Journal articles on the topic 'Interface conductivity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Interface conductivity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Liu, Ying-Guang, Xin-Qiang Xue, Jin-Wen Zhang, and Guo-Liang Ren. "Thermal conductivity of materials based on interfacial atomic mixing." Acta Physica Sinica 71, no. 9 (2022): 093102. http://dx.doi.org/10.7498/aps.71.20211451.
Full textLiang, J.-J., and P. W.-C. Kung. "Toward Rational Design of Fast Ion Conductors: Molecular Dynamics Modeling of Interfaces of Nanoscale Planar Heterostructures." Journal of Materials Research 17, no. 7 (July 2002): 1686–91. http://dx.doi.org/10.1557/jmr.2002.0248.
Full textWang, Xiaoyu, Cynthia J. Jameson, and Sohail Murad. "Interfacial Thermal Conductivity and Its Anisotropy." Processes 8, no. 1 (December 24, 2019): 27. http://dx.doi.org/10.3390/pr8010027.
Full textChen, T., C. H. Hsieh, and P. C. Chuang. "A Spherical Inclusion with Inhomogeneous Interface in Conduction." Journal of Mechanics 19, no. 1 (March 2003): 1–8. http://dx.doi.org/10.1017/s1727719100004135.
Full textChen, G. "Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures." Journal of Heat Transfer 119, no. 2 (May 1, 1997): 220–29. http://dx.doi.org/10.1115/1.2824212.
Full textZhang, Mei, and Peng Cheng Zhai. "Effective Thermal Conductivity of Composites with Different Particle Geometries and Interfacial Thermal Resistance." Advanced Materials Research 152-153 (October 2010): 269–73. http://dx.doi.org/10.4028/www.scientific.net/amr.152-153.269.
Full textLiu, Ji-Chuan. "Shape Reconstruction of Conductivity Interface Problems." International Journal of Computational Methods 16, no. 01 (November 21, 2018): 1850092. http://dx.doi.org/10.1142/s0219876218500925.
Full textAmmari, Habib, Hyeonbae Kang, Mikyoung Lim, and Habib Zribi. "Conductivity interface problems. Part I: Small perturbations of an interface." Transactions of the American Mathematical Society 362, no. 5 (December 16, 2009): 2435–49. http://dx.doi.org/10.1090/s0002-9947-09-04842-9.
Full textZhao, Xiang Fu, Ping Han, Shelley Scott, and Max G. Lagally. "Influence of Surface and Interface Properties on the Electrical Conductivity of Silicon Nanomembranes." Advanced Materials Research 383-390 (November 2011): 7220–23. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.7220.
Full textMohamed, Mazlan, Mohd Nazri Omar, Mohamad Shaiful Ashrul Ishak, Rozyanty Rahman, Nor Zaiazmin Yahaya, Mohammad Khairul Azhar Abdul Razab, and Mohd Zharif Ahmad Thirmizir. "Comparison between CNT Thermal Interface Materials with Graphene Thermal Interface Material in Term of Thermal Conductivity." Materials Science Forum 1010 (September 2020): 160–65. http://dx.doi.org/10.4028/www.scientific.net/msf.1010.160.
Full textMohamed, Mazlan, Mohd Nazri Omar, Mohamad Shaiful Ashrul Ishak, Rozyanty Rahman, Zaiazmin Y.N, and Zairi Ismael Rizman. "Thermal Properties of the Graphene Composites: Application of Thermal Interface Materials." International Journal of Engineering & Technology 7, no. 4.33 (December 9, 2018): 530. http://dx.doi.org/10.14419/ijet.v7i4.33.28169.
Full textNenuwe, O. N., and O. E. Agbalagba. "Thermal transport properties in GaAs (110)/GaAs (100) and GaAs/InAs interfaces by Reverse Non-equilibrium Molecular Dynamics." Journal of Applied Sciences and Environmental Management 23, no. 10 (November 21, 2019): 1901–6. http://dx.doi.org/10.4314/jasem.v23i10.21.
Full textNakamura, Y., T. Ishibe, T. Taniguchi, T. Terada, R. Hosoda, and Sh Sakane. "Semiconductor Nanostructure Design for Thermoelectric Property Control." International Journal of Nanoscience 18, no. 03n04 (March 28, 2019): 1940036. http://dx.doi.org/10.1142/s0219581x19400362.
