Journal articles on the topic 'Interactive molecular simulations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Interactive molecular simulations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Rapaport, D. C., and Harvey Gould. "An introduction to interactive molecular-dynamics simulations." Computers in Physics 11, no. 4 (1997): 337. http://dx.doi.org/10.1063/1.168612.
Full textLanrezac, André, Benoist Laurent, Hubert Santuz, Nicolas Férey, and Marc Baaden. "Fast and Interactive Positioning of Proteins within Membranes." Algorithms 15, no. 11 (November 7, 2022): 415. http://dx.doi.org/10.3390/a15110415.
Full textDelalande, Olivier, Nicolas Férey, Gilles Grasseau, and Marc Baaden. "Complex molecular assemblies at hand via interactive simulations." Journal of Computational Chemistry 30, no. 15 (November 30, 2009): 2375–87. http://dx.doi.org/10.1002/jcc.21235.
Full textLahlali, Abdelouahed, Nadia Chafiq, Mohamed Radid, Kamal Moundy, and Chaibia Srour. "The Effect of Integrating Interactive Simulations on the Development of Students’ Motivation, Engagement, Interaction and School Results." International Journal of Emerging Technologies in Learning (iJET) 18, no. 12 (June 21, 2023): 193–207. http://dx.doi.org/10.3991/ijet.v18i12.39755.
Full textDunn, Justin, and Umesh Ramnarain. "The Effect of Simulation-Supported Inquiry on South African Natural Sciences Learners’ Understanding of Atomic and Molecular Structures." Education Sciences 10, no. 10 (October 14, 2020): 280. http://dx.doi.org/10.3390/educsci10100280.
Full textGoret, G., B. Aoun, and E. Pellegrini. "MDANSE: An Interactive Analysis Environment for Molecular Dynamics Simulations." Journal of Chemical Information and Modeling 57, no. 1 (January 6, 2017): 1–5. http://dx.doi.org/10.1021/acs.jcim.6b00571.
Full textWhite, Brian T., and Ethan D. Bolker. "Interactive computer simulations of genetics, biochemistry, and molecular biology." Biochemistry and Molecular Biology Education 36, no. 1 (January 2008): 77–84. http://dx.doi.org/10.1002/bmb.20152.
Full textSego, T. J., James P. Sluka, Herbert M. Sauro, and James A. Glazier. "Tissue Forge: Interactive biological and biophysics simulation environment." PLOS Computational Biology 19, no. 10 (October 23, 2023): e1010768. http://dx.doi.org/10.1371/journal.pcbi.1010768.
Full textCruz-neira, C., R. Langley, and P. A. Bash. "Interactive Molecular Modeling with Virtual Reality and Empirical Energy Simulations." SAR and QSAR in Environmental Research 9, no. 1-2 (January 1998): 39–51. http://dx.doi.org/10.1080/10629369808039148.
Full textMcCluskey, Andrew R., James Grant, Adam R. Symington, Tim Snow, James Doutch, Benjamin J. Morgan, Stephen C. Parker, and Karen J. Edler. "An introduction to classical molecular dynamics simulation for experimental scattering users." Journal of Applied Crystallography 52, no. 3 (May 7, 2019): 665–68. http://dx.doi.org/10.1107/s1600576719004333.
Full textGlowacki, David R., Michael O'Connor, Gaetano Calabró, James Price, Philip Tew, Thomas Mitchell, Joseph Hyde, David P. Tew, David J. Coughtrie, and Simon McIntosh-Smith. "A GPU-accelerated immersive audio-visual framework for interaction with molecular dynamics using consumer depth sensors." Faraday Discuss. 169 (2014): 63–87. http://dx.doi.org/10.1039/c4fd00008k.
Full textAstsatryan, Hrachya, Wahi Narsisian, Eliza Gyulgyulyan, Vardan Baghdasaryan, Armen Poghosyan, Yevgeni Mamasakhlisov, and Peter Wittenburg. "An Integrated Web-based Interactive Data Platform for Molecular Dynamics Simulations." Scalable Computing: Practice and Experience 19, no. 2 (May 10, 2018): 131–38. http://dx.doi.org/10.12694/scpe.v19i2.1337.
Full textByška, J., T. Trautner, S. M. Marques, J. Damborský, B. Kozlíková, and M. Waldner. "Analysis of Long Molecular Dynamics Simulations Using Interactive Focus+Context Visualization." Computer Graphics Forum 38, no. 3 (June 2019): 441–53. http://dx.doi.org/10.1111/cgf.13701.
Full textWhitworth, Karen, Sarah Leupen, Chistopher Rakes, and Mauricio Bustos. "Interactive Computer Simulations as Pedagogical Tools in Biology Labs." CBE—Life Sciences Education 17, no. 3 (September 2018): ar46. http://dx.doi.org/10.1187/cbe.17-09-0208.
Full textDreher, Matthieu, Jessica Prevoteau-Jonquet, Mikael Trellet, Marc Piuzzi, Marc Baaden, Bruno Raffin, Nicolas Ferey, Sophie Robert, and Sébastien Limet. "ExaViz: a flexible framework to analyse, steer and interact with molecular dynamics simulations." Faraday Discuss. 169 (2014): 119–42. http://dx.doi.org/10.1039/c3fd00142c.
Full textPoppleton, Erik, Roger Romero, Aatmik Mallya, Lorenzo Rovigatti, and Petr Šulc. "OxDNA.org: a public webserver for coarse-grained simulations of DNA and RNA nanostructures." Nucleic Acids Research 49, W1 (May 1, 2021): W491—W498. http://dx.doi.org/10.1093/nar/gkab324.
Full textColubri, Andrés, Molly Kemball, Kian Sani, Chloe Boehm, Karen Mutch-Jones, Ben Fry, Todd Brown, and Pardis C. Sabeti. "Preventing Outbreaks through Interactive, Experiential Real-Life Simulations." Cell 182, no. 6 (September 2020): 1366–71. http://dx.doi.org/10.1016/j.cell.2020.08.042.
Full textROBLES, MIGUEL, VILLE MUSTONEN, and KIMMO KASKI. "MOLECULAR DYNAMIC STUDY OF A SINGLE DISLOCATION IN A TWO-DIMENSIONAL LENNARD–JONES SYSTEM." International Journal of Modern Physics C 14, no. 04 (May 2003): 407–21. http://dx.doi.org/10.1142/s0129183103004620.
Full textPandi, Sangavi, Langeswaran Kulanthaivel, Gowtham Kumar Subbaraj, Sangeetha Rajaram, and Senthilkumar Subramanian. "Screening of Potential Breast Cancer Inhibitors through Molecular Docking and Molecular Dynamics Simulation." BioMed Research International 2022 (June 28, 2022): 1–9. http://dx.doi.org/10.1155/2022/3338549.
Full textDubois, Marc-André, Xavier Bouju, and Alain Rochefort. "Toward interactive scanning tunneling microscopy simulations of large-scale molecular systems in real time." Journal of Applied Physics 124, no. 4 (July 28, 2018): 044301. http://dx.doi.org/10.1063/1.5037443.
Full textMarforio, Tainah Dorina, Alessandro Calza, Edoardo Jun Mattioli, Francesco Zerbetto, and Matteo Calvaresi. "Dissecting the Supramolecular Dispersion of Fullerenes by Proteins/Peptides: Amino Acid Ranking and Driving Forces for Binding to C60." International Journal of Molecular Sciences 22, no. 21 (October 26, 2021): 11567. http://dx.doi.org/10.3390/ijms222111567.
Full textGauthier, Andrea. "Game and Simulation Stimulate Conceptual Change about Molecular Emergence in Different Ways, with Potential Cultural Implications." Education Sciences 14, no. 4 (March 31, 2024): 366. http://dx.doi.org/10.3390/educsci14040366.
Full textYang, Jiantao, and Tairen Sun. "Finite-Time Interactive Control of Robots with Multiple Interaction Modes." Sensors 22, no. 10 (May 11, 2022): 3668. http://dx.doi.org/10.3390/s22103668.
Full textTorrens-Fontanals, Mariona, Alejandro Peralta-García, Carmine Talarico, Ramon Guixà-González, Toni Giorgino, and Jana Selent. "SCoV2-MD: a database for the dynamics of the SARS-CoV-2 proteome and variant impact predictions." Nucleic Acids Research 50, no. D1 (November 11, 2021): D858—D866. http://dx.doi.org/10.1093/nar/gkab977.
Full textSellis, Diamantis, Dimitrios Vlachakis, and Metaxia Vlassi. "Gromita: A Fully Integrated Graphical user Interface to Gromacs 4." Bioinformatics and Biology Insights 3 (January 2009): BBI.S3207. http://dx.doi.org/10.4137/bbi.s3207.
Full textAbdi, Sayed Aliul Hasan, Amena Ali, Shabihul Fatma Sayed, Mohamed Jawed Ahsan, Abu Tahir, Wasim Ahmad, Shatrunajay Shukla, and Abuzer Ali. "Morusflavone, a New Therapeutic Candidate for Prostate Cancer by CYP17A1 Inhibition: Exhibited by Molecular Docking and Dynamics Simulation." Plants 10, no. 9 (September 14, 2021): 1912. http://dx.doi.org/10.3390/plants10091912.
Full textLoya, Adil, Antash Najib, Fahad Aziz, Asif Khan, Guogang Ren, and Kun Luo. "Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids." Beilstein Journal of Nanotechnology 13 (July 7, 2022): 620–28. http://dx.doi.org/10.3762/bjnano.13.54.
Full textAllain, Ariane, Isaure Chauvot de Beauchêne, Florent Langenfeld, Yann Guarracino, Elodie Laine, and Luba Tchertanov. "Allosteric pathway identification through network analysis: from molecular dynamics simulations to interactive 2D and 3D graphs." Faraday Discuss. 169 (2014): 303–21. http://dx.doi.org/10.1039/c4fd00024b.
Full textClarke, Kenneth A. "Microcomputer Simulations of Mechanical Properties of Skeletal Muscle for Undergraduate Classes." Alternatives to Laboratory Animals 15, no. 3 (March 1988): 183–87. http://dx.doi.org/10.1177/026119298801500303.
Full textMolza, A. E., N. Férey, M. Czjzek, E. Le Rumeur, J. F. Hubert, A. Tek, B. Laurent, M. Baaden, and O. Delalande. "Innovative interactive flexible docking method for multi-scale reconstruction elucidates dystrophin molecular assembly." Faraday Discuss. 169 (2014): 45–62. http://dx.doi.org/10.1039/c3fd00134b.
Full textNakano, Aiichiro, Rajiv K. Kalia, Priya Vashishta, Timothy J. Campbell, Shuji Ogata, Fuyuki Shimojo, and Subhash Saini. "Scalable Atomistic Simulation Algorithms for Materials Research." Scientific Programming 10, no. 4 (2002): 263–70. http://dx.doi.org/10.1155/2002/203525.
Full textHokkanen, J. E. "Visual simulations, artificial animals and virtual ecosystems." Journal of Experimental Biology 202, no. 23 (December 1, 1999): 3477–84. http://dx.doi.org/10.1242/jeb.202.23.3477.
Full textRusu, Victor H., Denys E. S. Santos, Marcelo D. Poleto, Marcelo M. Galheigo, Antônio T. A. Gomes, Hugo Verli, Thereza A. Soares, and Roberto D. Lins. "Rotational Profiler: A Fast, Automated, and Interactive Server to Derive Torsional Dihedral Potentials for Classical Molecular Simulations." Journal of Chemical Information and Modeling 60, no. 12 (November 19, 2020): 5923–27. http://dx.doi.org/10.1021/acs.jcim.0c01168.
Full textErtl, Thomas, Michael Krone, Stefan Kesselheim, Katrin Scharnowski, Guido Reina, and Christian Holm. "Visual analysis for space–time aggregation of biomolecular simulations." Faraday Discuss. 169 (2014): 167–78. http://dx.doi.org/10.1039/c3fd00156c.
Full textStone, John E., Ryan McGreevy, Barry Isralewitz, and Klaus Schulten. "GPU-accelerated analysis and visualization of large structures solved by molecular dynamics flexible fitting." Faraday Discuss. 169 (2014): 265–83. http://dx.doi.org/10.1039/c4fd00005f.
Full textDewhurst, David G., Guy J. Brown, and Anthony S. Meehan. "Microcomputer Simulations of Laboratory Experiments in Physiology." Alternatives to Laboratory Animals 15, no. 4 (June 1988): 280–89. http://dx.doi.org/10.1177/026119298801500403.
Full textWoods, Christopher J., Maturos Malaisree, Julien Michel, Ben Long, Simon McIntosh-Smith, and Adrian J. Mulholland. "Rapid decomposition and visualisation of protein–ligand binding free energies by residue and by water." Faraday Discuss. 169 (2014): 477–99. http://dx.doi.org/10.1039/c3fd00125c.
Full textZou, Rui, Yubin Liu, Jie Zhao, and Hegao Cai. "A Framework for Human-Robot-Human Physical Interaction Based on N-Player Game Theory." Sensors 20, no. 17 (September 3, 2020): 5005. http://dx.doi.org/10.3390/s20175005.
