Journal articles on the topic 'Interfacial thermal conductance'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Interfacial thermal conductance.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Green, Andrew J., and Hugh H. Richardson. "Solute Effects on Interfacial Thermal Conductance." MRS Proceedings 1543 (2013): 151–57. http://dx.doi.org/10.1557/opl.2013.677.
Full textRajabpour, Ali, Saeed Bazrafshan, and Sebastian Volz. "Carbon-nitride 2D nanostructures: thermal conductivity and interfacial thermal conductance with the silica substrate." Physical Chemistry Chemical Physics 21, no. 5 (2019): 2507–12. http://dx.doi.org/10.1039/c8cp06992a.
Full textYang, Wu Lin, Kun Peng, Jia Jun Zhu, De Yi Li, and Ling Ping Zhou. "Numerical Modeling of Thermal Conductivity of Diamond Particle Reinforced Aluminum Composite." Advanced Materials Research 873 (December 2013): 344–49. http://dx.doi.org/10.4028/www.scientific.net/amr.873.344.
Full textFan, Hang, Kun Zhang, Guansong He, Zhijian Yang, and Fude Nie. "Ab initio determination of interfacial thermal conductance for polymer-bonded explosive interfaces." AIP Advances 12, no. 6 (June 1, 2022): 065005. http://dx.doi.org/10.1063/5.0094018.
Full textBai, Guang Zhao, Wan Jiang, G. Wang, Li Dong Chen, and X. Shi. "Effective Thermal Conductivity of MoSi2/SiC Composites." Materials Science Forum 492-493 (August 2005): 551–54. http://dx.doi.org/10.4028/www.scientific.net/msf.492-493.551.
Full textWu, Shuang, Jifen Wang, Huaqing Xie, and Zhixiong Guo. "Interfacial Thermal Conductance across Graphene/MoS2 van der Waals Heterostructures." Energies 13, no. 21 (November 9, 2020): 5851. http://dx.doi.org/10.3390/en13215851.
Full textLiu, Yang, Wenhao Wu, Shixian Yang, and Ping Yang. "Interfacial thermal conductance of graphene/MoS2 heterointerface." Surfaces and Interfaces 28 (February 2022): 101640. http://dx.doi.org/10.1016/j.surfin.2021.101640.
Full textYang, Wei, Kun Wang, Yongsheng Fu, Kun Zheng, Yun Chen, and Yongmei Ma. "Interfacial Thermal Conductance between Alumina and Epoxy." Journal of Physics: Conference Series 2109, no. 1 (November 1, 2021): 012018. http://dx.doi.org/10.1088/1742-6596/2109/1/012018.
Full textXu, Ke, Jicheng Zhang, Xiaoli Hao, Ning Wei, Xuezheng Cao, Yang Kang, and Kun Cai. "Interfacial thermal conductance of buckling carbon nanotubes." AIP Advances 8, no. 6 (June 2018): 065116. http://dx.doi.org/10.1063/1.5039499.
Full textZhang, Lifa, Juzar Thingna, Dahai He, Jian-Sheng Wang, and Baowen Li. "Nonlinearity enhanced interfacial thermal conductance and rectification." EPL (Europhysics Letters) 103, no. 6 (September 1, 2013): 64002. http://dx.doi.org/10.1209/0295-5075/103/64002.
Full textLiu, Chenhan, Zhiyong Wei, Jian Wang, Kedong Bi, Juekuan Yang, and Yunfei Chen. "The contact area dependent interfacial thermal conductance." AIP Advances 5, no. 12 (December 2015): 127111. http://dx.doi.org/10.1063/1.4937775.
Full textDing, Zhiwei, Qing-Xiang Pei, Jin-Wu Jiang, Wenxuan Huang, and Yong-Wei Zhang. "Interfacial thermal conductance in graphene/MoS2 heterostructures." Carbon 96 (January 2016): 888–96. http://dx.doi.org/10.1016/j.carbon.2015.10.046.
Full textPeterson, G. P., and L. S. Fletcher. "Measurement of the Thermal Contact Conductance and Thermal Conductivity of Anodized Aluminum Coatings." Journal of Heat Transfer 112, no. 3 (August 1, 1990): 579–85. http://dx.doi.org/10.1115/1.2910426.