Full textAbramson, Alexis R., Chang-Lin Tien, and Arun Majumdar. "Interface and Strain Effects on the Thermal Conductivity of Heterostructures: A Molecular Dynamics Study." Journal of Heat Transfer 124, no. 5 (September 11, 2002): 963–70. http://dx.doi.org/10.1115/1.1495516.
Full textGilbert, Simeon J., Samantha G. Rosenberg, Paul G. Kotula, Thomas G. Kmieciak, Laura B. Biedermann, and Michael P. Siegal. "The effect of metal–insulator interface interactions on electrical transport in granular metals." Journal of Physics: Condensed Matter 34, no. 20 (March 14, 2022): 204007. http://dx.doi.org/10.1088/1361-648x/ac5706.
Full textDo, Duc Phi, and Dashnor Hoxha. "Temperature and Pressure Dependence of the Effective Thermal Conductivity of Geomaterials: Numerical Investigation by the Immersed Interface Method." Journal of Applied Mathematics 2013 (2013): 1–13. http://dx.doi.org/10.1155/2013/456931.
Full textSharma, P., S. Ryu, J. D. Burton, T. R. Paudel, C. W. Bark, Z. Huang, Ariando, et al. "Mechanical Tuning of LaAlO3/SrTiO3 Interface Conductivity." Nano Letters 15, no. 5 (April 10, 2015): 3547–51. http://dx.doi.org/10.1021/acs.nanolett.5b01021.
Full textOliver, D. J., J. Maassen, M. El Ouali, W. Paul, T. Hagedorn, Y. Miyahara, Y. Qi, H. Guo, and P. Grutter. "Conductivity of an atomically defined metallic interface." Proceedings of the National Academy of Sciences 109, no. 47 (November 5, 2012): 19097–102. http://dx.doi.org/10.1073/pnas.1208699109.
Full textToller, Erik A. L., and Otto D. L. Strack. "Interface Flow With Vertically Varying Hydraulic Conductivity." Water Resources Research 55, no. 11 (November 2019): 8514–25. http://dx.doi.org/10.1029/2019wr024927.
Full textShibuya, Keisuke, Tsuyoshi Ohnishi, Mikk Lippmaa, and Masaharu Oshima. "Metallic conductivity at the CaHfO3∕SrTiO3 interface." Applied Physics Letters 91, no. 23 (December 3, 2007): 232106. http://dx.doi.org/10.1063/1.2816907.
Full textNguyen, Van-Luat. "Estimating the effective conductivity for ellipse-inclusion model with Kapitza thermal resistance." EPJ Applied Metamaterials 8 (2021): 16. http://dx.doi.org/10.1051/epjam/2021010.
Full textGuo, Xiaojie, Weiwei Zhao, Yi Zeng, Chucheng Lin, and Jimei Zhang. "Effects of Splat Interfaces, Monoclinic Phase and Grain Boundaries on the Thermal Conductivity of Plasma Sprayed Yttria-Stabilized Zirconia Coatings." Coatings 9, no. 1 (January 3, 2019): 26. http://dx.doi.org/10.3390/coatings9010026.
Full textYao, Chi, Chen He, Jianhua Yang, Qinghui Jiang, Jinsong Huang, and Chuangbing Zhou. "A Novel Numerical Model for Fluid Flow in 3D Fractured Porous Media Based on an Equivalent Matrix-Fracture Network." Geofluids 2019 (January 3, 2019): 1–13. http://dx.doi.org/10.1155/2019/9736729.
Full textKalabukhov, A., T. Claeson, P. P. Aurino, R. Gunnarsson, D. Winkler, E. Olsson, N. Tuzla, et al. "Electrical and structural properties of ABO3/SrTiO3 interfaces." MRS Proceedings 1454 (2012): 167–72. http://dx.doi.org/10.1557/opl.2012.925.
Full textZhang, Yong, Baohua Wen, Liang Ma, and Xiaolin Liu. "Determination of damage zone in fatigued lead zirconate titanate ceramics by complex impedance analysis." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2012, CICMT (September 1, 2012): 000592–96. http://dx.doi.org/10.4071/cicmt-2012-tha22.
Full textDong, Z. C., L. Sheng, Weiyi Zhang, D. Y. Xing, and Jinming Dong. "Effects of Interface Scattering on the Electronic Conductivity of Bimetallic Films." International Journal of Modern Physics B 11, no. 20 (August 10, 1997): 2393–404. http://dx.doi.org/10.1142/s0217979297001210.
Full textAlvarez-Zauco, E., H. Sobral, and E. Martínez-Loran. "Morphological, Optical and Electrical Characterization of the Interfaces in Fullerene-Porphyrin Thin Films." Journal of Nanoscience and Nanotechnology 20, no. 3 (March 1, 2020): 1732–39. http://dx.doi.org/10.1166/jnn.2020.17138.
Full textDing, Zijing, and Teck Neng Wong. "Electrohydrodynamic instability of miscible core–annular flows with electrical conductivity stratification." Journal of Fluid Mechanics 764 (January 8, 2015): 488–512. http://dx.doi.org/10.1017/jfm.2014.720.
Full textJia, S. Q., and F. Yang. "High thermal conductive copper/diamond composites: state of the art." Journal of Materials Science 56, no. 3 (October 20, 2020): 2241–74. http://dx.doi.org/10.1007/s10853-020-05443-3.
Full textLi, Jia Nian, Yan Ma, Rui Feng, and Hui Na Ni. "Design of a Real-Time Detector for Solution Conductivity Based on Conductivity Electrode." Advanced Materials Research 986-987 (July 2014): 1477–80. http://dx.doi.org/10.4028/www.scientific.net/amr.986-987.1477.
Full textYakovkin, I. N. "Surface and Interface Bands of the CdTe–HgTe–CdTe Heterostructure: Evidence of Metallicity." Ukrainian Journal of Physics 66, no. 7 (August 4, 2021): 630. http://dx.doi.org/10.15407/ujpe66.7.630.
Full textLi, Quan, Hongyi Pan, Wenjun Li, Yi Wang, Junyang Wang, Jieyun Zheng, Xiqian Yu, Hong Li, and Liquan Chen. "Homogeneous Interface Conductivity for Lithium Dendrite-Free Anode." ACS Energy Letters 3, no. 9 (August 28, 2018): 2259–66. http://dx.doi.org/10.1021/acsenergylett.8b01244.
Full textLi, Xiujun, and Gerard C. M. Meijer. "A high-performance interface for grounded conductivity sensors." Measurement Science and Technology 19, no. 11 (September 17, 2008): 115202. http://dx.doi.org/10.1088/0957-0233/19/11/115202.
Full textDesai, Anand, Sanket Mahajan, Ganesh Subbarayan, Wayne Jones, James Geer, and Bahgat Sammakia. "A Numerical Study of Transport in a Thermal Interface Material Enhanced With Carbon Nanotubes." Journal of Electronic Packaging 128, no. 1 (May 10, 2005): 92–97. http://dx.doi.org/10.1115/1.2161231.
Full textBabenko, D. D., A. S. Dmitriev, and I. A. Mikhailova. "Active thermal interface graphene nanocomposites for thermal control of electronic and power devices." Journal of Physics: Conference Series 2150, no. 1 (January 1, 2022): 012008. http://dx.doi.org/10.1088/1742-6596/2150/1/012008.
Full textWANG, Y. R., J. A. KUBBY, and W. J. GREENE. "THIN FILM ELECTRON INTERFEROMETRY." Modern Physics Letters B 05, no. 21 (September 10, 1991): 1387–405. http://dx.doi.org/10.1142/s0217984991001696.
Full textBanerjee, Soumik, and Aniruddha Mukund Dive. "(Invited) Ion Conduction and Interface Stability of Sulfide Based Solid State Electrolytes – an Atomistic Perspective." ECS Meeting Abstracts MA2022-01, no. 38 (July 7, 2022): 1662. http://dx.doi.org/10.1149/ma2022-01381662mtgabs.
Full textPatelka, Maciej, Sho Ikeda, Koji Sasaki, Hiroki Myodo, and Nortisuka Mizumura. "Development of High Thermally Conductive Die Attach for TIM Applications." International Symposium on Microelectronics 2019, no. 1 (October 1, 2019): 000312–15. http://dx.doi.org/10.4071/2380-4505-2019.1.000312.
Full textPatelka, Maciej, Sho Ikeda, Koji Sasaki, Hiroki Myodo, and Nortisuka Mizumura. "Development of High Thermally Conductive Die Attach for TIM Applications." Journal of Microelectronics and Electronic Packaging 17, no. 3 (July 1, 2020): 106–9. http://dx.doi.org/10.4071/imaps.1125402.
