Academic literature on the topic 'Interband Cascade Laser (ICL)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Interband Cascade Laser (ICL).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Interband Cascade Laser (ICL)"
Meyer, Jerry, William Bewley, Chadwick Canedy, Chul Kim, Mijin Kim, Charles Merritt, and Igor Vurgaftman. "The Interband Cascade Laser." Photonics 7, no. 3 (September 15, 2020): 75. http://dx.doi.org/10.3390/photonics7030075.
Full textHan, Hong, Xumin Cheng, Zhiwei Jia, and K. Alan Shore. "Nonlinear Dynamics of Interband Cascade Laser Subjected to Optical Feedback." Photonics 8, no. 9 (August 31, 2021): 366. http://dx.doi.org/10.3390/photonics8090366.
Full textFordyce, J. A. M., D. A. Diaz-Thomas, L. O'Faolain, A. N. Baranov, T. Piwonski, and L. Cerutti. "Single-mode interband cascade laser with a slotted waveguide." Applied Physics Letters 121, no. 21 (November 21, 2022): 211102. http://dx.doi.org/10.1063/5.0120460.
Full textMeyer, Jerry R., Chul Soo Kim, Mijin Kim, Chadwick L. Canedy, Charles D. Merritt, William W. Bewley, and Igor Vurgaftman. "Interband Cascade Photonic Integrated Circuits on Native III-V Chip." Sensors 21, no. 2 (January 16, 2021): 599. http://dx.doi.org/10.3390/s21020599.
Full textRyczko, Krzysztof, Janusz Andrzejewski, and Grzegorz Sęk. "Towards Interband Cascade lasers on InP Substrate." Materials 15, no. 1 (December 22, 2021): 60. http://dx.doi.org/10.3390/ma15010060.
Full textMassengale, J. A., Yixuan Shen, Rui Q. Yang, S. D. Hawkins, and J. F. Klem. "Long wavelength interband cascade lasers." Applied Physics Letters 120, no. 9 (February 28, 2022): 091105. http://dx.doi.org/10.1063/5.0084565.
Full textAbajyan, Pavel, Baptiste Chomet, Daniel A. Diaz-Thomas, Mohammadreza Saemian, Martin Mičica, Juliette Mangeney, Jerome Tignon, et al. "Mid-Infrared Frequency Combs based on Single Section Interband Cascade Lasers." EPJ Web of Conferences 287 (2023): 07006. http://dx.doi.org/10.1051/epjconf/202328707006.
Full textZhao, Maorong, Guangqiong Xia, Ke Yang, Shuman Liu, Junqi Liu, Qiupin Wang, Jianglong Liu, and Zhengmao Wu. "Nonlinear Dynamics of Mid-Infrared Interband Cascade Lasers Subject to Variable-Aperture Optical Feedback." Photonics 9, no. 6 (June 10, 2022): 410. http://dx.doi.org/10.3390/photonics9060410.
Full textLiao, Lihuan, Jingjing Zhang, and Daming Dong. "The driver design for N2O gas detection system based on tunable interband cascade laser." E3S Web of Conferences 78 (2019): 03002. http://dx.doi.org/10.1051/e3sconf/20197803002.
Full textSchmitt, Katrin, Mara Sendelbach, Christian Weber, Jürgen Wöllenstein, and Thomas Strahl. "Resonant photoacoustic cells for laser-based methane detection." Journal of Sensors and Sensor Systems 12, no. 1 (January 25, 2023): 37–44. http://dx.doi.org/10.5194/jsss-12-37-2023.
Full textDissertations / Theses on the topic "Interband Cascade Laser (ICL)"
Abajyan, Pavel. "Génération et contrôle de peignes de fréquences optiques dans les lasers à cascade d'interbande (ICL)." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS024.
Full textOptical frequency combs (OFCs) are coherent light sources that emit a broad spectrum of discrete, perfectly spaced modes, each with an absolute frequency measurable with the precision of an atomic clock.OFCs in the mid-infrared (MIR 3-12 μm) have recently become of great interest to molecular spectroscopy by the presence of strong absorption of molecular vibration and rotation modes in the spectroscopic "fingerprint" region. Nevertheless, the operation of the OFC in the crucial mid-infrared region (MWIR 3-6 μm) remains significantly underdeveloped compared to other parts of the MIR.In this work, we present an in-depth experimental study of a new generation of interband cascade laser (ICL) and their potential for OFCs in MWIR. The thesis provides proof of the OFC regime both by high-frequency beatnote spectroscopy (BN), and by the new technique of temporal reconstruction of the ultrafast dynamics of these lasers, this making it possible to "visualize" the control of the type of operation of the OFC in ICL. In particular, was carried out the optoelectrical characterization of a set of ICLs with a range of geometries, with the aim of studying low group delay dispersion (GDD) ICLs at longer wavelengths than those previously studied: an ICL operating at 3.8 μm with a 2-section architecture, ICLs operating at 4.1 μm, and another generation of ICL operating at a wavelength of 4.2 μm designed with a wide spectral gain. OFC regime formation and GDD are linked and important for understanding the fundamental mechanisms of OFC formation. ICLs were studied using optical and electrical BN spectroscopy. Passive mode locking (PML) (or free running) and active mode locking (AML) were demonstrated. For 2-section ICLs, where the ICL is divided into a long part and a short part for a single cavity, the exact effect of the small section on the BN has been explained: allows to (a) control very finely the intracavity GDD, (b) introducing losses and showing that we converge towards PML behavior.This work then feeds into the case of ICLs operating at longer wavelengths in a single section cavity and where the GDD is expected to be less. In the particular case of the ICLs operating at 4.1 μm, we demonstrate a strong optical BN, which can be injection locked by radio frequency (RF) injection at the round trip frequency of the ICL, showing the first-steps of active modelocking. This injection locking was achieved using a simple single-section laser architecture with very low waveguide dispersion, and showing that adapting the ICL waveguide for RF operation is not a fundamental requirement. In the final part of the thesis, we show the implementation of the "Shifted Wave Interference Fourier Transform Spectroscopy" (SWIFTS) technique, used in two different configurations, to reconstruct the laser's temporal intensity profile at ultrafast timescales. This permits to demonstrate the nature of OFC generated in these ICLs. Indeed, we show that the ICL operates in the frequency modulation (FM) regime when free-running and transits towards an amplitude modulation (AM) regime when actively modelocked. Interestingly, we also show that ICLs can generate short pulses of ~6.7 ps in free-running operation, despite FM operation, and highlight the control of the pulse width and peak intensity via RF injection. This permits to compress the free-running pulses by a factor of 2.3 to obtain sub-3 ps pulses.This work constitutes an important step in the creation and control of OFCs in the MWIR region. The prospects are to broaden the spectral bandwidth of ICLs and generate high-power ultrashort pulses in the MWIR and beyond
O'Hagan, Seamus. "Multi-mode absorption spectroscopy for multi-species and multi-parameter sensing." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:6f422683-7c50-47dd-8824-56b4b4ea941d.
Full textHerdt, Andreas Verfasser], Wolfgang [Akademischer Betreuer] Elsäßer, and Thomas [Akademischer Betreuer] [Walther. "The laser-as-detector approach exploiting mid-infrared emitting interband cascade lasers: A potential for spectroscopy and communication applications / Andreas Herdt ; Wolfgang Elsäßer, Thomas Walther." Darmstadt : Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1224048725/34.
Full textHerdt, Andreas [Verfasser], Wolfgang [Akademischer Betreuer] Elsäßer, and Thomas [Akademischer Betreuer] Walther. "The laser-as-detector approach exploiting mid-infrared emitting interband cascade lasers: A potential for spectroscopy and communication applications / Andreas Herdt ; Wolfgang Elsäßer, Thomas Walther." Darmstadt : Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1224048725/34.
Full textHerdt, Andreas. "The laser-as-detector approach exploiting mid-infrared emitting interband cascade lasers: A potential for spectroscopy and communication applications." Phd thesis, 2020. https://tuprints.ulb.tu-darmstadt.de/17369/1/Dissertation_HerdtAndreas_20201216.pdf.
Full textBook chapters on the topic "Interband Cascade Laser (ICL)"
Chang, Po-Hsiung, Jiun-Ming Li, Chiang Juay Teo, Boo Cheong Khoo, Christopher M. Brophy, and Robert G. Wright. "Measurements of Jet A Vapor Concentration Using Interband Cascade Laser." In 31st International Symposium on Shock Waves 1, 385–93. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-91020-8_44.