Full textRen, Kai, Yan Chen, Huasong Qin, Wenlin Feng, and Gang Zhang. "Graphene/biphenylene heterostructure: Interfacial thermal conduction and thermal rectification." Applied Physics Letters 121, no. 8 (August 22, 2022): 082203. http://dx.doi.org/10.1063/5.0100391.
Full textWang, Qilang, Xing Liang, Bohai Liu, Yihui Song, Guohua Gao, and Xiangfan Xu. "Thermal conductivity of V2O5 nanowires and their contact thermal conductance." Nanoscale 12, no. 2 (2020): 1138–43. http://dx.doi.org/10.1039/c9nr08803b.
Full textGuo, Jianhua, Niping Ma, Jiale Chen, and Ning Wei. "Efficient Non-Destructive Detection of Interface Adhesion State by Interfacial Thermal Conductance: A Molecular Dynamics Study." Processes 11, no. 4 (March 29, 2023): 1032. http://dx.doi.org/10.3390/pr11041032.
Full textStocker, Kelsey M., Suzanne M. Neidhart, and J. Daniel Gezelter. "Interfacial thermal conductance of thiolate-protected gold nanospheres." Journal of Applied Physics 119, no. 2 (January 14, 2016): 025106. http://dx.doi.org/10.1063/1.4939956.
Full textWang, W., and H. H. Qiu. "Interfacial thermal conductance in rapid contact solidification process." International Journal of Heat and Mass Transfer 45, no. 10 (May 2002): 2043–53. http://dx.doi.org/10.1016/s0017-9310(01)00307-6.
Full textZhang, Chunwei, Weiwei Zhao, Yong Zeng, Hai Zhou, Kedong Bi, and Yunfei Chen. "Manipulation of interfacial thermal conductance via Rhodamine 6G." Science Bulletin 60, no. 6 (March 2015): 654–56. http://dx.doi.org/10.1007/s11434-015-0754-7.
Full textZhang, Ying-Yan, Qing-Xiang Pei, Yiu-Wing Mai, and Siu-Kai Lai. "Interfacial thermal conductance in multilayer graphene/phosphorene heterostructure." Journal of Physics D: Applied Physics 49, no. 46 (October 20, 2016): 465301. http://dx.doi.org/10.1088/0022-3727/49/46/465301.
Full textOh, Dong-Wook, Seok Kim, John A. Rogers, David G. Cahill, and Sanjiv Sinha. "Interfacial Thermal Conductance of Transfer-Printed Metal Films." Advanced Materials 23, no. 43 (October 4, 2011): 5028–33. http://dx.doi.org/10.1002/adma.201102994.
Full textHopkins, Patrick E. "Thermal Transport across Solid Interfaces with Nanoscale Imperfections: Effects of Roughness, Disorder, Dislocations, and Bonding on Thermal Boundary Conductance." ISRN Mechanical Engineering 2013 (January 30, 2013): 1–19. http://dx.doi.org/10.1155/2013/682586.
Full textHong, Yang, Jingchao Zhang, and Xiao Cheng Zeng. "Thermal contact resistance across a linear heterojunction within a hybrid graphene/hexagonal boron nitride sheet." Physical Chemistry Chemical Physics 18, no. 35 (2016): 24164–70. http://dx.doi.org/10.1039/c6cp03933b.
Full textYang, Wei, Yun Chen, Yipeng Zhang, Yongsheng Fu, Kun Zheng, Kun Wang, and Yongmei Ma. "Thermal Conductance of Epoxy/Alumina Interfaces." Journal of Physics: Conference Series 2133, no. 1 (November 1, 2021): 012002. http://dx.doi.org/10.1088/1742-6596/2133/1/012002.
Full textMittelbach, M., C. Vogd, L. S. Fletcher, and G. P. Peterson. "The Interfacial Pressure Distribution and Thermal Conductance of Bolted Joints." Journal of Heat Transfer 116, no. 4 (November 1, 1994): 823–28. http://dx.doi.org/10.1115/1.2911454.
Full textLiang, Xuebing, Chengchang Jia, Ke Chu, and Hui Chen. "Predicted interfacial thermal conductance and thermal conductivity of diamond/Al composites with various interfacial coatings." Rare Metals 30, no. 5 (October 2011): 544–49. http://dx.doi.org/10.1007/s12598-011-0427-x.
