Academic literature on the topic 'Interatome'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Interatome.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Interatome"
Zhang, Xinxing, Pedro Alvarez-Lloret, Greg Chass, and Devis Di Tommaso. "Interatomic potentials of Mg ions in aqueous solutions: structure and dehydration kinetics." European Journal of Mineralogy 31, no. 2 (June 7, 2019): 275–87. http://dx.doi.org/10.1127/ejm/2019/0031-2815.
Full textGrimes, R. W., A. H. Harker, and A. B. Lidiard. "Interatomic potentials." Philosophical Magazine B 73, no. 1 (January 1996): 1. http://dx.doi.org/10.1080/13642819608239106.
Full textLewis, G. V. "Interatomic potentials:." Physica B+C 131, no. 1-3 (August 1985): 114–18. http://dx.doi.org/10.1016/0378-4363(85)90144-5.
Full textHansen, Tim, Gemma C. Solomon, and Thorsten Hansen. "Interatomic inelastic current." Journal of Chemical Physics 146, no. 9 (March 7, 2017): 092322. http://dx.doi.org/10.1063/1.4975320.
Full textMaddox, John. "Recalculating interatomic forces." Nature 314, no. 6009 (March 1985): 315. http://dx.doi.org/10.1038/314315a0.
Full textPopelier, Paul L. A. "On the differential geometry of interatomic surfaces." Canadian Journal of Chemistry 74, no. 6 (June 1, 1996): 829–38. http://dx.doi.org/10.1139/v96-092.
Full textFinnis, M. "Interatomic forces in materials." Progress in Materials Science 49, no. 1 (2004): 1–18. http://dx.doi.org/10.1016/s0079-6425(03)00018-5.
Full textCatlow, C. R. A., C. M. Freeman, M. S. Islam, R. A. Jackson, M. Leslie, and S. M. Tomlinson. "Interatomic potentials for oxides." Philosophical Magazine A 58, no. 1 (July 1988): 123–41. http://dx.doi.org/10.1080/01418618808205179.
Full textSutton, A. P. "Temperature-dependent interatomic forces." Philosophical Magazine A 60, no. 2 (August 1989): 147–59. http://dx.doi.org/10.1080/01418618908219278.
Full textSisourat, Nicolas, Nikolai V. Kryzhevoi, Přemysl Kolorenč, Simona Scheit, and Lorenz S. Cederbaum. "Giant Interatomic Coulombic Decay." Journal of Physics: Conference Series 388, no. 1 (November 5, 2012): 012043. http://dx.doi.org/10.1088/1742-6596/388/1/012043.
Full textDissertations / Theses on the topic "Interatome"
Alborghetti, Marcos Rodrigo. "Proteínas da família FEZ (Fasciculation and Elongation protein Zeta) como adaptadoras bivalentes do transporte = aspectos funcionais, estruturais e evolutivos." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/314365.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia
Made available in DSpace on 2018-08-18T13:52:58Z (GMT). No. of bitstreams: 1 Alborghetti_MarcosRodrigo_D.pdf: 16630969 bytes, checksum: 42e040f25194010a25828aeaa31ac3c2 (MD5) Previous issue date: 2011
Resumo: As proteínas humanas FEZ1 e FEZ2 (fasciculation and elongation protein zeta) são ortólogas da proteína UNC-76 de C. elegans e estão envolvidas no crescimento e na fasciculação dos axônios através de interações que envolvem kinesinas, mitocôndrias e vesículas sinápticas. Além disso, algumas evidências sugerem a participação de FEZ1 na etiologia da esquizofrenia, no ciclo viral, além da resistência à quimioterápicos. Sua estrutura intrinsecamente desordenada, com coiled-coil ao longo da sequência, pode contribuir para sua função. Nós exploramos a evolução molecular da família de proteínas FEZ com ênfase no ramo dos vertebrados. Através do perfil do interactoma comparado entre FEZ1 e FEZ2 de Homo sapiens e UNC-76 de C. elegans foi observado um padrão de conservação das interações proteínaproteína entre FEZ1 e UNC-76, que explicam a capacidade de FEZ1 resgatar os defeitos causados por mutações em unc-76 em nematoides, de acordo com o descrito por Bloom e colaboradores em 1997. Além disso, caracterizamos a interação entre FEZ1 e SCOCO (short coil-coiled) por SAXS (Small Angle X-ray Scattering). Essa interação já foi descrita previamente entre os seus ortólogos UNC-76 e UNC-69, que cooperam no crescimento axonal. Um estado de heterotetramérico foi observado, consistindo de duas moléculas GST-SCOCO interagindo com duas moléculas de 6xHis-FEZ1 dimerizadas. Por PAGE (Polyacrylamide Gel Electrophoresis, eletroforese em gel de poli-acrilamida), SAXS, Espectrometria de Massas e Ressonância Magnética Nuclear, constatamos que FEZ1 dimeriza envolvendo a formação de ponte dissulfeto. In vivo, este estado dimérico de forma covalente pode ser importante para o transporte mediado por kinesinas de proteínas ao longo dos microtúbulos. Assim, FEZ1 pode ser classificada como uma proteína adaptadora do transporte, dimérica e bivalente, essencial para o crescimento axonal e organização pré-sináptica normal e transporte de cargas. A agregação de novos parceiros de interação encontrada para a proteína FEZ2 poderia ser interpretada como aquisição de novas funções moleculares e pode ter ocorrido nos primeiros estágios da evolução dos cordados
Abstract: The human proteins FEZ1 and FEZ2 (fasciculation and elongation protein zeta 1) are orthologs of the protein UNC-76 from C. elegans, involved in growth and fasciculation of axons, through interactions that involve kinesins, mitochondria and synaptic vesicles. Moreover, some evidence suggests involvement of FEZ1 in the etiology of schizophrenia, in addition to the viral cycle and resistance to chemotherapy. Its structure intrinsically disordered, with coiled-coil along the sequence, can contribute to its function. We have explored the molecular evolution of the FEZ protein family with emphasis on the vertebrata branch. Analyzing the interactome profile of the FEZ1 and FEZ2 from Homo sapiens and UNC-76 from C. elegans we observed a conserved pattern of protein-protein interactions among FEZ1 and UNC-76 that explain the ability of FEZ1 to rescue the defects caused by unc-76 mutations in nematodes, according to Bloom and co-workers in 1997. Furthermore, we characterized the interaction between FEZ1 and SCOCO (short coiled-coil protein) by SAXS (Small Angle X-ray Scattering). This interaction has been previously reported between their orthologs UNC-76 and UNC-69 that cooperate in axonal outgrowth. A heterotetrameric state was observed, which consists of two GST-SCOCO molecules attached to two FEZ1 molecules. By PAGE (Polyacrylamide Gel Electrophoresis), SAXS, Mass Spectrometry and Nuclear Magnetic Resonance we defined that FEZ1 dimerizes involving formation of disulfide bond. In vivo this covalent mediated dimeric state could be important for kinesin mediated protein transport along the microtubule. Thereby, FEZ1 may be classified as a dimeric and bivalent transport adaptor, essential to axon outgrowth and normal pre-synaptic organization and transport of cargoes. The aggregation of new interaction partners found for the FEZ2 protein could be interpreted as the acquisition of new molecular functions and may have occurred in the early stages of chordate evolution
Doutorado
Bioquimica
Doutor em Biologia Funcional e Molecular
Foulkes, William Matthew Colwyn. "Interatomic forces in solids." Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.328669.
Full textGerdy, James Joseph Goddard William A. "Accurate interatomic potentials for simulations." Diss., Pasadena, Calif. : California Institute of Technology, 1996. http://resolver.caltech.edu/CaltechTHESIS:10212009-150813700.
Full textSchwarz, Michael Heinz. "Interative and evolutionary identification and control." Thesis, University of Sunderland, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398549.
Full textGray, Benjamin R. "Accurate interatomic potentials for ion-neutral systems." Thesis, University of Nottingham, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.478962.
Full textDzingina, Benjamin Harr. "Richer Web : interative dynamic graphics for web applications /." Leeds : University of Leeds, School of Computer Studies, 2008. http://www.comp.leeds.ac.uk/fyproj/reports/0708/Dzingina.pdf.
Full textHobday, Steven. "Artificial intelligence and simulations applied to interatomic potentials." Thesis, Loughborough University, 1998. https://dspace.lboro.ac.uk/2134/33255.
Full textCHAOUBAH, ALFREDO. "INTERATIVE METHODS FOR SERVOMECHANISM DESIGN BASED ON H2 OPTIMIZATION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1993. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=9278@1.
Full textConsidera-se, neste trabalho, um problema de controle ótimo no qual o critério ( relativo à atenuação de sinais de perturbação) e a restrição (relativa à margem de estabilidade) são, respectivamente, normas e H2 e H(infinito) ponderadas de funções de transferência em malha fechada. Um procedimento iterativo para o obtenção de soluções aproximadas, no qual somente problemas H2 irrestritos são resolvidos, é apresentado. Vários exemplos de aplicação deste procedimento são discutidos.
In this work an optimal control problem is considered in which the cost function (pertaining to disturbance attenuation) and the constraint (due to unstructured, stability margin requirements) are, respectively, weighted H2 e H(infinity) norms of closed-loop transfer functions. An iterative scheme is described for generating aproximate soluctions in which only unconstrained H2 problems are solved. Some numerical examples are then discussed.
LOPES, JOSE MARCOS. "INTERATIVE METHODS FOR LINEAR COMPLEMENTARITY PROBLEMS AND LEAST NORM." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1992. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8250@1.
Full textApresentamos nesta dissertação novos métodos interativos para resolver o Problema de Complementaridade Linear (PCL) e Problemas de Norma Mínima. Após uma revisão geral sobre métodos interativos para o PCL, apresentaremos no Capítulo 2, uma forma de aceleração aplicada a métodos clássicos para o PCL simétrico, através de uma decomposição (Splitting) conveniente da matriz associada ao problema. A aceleração para os novos métodos consiste em calcular uma direção de avanço usando o método básico mais uma minimização unidimensional que respeite as condições de não negatividade, provas de convergência forte são apresentadas. No Capítulo 3 comparamos algoritmos do tipo seqüencial e paralelo para solução de um Problema de Programação Linear e Problemas de Norma Mínima em l 1: para o segundo problema os métodos iterativos são aplicados no dual do problema original penalizado com um termo quadrático. Introduzimos um novo método paralelo para o Problema de Norma mínima em l 1 e provamos sua convergência. Propomos no capítulo 4, novos métodos iterativos paralelos para Problemas de Norma Mínima, convenientes para problemas de grande porte, provas de convergência são fornecidas. Finalmente, no capítulo 5 baseados sobre uma combinação da iteração de ponto proximal e métodos iterativos clássicos, propomos novos métodos iterativos para a solução de um PCL monótono não simétrico. Ilustramos todos os algoritmos apresentados, em diferentes versões, com um extensa experimentação numérica.
We present in this dissertation new iterative methods for solving Linear Complementarity (LCP) and Least Norm (LNP) Problems. After a general overview on iterative methods for the LCP, in chapter 2 we present an acceleration techinique applied to classic methods for symmetric LCP generated by considering appropriate splittings of the associated matrix. The acceleration gives rise to new methods consisting of computing a search direction using the basic method plus a one dimensional minimization taking into account the nonnegative constraints. Strong convergence proofs are given. In chapter 3 we compare sequential and parallel algorithms for solving Linear Programming and least 1-Norm Problems obtained by applying iterative methods to a dual of the original problem penalized with a quadratic term. We introduce a new parallel method for the Least 1-Norm Problem, proving its convergence. In chapter 4, we present new parallel iterative methods for solving large LNP, giving convergence proofs. Finally, in chapter 5 we propose new iterative methods for solving monotone nonsymmetric LCp based on a combination of proximal point iterations and classic iterative methods. All the algorithms, in their different versions are illustrated and compared through many numerical experiments.
Batzner, Simon Lutz. "Learning symmetry-preserving interatomic force fields for atomistic simulations." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122525.
Full textCataloged from PDF version of thesis.
Includes bibliographical references.
Machine-Learning Interatomic Force-Fields have shown great promise in increasing time- and length-scales in atomistic simulations while retaining the high accuracy of the reference calculations that they are trained on. Most proposed models aim to learn the potential energy surface of a system of atoms as a function of atomic coordinates and species and obtain the forces acting on the atoms as the negative of the gradient of the global energy with respect to the atomic positions. For the time evolution of an atomistic system in molecular dynamics, however, only atomic forces are required. This thesis examines the construction of a direct approach for learning atomic forces, thereby bypassing the need for learning an energy-based model. Predicting atomic forces directly requires the careful consideration of incorporating the symmetries of 3D space into the model. The construction of an efficient, direct, and symmetry-preserving deep learning model that can predict atomic forces in a fully end-to-end fashion is shown. The model's accuracy, its computational efficiency for training as well as its computational efficiency at time of prediction are evaluated. Finally, the approach is used in the simulation of different small organic molecules and the resulting Molecular Dynamics simulations are analyzed.
by Simon Lutz Batzner.
S.M.
S.M. Massachusetts Institute of Technology, Computation for Design and Optimization Program
Books on the topic "Interatome"
Levitin, Valim. Interatomic Bonding in Solids. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527671557.
Full textTerakura, Kiyoyuki, and Hisazumi Akai, eds. Interatomic Potential and Structural Stability. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84968-8.
Full textStuder, Christoph. Interative MIMO Decoding : Algorithms and VLSI Implementation Aspects. Konstanz: Hartung-Gorre, 2009.
Find full textCai, Jiazhen. An interative version of Hopcroft and Tarjan's planarity testing algorithm. New York: Courant Institute of Mathematical Sciences, New York University, 1987.
Find full textConley, John P. Interative planning procedures in non-convex and informationally decentralized economies. [Urbana, Ill.]: College of Commerce and Business Administration, University of Illinois at Urbana-Champaign, 1989.
Find full textCai, Jiazhen. An interative version of Hopcroft and Tarjan's planarity testing algorithm. New York: Courant Institute of Mathematical Sciences, New York University, 1987.
Find full textMeyer, Madeleine. Computer Simulation in Materials Science: Interatomic Potentials, Simulation Techniques and Applications. Dordrecht: Springer Netherlands, 1991.
Find full textMadeleine, Meyer, Pontikis Vassilis, and North Atlantic Treaty Organization. Scientific Affairs Division., eds. Computer simulation in materials science: Interatomic potentials, simulation techniques, and applications. Dordrecht: Kluwer Academic Publishers, 1991.
Find full textBook chapters on the topic "Interatome"
Bartók-Pártay, Albert. "Interatomic Potentials." In The Gaussian Approximation Potential, 33–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14067-9_4.
Full textKhristenko, Sergei V., Viatcheslav P. Shevelko, and Alexander I. Maslov. "Interatomic Potentials." In Molecules and Their Spectroscopic Properties, 175–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-71946-2_7.
Full textAwang, Mokhtar, Ehsan Mohammadpour, and Ibrahim Dauda Muhammad. "Interatomic Bonding." In Finite Element Modeling of Nanotube Structures, 15–25. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-03197-2_2.
Full textBruhns, O. T., and B. Boecket. "The Model of INTERATOM." In Computational Mechanics ’88, 533–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-61381-4_133.
Full textMacKerell, Alexander D. "Interatomic Potentials: Molecules." In Handbook of Materials Modeling, 509–25. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/978-1-4020-3286-8_26.
Full textSepliarsky, Marcelo, Marcelo G. Stachiotti, and Simon R. Phillpot. "Interatomic Potentials: Ferroelectrics." In Handbook of Materials Modeling, 527–45. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/978-1-4020-3286-8_27.
Full textMacKerell, Alexander D. "Interatomic Potentials: Molecules." In Handbook of Materials Modeling, 509–25. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3286-2_26.
Full textSepliarsky, Marcelo, Marcelo G. Stachiotti, and Simon R. Phillpot. "Interatomic Potentials: Ferroelectrics." In Handbook of Materials Modeling, 527–45. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3286-2_27.
Full textValone, S. M., Krishna Muralidharan, and Keith Runge. "Interatomic Potentials Including Chemistry." In Multiscale Paradigms in Integrated Computational Materials Science and Engineering, 107–94. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24529-4_3.
Full textDietl, T. "Ge1-xMnxTe: interatomic distances." In New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, 471. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14148-5_257.
Full textConference papers on the topic "Interatome"
Park, Young Ho, and Iyad Hijazi. "Efficient Analytical Interatomic Potential for Metal." In ASME 2008 Pressure Vessels and Piping Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/pvp2008-61787.
Full textSloma, Piotr, Cecylia Malinowska-Adamska, and Janusz Tomaszewski. "Self-consistent interatomic interaction in quantum crystals." In International Conference on Solid State Crystals '98, edited by Andrzej Majchrowski and Jerzy Zielinski. SPIE, 1999. http://dx.doi.org/10.1117/12.342985.
Full textNowak, Stanislaw. "Chemical bonds and interatomic forces in semimetals." In International Conference on Solid State Crystals '98, edited by Andrzej Majchrowski and Jerzy Zielinski. SPIE, 1999. http://dx.doi.org/10.1117/12.342983.
