio astronomy has faced a growing interference problem as radio frequency (RF) bandwidth has become an increasingly scarce commodity. Communication systems such as Earth orbiting communication satellites creates severe interference to the radio telescopes. This thesis proposes an algorithm to mitigate the radio fre- quency interference (RFI) from the Iridium satellite system. A technique is presented here to detect the downlink signal of Iridium, estimate the parameters of the signal, synthesize the noise-free version of the signal and finally subtract the recreated signal from the radio telescope output. Using both simulated and real data captured by a radio telescope testbed, we demonstrate that for Iridium bursts with 20 dB signal to noise power ratio (SNR), the proposed algorithm achieves more than 15 dB cancellation. The method proposed here can be implemented using present-day digital signal processing hardware and software. A performance analysis of this proposed cancellation scheme in the radio astronomy RFI mitigation regime is presented.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
49

Ikuma, Takeshi. "Non-Wiener Effects in Narrowband Interference Mitigation Using Adaptive Transversal Equalizers." Diss., Virginia Tech, 2007. http://hdl.handle.net/10919/26772.

Full text
Abstract:
The least mean square (LMS) algorithm is widely expected to operate near the corresponding Wiener filter solution. An exception to this popular perception occurs when the algorithm is used to adapt a transversal equalizer in the presence of additive narrowband interference. The steady-state LMS equalizer behavior does not correspond to that of the fixed Wiener equalizer: the mean of its weights is different from the Wiener weights, and its mean squared error (MSE) performance may be significantly better than the Wiener performance. The contributions of this study serve to better understand this so-called non-Wiener phenomenon of the LMS and normalized LMS adaptive transversal equalizers. The first contribution is the analysis of the mean of the LMS weights in steady state, assuming a large interference-to-signal ratio (ISR). The analysis is based on the Butterweck expansion of the weight update equation. The equalization problem is transformed to an equivalent interference estimation problem to make the analysis of the Butterweck expansion tractable. The analytical results are valid for all step-sizes. Simulation results are included to support the analytical results and show that the analytical results predict the simulation results very well, over a wide range of ISR. The second contribution is the new MSE estimator based on the expression for the mean of the LMS equalizer weight vector. The new estimator shows vast improvement over the Reuter-Zeidler MSE estimator. For the development of the new MSE estimator, the transfer function approximation of the LMS algorithm is generalized for the steady-state analysis of the LMS algorithm. This generalization also revealed the cause of the breakdown of the MSE estimators when the interference is not strong, as the assumption that the variation of the weight vector around its mean is small relative to the mean of the weight vector itself. Both the expression for the mean of the weight vector and for the MSE estimator are analyzed for the LMS algorithm at first. The results are then extended to the normalized LMS algorithm by the simple means of adaptation step-size redefinition.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
50

Edjah, Kwame. "A Practical Oblique Projection Method for GPS Cross-Correlation Interference Mitigation." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1367943514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography