Contents
Academic literature on the topic 'Interactions dipolaires électriques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Interactions dipolaires électriques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Interactions dipolaires électriques"
Touati, Selim. "Quelques aspects de la violation-CP et interactions de jauges dans le modèle standard et au-delà." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY040.
Full textThe standard model (SM) of particle physics is the most accurate theory known to describe the elementary particles and their interactions. Once its 19 free parameters are measured, all kinds of elementary processes can be predicted with unequalled accuracy. To date, no significant deviation from the SM has been observed, making it a true success. However, a number of missing pieces and unexplained facts lead us to believe that this is not the end of the story and that the SM would be a low-energy expression of a more fundamental theory. The search for physics beyond the SM is part of this framework. Among the missing pieces, there is electroweak baryogenesis, the mechanism that is believed to be at the origin of matter-antimatter asymmetry in the universe. According to the big bang model, matter and antimatter were created in equal quantities whereas today matter seems to have taken over. The SM does not include such a mechanism. In 1967, a Russian physicist named Andrei Sakharov established three necessary conditions for baryogenesis to happen. One of these conditions stipulates that there would have been interactions that violated C and CP symmetries. CP-violation already exists in the SM. Indeed, the weak interaction can violate CP (already observed) and some strong theoretical arguments lead us to believe that strong interaction should also violate CP, but no such process has yet been observed. In short, it appears that the CP-violation present in the SM is not sufficient to explain the matter-antimatter asymmetry. Therefore, one of the challenges of physics beyond the standard model researches is to find additional sources of CP-violation in order to achieve the amount required for baryogenesis. In this PhD thesis, we first look at some manifestations of CP-violation, such as electric dipole moments (EDMs) of elementary particles, both in the weak sector in the presence of neutrino masses (absent in the SM) as well as in the strong sector. Then, in a second study, we build an effective field theory for gauge bosons. We generalize the Euler-Heisenberg Lagrangian for the study of photon interactions, considered as the archetype of an effective field theory, to gauge bosons of arbitrary Lie algebras, several grand unification groups or mixed symmetries
Karam, Charbel. "Optical shielding of collisions between ultracold polar molecules." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP137.
Full textThis work is part of the ongoing research into quantum gases of ultracold molecules. This rapidly expanding field positions these systems as promising platforms for the complete control of quantum gases for applications such as quantum simulation or ultracold chemistry.When these molecules are prepared in their absolute ground state and trapped, observations reveal the rapid escape of molecules from the trap due to collision processes that are still not fully understood, preventing any applications. One solution is to expose these molecules to an electromagnetic field to suppress these losses by "shielding" collisions between molecules. Shielding involves transforming attractive interactions into repulsive ones.In this thesis, I propose a new technique for collision shielding based on a two-photon process in the optical domain. The main motivation for this method is to combine the advantages of existing techniques in the microwave domain while eliminating their limitations.I begin by exploring and modeling long-range interactions between polar molecules, dominated by dipole-dipole interactions. I present my calculations of the potential energy curves of long-range interactions between two molecules in their electronic ground state as well as in electronically excited states. This calculation, carried out in the coupled angular momentum basis in the laboratory frame, allowed me to identify configurations where the interaction between the molecules is repulsive.Thus, it is necessary to couple the attractive initial state of the colliding molecules to this repulsive state. I modeled the interaction between two molecules in a two-photon Raman-type scheme within the dipole approximation. At infinity, the individual molecules are placed in conditions of electromagnetically induced transparency (EIT), to protect them from photon scattering, which contributes to the heating of the quantum gas.When the molecules interact, I showed that their exposure to the two photons is modeled through a 5-level scheme, each of which is composed of multiple components. This imposes the need to consider this intrinsic complexity for a faithful representation of the molecules' behavior, departing from known small-level models. The Rabi frequencies and the detuning of the two lasers allow control over the evolution of the collision between molecules.By applying time-independent scattering theory, I propagated the wave function of the two molecules, whose interaction is described by the light-dressed potential curves, using a purely quantum formalism. I calculated the elastic, inelastic, and reactive collision rates induced by the lasers.My goal was to determine the conditions under which the elastic collision rate dominates the inelastic and reactive collision rates, which account for the observed losses. For Rabi frequency and detuning values compatible with typical experimental conditions, the elastic collision rate remains lower than the other rates, preventing effective shielding, though still demonstrating the real influence of the lasers. The main reason for this limited effectiveness is that the proposed scheme relies on second-order dipole-dipole interactions, which are not strong enough to induce sufficiently intense couplings to protect the molecules from losses.To address this issue, we propose using a weak static electric field, which could couple states at the first order, inducing stronger dipole-dipole interactions and thereby more effective shielding. Such a field is necessary for future experiments aiming to study anisotropic effects in quantum gases of ultracold molecules
Ferraris-Bouchez, Laura. "Mesure du moment dipolaire électrique du neutron : correction de l'effet systématique du champ fantôme." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALY018.
Full textThe search for a permanent electric dipole moment for simple systems such as the neutron is one of the most promising leads to discover CP violation beyond the Standard Model of particle physics.The discovery of such CP violation sources and the identification of new models beyond the Standard Model could lead to an explanation of the baryon asymmetry of the Universe.Therefore, there are several experiments aiming to measure a non-zero EDM for various systems (neutron, electron, atoms...).The Paul Scherrer Institute (PSI) nEDM experiment is one of them.The nEDM collaboration has collected data during two years (2015 and 2016) and published the most recent limit for the neutron EDM in April 2020.Precision measurements such as that experiment require an optimal control of the systematic effects.In this thesis, we present how to control the effects of the magnetic field inhomogeneities, which arise from the use of a mercury co-magnetometer in the PSI nEDM experiment.The co-magnetometer allows us to monitor the stability of the magnetic field and is essential to optimize the statistical sensibility.In order to correct the systematic effects of the magnetic field inhomogeneities, we perform an offline characterization of the field : the mapping.We present in this thesis the mapping measurement method, its analysis and the resulting corrections of the main systematic effect of the neutron EDM measurement.Once those corrections are taken into account, the last step of the analysis of nEDM data can be achieved, in order to extract the neutron EDM value which was published by the collaboration.The application of that step and its results are also presented in this thesis
Chung, Salomon. "Effet d'un champ électrique sur la structure et la dynamique de suspensions colloïdales confinées : étude numérique par simulation." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1059/document.
Full textThe work presented in this dissertation is in the framework of the theoretical study ofcolloidal dispersions, i.e. suspensions of particles whose size varies from nanometers tomicrometers. In such a medium, the interactions between particles can be tuned through their surfacecomposition for instance. One may also modify the environment of the colloids:a specific solvent can be combined with confinement of the mixture andan external can field applied on it in order to tune its thermodynamic properties.Once a model of a physical system is defined, computer simulation can be used to explorea range of parameters to check if the sought phenomenon occurs, before carrying outany real experiment. This work focuses on this preliminary step: our model consists ofa mixture of dipolar and apolar hard spheres in a confined medium and subjected to anelectric field (or a magnetic one for ferrocolloids).In a first step, we use Monte Carlo simulation to study equilibrium states ofa binary mixture confined between distant walls,with symmetric composition of the two species having non additive interactions.By comparing the results of different densities and field directions,we recover some properties already observed for similar systems.In the reference state where the field is turned off, the mixture at low density is stableand we notice that the dipoles stay away from the walls.A denser mixture separates into two phases and in the dipoles rich one,the dipolar particles now wet the walls.When the mixture is subjected to a field perpendicular to the walls,it remains stable in spite of its high density and non additivity between unlike particles.Increasing the field induces a structuring of the dipolar component near the wallsand we observe column shaped clusters of dipoles along the direction of the field.Finally, the application of a field parallel to the walls separates the mixture,even at the lowest density we chose. Dipoles stay away from the walls and we observeentangled dipoles chains.In a second step we explore the dynamics of a mixture with asymmetric composition andsubjected to a field. We combine Monte Carlo and molecular dynamic (Langevin) simulationsin this study. The mixture is confined in a box with a bottleneck channel in order tosimulate an open pore exchanging particles with a reservoir through an explicit interface.The field which is perpendicular to the walls is applied in the bottleneck regionto attract dipoles there.We first consider a low density mixture such that the filling / emptying cycleof the pore is reversible.The intensity of the field is then increased to speed up the cycles.As expected, the dipoles fill the pore faster then. However their composition saturatesunder the maximum value found for a lower field.A series of cycles was performed with increasing Langevin damping coefficients but stilllow enough to reduced the computation time.We then notice that the filling or emptying duration is a linear function ofthe damping coefficient. The duration of a cycle for colloids is then obtained fromextrapolation.Combining non additivity and high enough density, we are able to make an irreversible cycle:depending on the application sought for, this irreversibility can be useful ormust be avoided.This chapter ends with the assessment of the duration of a cycle with respect tothe size of colloids. We use an interaction model between colloidal particles wherea colloid is uniformly made of repulsive centers following a power law.With some scaling law hypotheses, the duration of a filling or an emptying is estimated forsmall colloids down to nearly molecular dimensions
Ernandes, Cyrine. "Manipuler l'émission et l'absorption de transitions dipolaires magnétiques par l'utilisation de nano-antennes optiques." Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS091.
Full textDuring the last years, technological progresses in the field of nanophotonic have allowed the development of optical nanostructures to manipulate the emission of fluorescent nanoemitters . However, light-matter interactions are usually considered to be mediated by the optical electric field only, discarding the magnetic side of it. Indeed, most of the past studies have been only studying the modification of the excitation or emission properties of electric dipole transitions. Recently, it was demonstrated that magnetic dipole could also be found in lanthanide ions. It was also shown that by changing the magnetic local density of states near these ions, the emission fluorescent of the magnetic transitions could be enhanced or decreased with respect to their electric counterpart. In here, we demonstrate experimentally, in perfect agreement with numerical simulations, the manipulation of magnetic and electric dipolar transitions by means of plasmonic cavities. Using a near-field scanning optical microscope (NSOM), we bring in close proximity a nanoparticle doped with trivalent europium to plasmonic cavities of different sizes made of aluminum , allowing perfect control over the interactions between the emitter and the nanostructures. In this study, we show both an increase and decrease of electric and magnetic signal from the particle, and we also display the spatial distribution of both the electric and magnetic radiative local density of state at the surface of the cavities.Therefore, this work pave the way to the understanding of ‘magnetic light’ and matter interactions
Mahmoud, Salman. "Étude théorique des molécules diatomiques BN, SiN et LaH, structure électronique et spectroscopie." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20080/document.
Full textIn the present work a theoretical investigation of the lowest molecular states of BN, SiN and LaH molecule, in the representation 2s+1Λ(+/-), has been performed via complete active space self-consistent field method (CASSCF) followed by multireference single and double configuration interaction method (MRSDCI). The Davidson correction noted as (MRSDCI+Q) was then invoked in order to account for unlinked quadruple clusters. The entire CASSCF configuration space was used as a reference in the MRCI calculation which has been performed via the computational chemistry program MOLPRO and by taking advantage of the graphical user interface Gabedit. Forty-two singlet, triplet, and quintet lowest electronic states in the 2s+1Λ(+/-) representation below 95000 cm-1 have been investigated of the molecule BN. While twenty-eight electronic states in the representation2s+1Λ(+/-)up to 70000 cm-1 of the SiN molecule have been investigated.On the other hand the Twenty four low-lying electronic states of LaH in the representation 2s+1Λ(+/-) below 35000 cm-1 have been studied by two different methods and by taking into consideration the spin orbit effect of the molecule LaH we give in the energy splitting of the eight electronic states. The potential energy curves (PECs) together with the harmonic frequency ωe, the equilibrium internuclear distance re, the rotational constants Be and the electronic energy with respect to the ground state Te have been calculated for the considered electronic states of BN, SiN and LaH molecule respectively. Using the canonical functions approach, the eigenvalues Ev, the rotational constants Bv ,the centrifugal distortion constants Dv and the abscissas of the turning points Rmin and Rmax have been calculated for electronic states up to the vibrational level v =51 for LaH molecule.Eighteen and Nine electronic states have been investigated here for the first time for the molecules of BN and SiN respectively, while for LaH, news results are performed for twenty three electronic states of LaH molecule and the spin-orbit effect of LaH molecule is given here for the first time. A comparison with experimental and theoretical data for most of the calculated constants demonstrated a very good accuracy. Finally, we expect that the results of our work should invoke further experimental investigations for these molecules. Our results have been published in Canadian journal of chemistry, Journal of Quantitative Spectroscopy and Radiative Transfer and we have two other papers in preparation to submit