Full textLi, Shanchen, Yang Chen, Junhua Zhao, Chunlei Wang, and Ning Wei. "Atomic structure causing an obvious difference in thermal conductance at the Pd–H2O interface: a molecular dynamics simulation." Nanoscale 12, no. 34 (2020): 17870–79. http://dx.doi.org/10.1039/d0nr04594b.
Full textTao, Yi, Chao Wu, Han Qi, Chenhan Liu, Xiongyu Wu, Mengyi Hao, Zhiyong Wei, Juekuan Yang, and Yunfei Chen. "The enhancement of heat conduction across the metal/graphite interface treated with a focused ion beam." Nanoscale 12, no. 27 (2020): 14838–46. http://dx.doi.org/10.1039/c9nr09937a.
Full textZhang, Lin, and Ling Liu. "Hierarchically hydrogen-bonded graphene/polymer interfaces with drastically enhanced interfacial thermal conductance." Nanoscale 11, no. 8 (2019): 3656–64. http://dx.doi.org/10.1039/c8nr08760a.
Full textZhou, Xiao-wang, Reese E. Jones, Patrick E. Hopkins, and Thomas E. Beechem. "Thermal boundary conductance between Al films and GaN nanowires investigated with molecular dynamics." Phys. Chem. Chem. Phys. 16, no. 20 (2014): 9403–10. http://dx.doi.org/10.1039/c4cp00261j.
Full textDong, Yun, Yusong Ding, Zhiyuan Rui, Fangming Lian, Weibin Hui, Jie Wu, Zhiguo Wu, and Pengxun Yan. "Tuning the interfacial friction force and thermal conductance by altering phonon properties at contact interface." Nanotechnology 33, no. 23 (March 15, 2022): 235401. http://dx.doi.org/10.1088/1361-6528/ac56ba.
Full textPan, Shuaihang, Jie Yuan, Tianqi Zheng, Zhenyu She, and Xiaochun Li. "Interfacial thermal conductance of in situ aluminum-matrix nanocomposites." Journal of Materials Science 56, no. 24 (May 24, 2021): 13646–58. http://dx.doi.org/10.1007/s10853-021-06176-7.
Full textWu, Dan, Hua Ding, Zhi-Qiang Fan, Pin-Zhen Jia, Hai-Qing Xie, and Xue-Kun Chen. "High interfacial thermal conductance across heterogeneous GaN/graphene interface." Applied Surface Science 581 (April 2022): 152344. http://dx.doi.org/10.1016/j.apsusc.2021.152344.
Full textSeshadri, Indira, Theo Borca-Tasciuc, Pawel Keblinski, and Ganpati Ramanath. "Interfacial thermal conductance-rheology nexus in metal-contacted nanocomposites." Applied Physics Letters 103, no. 17 (October 21, 2013): 173113. http://dx.doi.org/10.1063/1.4824702.
Full textGaitonde, Aalok, Amulya Nimmagadda, and Amy Marconnet. "Measurement of interfacial thermal conductance in Lithium ion batteries." Journal of Power Sources 343 (March 2017): 431–36. http://dx.doi.org/10.1016/j.jpowsour.2017.01.019.
Full textKhosravian, N., M. K. Samani, G. C. Loh, G. C. K. Chen, D. Baillargeat, and B. K. Tay. "Molecular dynamic simulation of diamond/silicon interfacial thermal conductance." Journal of Applied Physics 113, no. 2 (January 14, 2013): 024907. http://dx.doi.org/10.1063/1.4775399.
Full textChen, Yang, Yingyan Zhang, Kun Cai, Jinwu Jiang, Jin-Cheng Zheng, Junhua Zhao, and Ning Wei. "Interfacial thermal conductance in graphene/black phosphorus heterogeneous structures." Carbon 117 (June 2017): 399–410. http://dx.doi.org/10.1016/j.carbon.2017.03.011.
Full textZhang, W., T. S. Fisher, and N. Mingo. "Simulation of Interfacial Phonon Transport in Si–Ge Heterostructures Using an Atomistic Green’s Function Method." Journal of Heat Transfer 129, no. 4 (May 30, 2006): 483–91. http://dx.doi.org/10.1115/1.2709656.