Full textZhang, Yuqi, Li Chen, Xiaoyu Wang, Yanyan Zhu, Yongsheng Liu, Huiyu Li, and Qingjie Zhao. "Interactive Mechanism of Potential Inhibitors with Glycosyl for SARS-CoV-2 by Molecular Dynamics Simulation." Processes 9, no. 10 (September 29, 2021): 1749. http://dx.doi.org/10.3390/pr9101749.
Full textJungck, John R., Holly Gaff, and Anton E. Weisstein. "Mathematical Manipulative Models: In Defense of “Beanbag Biology”." CBE—Life Sciences Education 9, no. 3 (September 2010): 201–11. http://dx.doi.org/10.1187/cbe.10-03-0040.
Full textStevens, Ron, David F. Johnson, and Amy Soller. "Probabilities and Predictions: Modeling the Development of Scientific Problem-Solving Skills." Cell Biology Education 4, no. 1 (March 2005): 42–57. http://dx.doi.org/10.1187/cbe.04-03-0036.
Full textTieleman, D. P., B. I. Sejdiu, E. A. Cino, P. Smith, E. Barreto-Ojeda, H. M. Khan, and V. Corradi. "Insights into lipid-protein interactions from computer simulations." Biophysical Reviews 13, no. 6 (November 3, 2021): 1019–27. http://dx.doi.org/10.1007/s12551-021-00876-9.
Full textYang, Peng, Peng Liu, and Junmao Li. "The Regulatory Network of Gastric Cancer Pathogenesis and Its Potential Therapeutic Active Ingredients of Traditional Chinese Medicine Based on Bioinformatics, Molecular Docking, and Molecular Dynamics Simulation." Evidence-Based Complementary and Alternative Medicine 2022 (November 26, 2022): 1–17. http://dx.doi.org/10.1155/2022/5005498.
Full textLoftus, Neil, and Husnu S. Narman. "Use of Machine Learning in Interactive Cybersecurity and Network Education." Sensors 23, no. 6 (March 9, 2023): 2977. http://dx.doi.org/10.3390/s23062977.
Full textBrown, Guy J., Godfrey G. S. Collins, David G. Dewhurst, and Ian E. Hughes. "Computer Simulations in Teaching Neuromuscular Pharmacology—Time for a Change from Traditional Methods?" Alternatives to Laboratory Animals 16, no. 2 (December 1988): 163–74. http://dx.doi.org/10.1177/026119298801600207.
Full textChakrabarty, Broto, Varun Naganathan, Kanak Garg, Yash Agarwal, and Nita Parekh. "NAPS update: network analysis of molecular dynamics data and protein–nucleic acid complexes." Nucleic Acids Research 47, W1 (May 20, 2019): W462—W470. http://dx.doi.org/10.1093/nar/gkz399.
Full textZou, Yu, Zhiwei Liu, Zhiqiang Zhu, and Zhenyu Qian. "Structural Influence and Interactive Binding Behavior of Dopamine and Norepinephrine on the Greek-Key-Like Core of α-Synuclein Protofibril Revealed by Molecular Dynamics Simulations." Processes 7, no. 11 (November 13, 2019): 850. http://dx.doi.org/10.3390/pr7110850.
Full textByregowda, Bharath Harohalli, Krishnaprasad Baby, Swastika Maity, Usha Yogendra Nayak, Gayathri S, Shaik Mohammad Fayaz, and Yogendra Nayak. "Network pharmacology and in silico approaches to uncover multitargeted mechanism of action of Zingiber zerumbet rhizomes for the treatment of idiopathic pulmonary fibrosis." F1000Research 13 (March 22, 2024): 216. http://dx.doi.org/10.12688/f1000research.142513.1.
Full textPavlov, Evgen, Makoto Taiji, Arturs Scukins, Anton Markesteijn, Sergey Karabasov, and Dmitry Nerukh. "Visualising and controlling the flow in biomolecular systems at and between multiple scales: from atoms to hydrodynamics at different locations in time and space." Faraday Discuss. 169 (2014): 285–302. http://dx.doi.org/10.1039/c3fd00159h.
Full textPark, Chailim, and Heewon Kye. "Efficient Massive Computing for Deformable Volume Data Using Revised Parallel Resampling." Sensors 22, no. 16 (August 20, 2022): 6276. http://dx.doi.org/10.3390/s22166276.
Full text