Full textConference papers on the topic "Interband Cascade Laser (ICL)"
Dunayevskiy, Ilya, Jason Kriesel, Ryan Briggs, Chul Soo Kim, Mijin Kim, Chadwick L. Canedy, William W. Bewley, Igor Vurgaftman, and Jerry R. Meyer. "Broadly tunable external cavity interband cascade laser (EC-ICL) for hydrocarbon analysis." In Quantum Sensing and Nano Electronics and Photonics XIX, edited by Manijeh Razeghi, Giti A. Khodaparast, and Miriam S. Vitiello. SPIE, 2023. http://dx.doi.org/10.1117/12.2647924.
Full textIkyo, Barnabas A., Igor P. Marko, Alf R. Adams, Stephen J. Sweeney, Chadwick L. Canedy, Igor Vurgaftman, Chul Soo Kim, Mijin Kim, William W. Bewley, and Jerry R. Meyer. "Temperature sensitivity of mid-infrared type II “W” interband cascade lasers (ICL) emitting at 4.1µm at room temperature." In 2010 IEEE 22nd International Semiconductor Laser Conference (ISLC). IEEE, 2010. http://dx.doi.org/10.1109/islc.2010.5642761.
Full textProkhorov, I., T. Kluge, and C. Janssen. "Direct simultaneous spectroscopic measurements of rare and doubly-substituted CO2 isotopologues using interband cascade lasers." In 2018 International Conference Laser Optics (ICLO). IEEE, 2018. http://dx.doi.org/10.1109/lo.2018.8435870.
Full textGluszek, Aleksander, Arkadiusz Hudzikowski, Karol Krzempek, Krzysztof M. Abramski, and Frank K. Tittel. "Low energy consumption, compact setup for isotopie analysis of methane at 3007.95 cm−1 and 3008.39 cm−1 using room-temperature CW interband cascade laser (ICL)." In 2017 Conference on Lasers and Electro-Optics Europe (CLEO/Europe) & European Quantum Electronics Conference (EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8086924.
Full textLoparo, Zachary E., Joseph G. Lopez, Sneha Neupane, Subith S. Vasu, William P. Partridge, and Konstantin Vodopyanov. "Time-Resolved Measurements of Intermediate Concentrations in Fuel-Rich n-Heptane Oxidation Behind Reflected Shock Waves." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-63344.
Full textSchwarm, Kevin K., Nicolas Q. Minesi, Barathan Jeevaretanam, Sarah Enayati, Tsu-Chin Tsao, and R. Mitchell Spearrin. "Cycle-Resolved Emissions Analysis of Polyfuel Reciprocating Engines via In-Situ Laser Absorption Spectroscopy." In ASME 2022 ICE Forward Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icef2022-88543.
Full textBewley, W. W., C. L. Canedy, M. Kim, C. S. Kim, J. A. Nolde, D. C. Larrabee, J. R. Lindle, I. Vurgaftman, and J. R. Meyer. "Interband cascade laser progress." In Integrated Optoelectronic Devices 2008, edited by Alexey A. Belyanin and Peter M. Smowton. SPIE, 2008. http://dx.doi.org/10.1117/12.766908.
Full textSpott, A., E. J. Stanton, A. Torres, M. L. Davenport, C. L. Canedy, I. Vurgaftman, M. Kim, et al. "Interband cascade laser on silicon." In 2017 IEEE Photonics Conference (IPC) Part II. IEEE, 2017. http://dx.doi.org/10.1109/pc2.2017.8283359.
Full textNähle, L., M. von Edlinger, J. Scheuermann, R. Weih, M. Fischer, J. Koeth, M. Kamp, and S. Höfling. "Interband Cascade Laser Based Sensing." In Laser Applications to Chemical, Security and Environmental Analysis. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/lacsea.2016.lw3g.2.
Full textNähle, L., M. von Edlinger, J. Scheuermann, M. Fischer, J. Koeth, R. Weih, and M. Kamp. "Interband Cascade Laser Based Sensing." In Bio-Optics: Design and Application. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/boda.2015.ot1c.4.
Full textReports on the topic "Interband Cascade Laser (ICL)"
Folkes, Patrick. Interband Cascade Laser Photon Noise. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada507657.
Full textTober, Richard L., Carlos Monroy, Kimberly Olver, and John D. Bruno. Processing Interband Cascade Laser for High Temperature CW Operation. Fort Belvoir, VA: Defense Technical Information Center, November 2004. http://dx.doi.org/10.21236/ada428728.
Full text