Full textLi, Guo, Yanghui Wang, Huihao Zhu, Yulu Ma, Huajian Ji, Yu Wang, Tao Chen, and Linsheng Xie. "The Establishment of Thermal Conductivity Model for Linear Low-Density Polyethylene/Alumina Composites Considering the Interface Thermal Resistance." Polymers 14, no. 5 (March 5, 2022): 1040. http://dx.doi.org/10.3390/polym14051040.
Full textWu, Shuang, Jifen Wang, Huaqing Xie, and Zhixiong Guo. "Interfacial Thermal Conductance across Graphene/MoS2 van der Waals Heterostructures." Energies 13, no. 21 (November 9, 2020): 5851. http://dx.doi.org/10.3390/en13215851.
Full textChe, Q. L., X. K. Chen, Y. Q. Ji, Y. W. Li, L. X. Wang, S. Z. Cao, Y. G. Jiang, and Z. Wang. "Effect of Coating on the Thermal Conductivities of Diamond/Cu Composites Prepared by Spark Plasma Sintering (SPS)." Applied Mechanics and Materials 722 (December 2014): 25–29. http://dx.doi.org/10.4028/www.scientific.net/amm.722.25.
Full textIoannidis, Thanos, Tatjana Gric, and Edik Rafailov. "The Study of the Surface Plasmon Polaritons at the Interface Separating Nanocomposite and Hypercrystal." Applied Sciences 11, no. 11 (June 5, 2021): 5255. http://dx.doi.org/10.3390/app11115255.
Full textChen, Jingjing, Xiangnan Chen, Fanbin Meng, Dan Li, Xin Tian, Zeyong Wang, and Zuowan Zhou. "Super-high thermal conductivity of polyamide-6/graphene-graphene oxide composites through in situ polymerization." High Performance Polymers 29, no. 5 (June 22, 2016): 585–94. http://dx.doi.org/10.1177/0954008316655861.
Full textTan, Feihu, Hua An, Ning Li, Jun Du, and Zhengchun Peng. "Stabilization of Li0.33La0.55TiO3 Solid Electrolyte Interphase Layer and Enhancement of Cycling Performance of LiNi0.5Co0.3Mn0.2O2 Battery Cathode with Buffer Layer." Nanomaterials 11, no. 4 (April 12, 2021): 989. http://dx.doi.org/10.3390/nano11040989.
Full textKim, Woochang, Chihyun Kim, Wonseok Lee, Jinsung Park, and Duckjong Kim. "Innocuous, Highly Conductive, and Affordable Thermal Interface Material with Copper-Based Multi-Dimensional Filler Design." Biomolecules 11, no. 2 (January 20, 2021): 132. http://dx.doi.org/10.3390/biom11020132.
Full textParfenov, Oleg E., Dmitry V. Averyanov, Andrey M. Tokmachev, Igor A. Karateev, Alexander N. Taldenkov, Oleg A. Kondratev, and Vyacheslav G. Storchak. "Interface-Induced Anomalous Hall Conductivity in a Confined Metal." ACS Applied Materials & Interfaces 10, no. 41 (September 24, 2018): 35589–98. http://dx.doi.org/10.1021/acsami.8b10962.
Full textMoyer, Curt A. "Effective conductivity for interface scattering in metal-matrix composites." Physical Review B 47, no. 16 (April 15, 1993): 10079–82. http://dx.doi.org/10.1103/physrevb.47.10079.
Full textKosacki, Igor, Christopher M. Rouleau, Paul F. Becher, James Bentley, and Douglas H. Lowndes. "Surface/Interface-Related Conductivity in Nanometer Thick YSZ Films." Electrochemical and Solid-State Letters 7, no. 12 (2004): A459. http://dx.doi.org/10.1149/1.1809556.
Full textGarrido, Jose A., Andreas Härtl, Markus Dankerl, Andreas Reitinger, Martin Eickhoff, Andreas Helwig, Gerhard Müller, and Martin Stutzmann. "The Surface Conductivity at the Diamond/Aqueous Electrolyte Interface." Journal of the American Chemical Society 130, no. 12 (March 2008): 4177–81. http://dx.doi.org/10.1021/ja078207g.
Full text