Full textWang, Quanjie, Xujun Wang, Xiangjun Liu, and Jie Zhang. "Interfacial engineering for the enhancement of interfacial thermal conductance in GaN/AlN heterostructure." Journal of Applied Physics 129, no. 23 (June 21, 2021): 235102. http://dx.doi.org/10.1063/5.0052742.
Full textZobeiri, Hamidreza, Nicholas Hunter, Ridong Wang, Xinman Liu, Hong Tan, Shen Xu, and Xinwei Wang. "Thermal conductance between water and nm-thick WS2: extremely localized probing using nanosecond energy transport state-resolved Raman." Nanoscale Advances 2, no. 12 (2020): 5821–32. http://dx.doi.org/10.1039/d0na00844c.
Full textVerma, Akarsh, Rajesh Kumar, and Avinash Parashar. "Enhanced thermal transport across a bi-crystalline graphene–polymer interface: an atomistic approach." Physical Chemistry Chemical Physics 21, no. 11 (2019): 6229–37. http://dx.doi.org/10.1039/c9cp00362b.
Full textLiu, Xiangjun, Junfeng Gao, Gang Zhang, and Yong-Wei Zhang. "Design of phosphorene/graphene heterojunctions for high and tunable interfacial thermal conductance." Nanoscale 10, no. 42 (2018): 19854–62. http://dx.doi.org/10.1039/c8nr06110f.
Full textJagannadham, K. "Effect of interfacial interactions on the thermal conductivity and interfacial thermal conductance in tungsten–graphene layered structure." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 32, no. 5 (September 2014): 051101. http://dx.doi.org/10.1116/1.4890576.
Full textRastgarkafshgarkolaei, Rouzbeh, Jingjie Zhang, Carlos A. Polanco, Nam Q. Le, Avik W. Ghosh, and Pamela M. Norris. "Maximization of thermal conductance at interfaces via exponentially mass-graded interlayers." Nanoscale 11, no. 13 (2019): 6254–62. http://dx.doi.org/10.1039/c8nr09188a.
Full textAngeles, Frank, Xinping Shi, and Richard B. Wilson. "In situ and ex situ processes for synthesizing metal multilayers with electronically conductive interfaces." Journal of Applied Physics 131, no. 22 (June 14, 2022): 225302. http://dx.doi.org/10.1063/5.0084573.
Full textDinpajooh, Mohammadhasan, and Abraham Nitzan. "Heat conduction in polymer chains: Effect of substrate on the thermal conductance." Journal of Chemical Physics 156, no. 14 (April 14, 2022): 144901. http://dx.doi.org/10.1063/5.0087163.
Full textXu, Bin, Shiqian Hu, Shih-Wei Hung, Cheng Shao, Harsh Chandra, Fu-Rong Chen, Takashi Kodama, and Junichiro Shiomi. "Weaker bonding can give larger thermal conductance at highly mismatched interfaces." Science Advances 7, no. 17 (April 2021): eabf8197. http://dx.doi.org/10.1126/sciadv.abf8197.
Full textDiao, Jiankuai, Deepak Srivastava, and Madhu Menon. "Molecular dynamics simulations of carbon nanotube/silicon interfacial thermal conductance." Journal of Chemical Physics 128, no. 16 (April 28, 2008): 164708. http://dx.doi.org/10.1063/1.2905211.
Full textTao, Yi, Chenhan Liu, Weiyu Chen, Shuang Cai, Chen Chen, Zhiyong Wei, Kedong Bi, Juekuan Yang, and Yunfei Chen. "Mean free path dependent phonon contributions to interfacial thermal conductance." Physics Letters A 381, no. 22 (June 2017): 1899–904. http://dx.doi.org/10.1016/j.physleta.2017.03.020.
Full textHu, Ming, Pawel Keblinski, Jian-Sheng Wang, and Nachiket Raravikar. "Interfacial thermal conductance between silicon and a vertical carbon nanotube." Journal of Applied Physics 104, no. 8 (October 15, 2008): 083503. http://dx.doi.org/10.1063/1.3000441.
Full text