Full textBalyakin, I. A., and A. A. Rempel. "Machine learning interatomic potential for molten TiZrHfNb." In THE VII INTERNATIONAL YOUNG RESEARCHERS’ CONFERENCE – PHYSICS, TECHNOLOGY, INNOVATIONS (PTI-2020). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0032302.
Full textTran, Anh, and Yan Wang. "Molecular Dynamics Simulation With Interval-Valued Interatomic Potentials." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59431.
Full textKhan, M. Ajmal, Badriah S. A. Sultan, Nadir Bouarissa, M. A. Wahab, Ali Al-Hajry, Ahmad Umar, Hamoud Al-Harbi, Nadir Bouarissa, Hamid Berriche, and Mohammed El-Ghazaly. "Molecular Dynamics Simulation of ZnS using Interatomic Potentials." In PROCEEDINGS OF THE FIFTH SAUDI PHYSICAL SOCIETY CONFERENCE (SPS5). AIP, 2011. http://dx.doi.org/10.1063/1.3638105.
Full textHogle, Craig W., Leigh Martin, Xiao-Min Tong, Kiyoshi Ueda, Tsveta Miteva, Lorenz S. Cederbaum, Henry C. Kapteyn, Margaret M. Murnane, and Predrag Ranitovic. "Laser-Enabled Control of Interatomic-Coulomb-Decay Dynamics." In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/up.2020.tu4a.44.
Full textMironov, Andrey, J. Eden, and William Goldshlag. "SPIN POLARIZATION SPECTROSCOPY OF ALKALI-NOBLE GAS INTERATOMIC POTENTIALS." In 72nd International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2017. http://dx.doi.org/10.15278/isms.2017.ri03.
Full textGupta, Yuhit, and M. M. Sinha. "Study of interatomic interactions and phonons in magnesium chalcogenides." In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5033041.
Full textHaidari, Gholamhosain, Edmund G. Seebauer, Susan B. Felch, Amitabh Jain, and Yevgeniy V. Kondratenko. "Numerical Solution of Scattering Integral for Universal Interatomic Potential." In ION IMPLANTATION TECHNOLOGY: 17th International Conference on Ion Implantation Technology. AIP, 2008. http://dx.doi.org/10.1063/1.3033601.
Full textReports on the topic "Interatome"
Saavedra, Gary, and Aidan Thompson. Neural Network Interatomic Potentials. Office of Scientific and Technical Information (OSTI), October 2020. http://dx.doi.org/10.2172/1678825.
Full textSafta, Cosmin, Gianluca Geraci, Michael S. Eldred, Habib N. Najm, David Riegner, and Wolfgang Windl. Interatomic Potentials Models for Cu-Ni and Cu-Zr Alloys. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475252.
Full textAuthor, Not Given. (Non-empirical interatomic potentials for transition metals, alloys, and semiconductors). Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6521472.
Full textRitchie, A. B. Reaction field induced interatomic forces between atoms in the presense of a strong magnetic field. Office of Scientific and Technical Information (OSTI), March 1999. http://dx.doi.org/10.2172/8303.
Full textRuzic, D. N., and S. A. Cohen. Total scattering cross sections and interatomic potentials for neutral hydrogen and helium on some noble gases. Office of Scientific and Technical Information (OSTI), April 1985. http://dx.doi.org/10.2172/5697292.
Full textLindsey, R., C. Pham, L. Fried, N. Goldman, and S. Bastea. ChIMES: A Machine-Learned Interatomic Model Targeting Improved Description of Condensed Phase Chemistry in Energetic Materials. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1662036.
Full textCarlsson, A. E. Final report for DOE Grant Number DE-FG02-84ER45130 [Quantum-mechanically based interatomic potentials for transition metals]. Office of Scientific and Technical Information (OSTI), July 2001. http://dx.doi.org/10.2172/811348.
Full textMurad, M. Hassan, Stephanie M. Chang, Celia Fiordalisi, Jennifer S. Lin, Timothy J. Wilt, Amy Tsou, Brian Leas, et al. Improving the Utility of Evidence Synthesis for Decision Makers in the Face of Insufficient Evidence. Agency for Healthcare Research and Quality (AHRQ), April 2021. http://dx.doi.org/10.23970/ahrqepcwhitepaperimproving.
Full text[Non-empirical interatomic potentials for transition metals]. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6570400.
Full text[Non-empirical interatomic potentials for transition metals]. Progress report. Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/10149038.
Full text