To see the other types of publications on this topic, follow the link: Interaction Laser-Molecules.

Dissertations / Theses on the topic 'Interaction Laser-Molecules'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 18 dissertations / theses for your research on the topic 'Interaction Laser-Molecules.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Heesel, Eva Maria. "Interaction of small molecules with short intense laser pulses." Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hay, Nick. "The interaction of organic molecules and atomic clusters with ultrashort high intensity laser pulses." Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Talebpour, Abdossamad. "New advances in the interaction of a femtosecond Ti, sapphire laser with atoms and molecules." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0022/NQ36328.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zeng, Shuo. "Understanding diatomic molecular dynamics triggered by a few-cycle pulse." Diss., Kansas State University, 2015. http://hdl.handle.net/2097/19165.

Full text
Abstract:
Doctor of Philosophy
Physics
Brett D. Esry
In strong field physics, complex atomic and molecular motions can be triggered and steered by an ultrashort strong field. With a given pulse as an carrier-envelope form, E(t) = E₀(t) cos(ωt + φ), we established our photon-phase formalism to decompose the solution of a time-dependent Schrödinger equation in terms of photons. This formalism is further implemented into a general analysis scheme that allows extract photon information direct from the numerical solution. The φ-dependence of any observables then can be understood universally as an interference effect of different photon channels. With this established, we choose the benchmark system H₂⁺ to numerically study its response to an intense few-cycle pulse. This approach helps us identify electronic, rovibrational transitions in terms of photon channels, allowing one to discuss photons in the strong field phenomena quantitatively. Furthermore, the dissociation pathways are visualized in our numerical calculations, which help predicting the outcome of dissociation. Guided by this photon picture, we explored the dissociation in a linearly polarized pulse of longer wavelengths (compared to the 800 nm of standard Ti:Saphire laser). We successfully identified strong post-pulse alignment of the dissociative fragments and found out that such alignment exists even for heavy molecules. More significant spatial asymmetry is confirmed in the longer wavelength regime, because dissociation is no longer dominated by a single photon process and hence allowed for richer interference. Besides, quantitative comparison between theory and experiment have been conducted seeking beyond the qualitative features. The discrepancy caused by different experimental inputs allows us to examine the assumptions made in the experiment. We also extend numerical studies to the dissociative ionization of H₂ by modeling the ionization.
APA, Harvard, Vancouver, ISO, and other styles
5

Karam, Charbel. "Optical shielding of collisions between ultracold polar molecules." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP137.

Full text
Abstract:
Ce travail s'inscrit dans le contexte des recherches sur les gaz quantiques de molécules ultra-froides. Ce domaine en pleine expansion place ce type de système comme plate-forme prometteuse pour le contrôle de gaz quantiques pour des applications comme la simulation quantique ou la chimie ultra-froide.Lorsque ces molécules sont préparées dans leur état fondamental absolu et piégées, les observations révèlent la fuite rapide des molécules du piège par des processus collisionnels encore mal compris, empêchant toute application. Une solution consiste à exposer ces molécules à un champ électromagnétique pour supprimer ces pertes, en écrantant les collisions entre molécules. L'écrantage consiste à transformer les interactions attractives en interactions répulsives.Dans cette thèse, je propose une nouvelle technique d'écrantage des collisions basée sur un processus à deux photons dans le domaine optique. La principale motivation pour cette méthode est de combiner les avantages des techniques existantes dans le domaine microonde, tout en éliminant leurs limitations.Je commence par explorer et modéliser les interactions à longue portée entre les molécules polaires, dominées par l'interaction dipôle-dipôle. Je présente mes calculs des courbes d'énergie potentielle d'interaction à longue portée entre deux molécules dans leur état électronique fondamental ainsi que dans des états électroniques excités. Ce calcul, effectué dans la base couplée des moments angulaires dans le référentiel du laboratoire, a permis d'identifier des configurations où l'interaction entre les molécules est répulsive.Il convient donc de coupler l'état initial attractif des molécules en collision, à cet état répulsif. J'ai modélisé l'interaction entre deux molécules dans un schéma de type Raman à deux photons. A l'infini, les molécules individuelles sont placées dans les conditions de la transparence électromagnétiquement induite (EIT), pour les protéger de la diffusion de photons, qui contribue au réchauffement du gaz quantique.Lorsque les molécules interagissent, j'ai montré que leur exposition aux deux photons se modélise au travers d'un schéma à 5 niveaux, chacun d'entre eux étant composé de multiples composantes. Cela impose la prise en compte de cette complexité intrinsèque pour une représentation fidèle du comportement des molécules, s'éloignant ainsi des modèles connus à petit nombre de niveaux. Les fréquences de Rabi et le décalage en fréquence des deux lasers permettent de contrôler l'évolution de la collision entre molécules. En appliquant la théorie de la diffusion indépendante du temps, j'ai propagé la fonction d'onde des deux molécules, dont l'interaction est décrite par les courbes de potentiel habillées par la lumière, en considérant un formalisme purement quantique. J'ai calculé les taux de collisions élastiques, inélastiques et réactives induites par les lasers. L'objectif a été de déterminer les conditions pour lesquelles le taux de collisions élastiques domine les taux de collisions inélastiques et réactives, traduisant les pertes observées. Pour des valeurs de fréquence de Rabi et de décalage en fréquence compatibles avec les conditions expérimentales typiques, le taux de collisions élastiques demeure inférieur aux autres taux, ce qui empêche un écrantage efficace, tout en démontrant l'influence réelle des lasers. La principale raison de cette efficacité limitée est que le schéma proposé repose sur des interactions dipôle-dipôle du 2ème ordre, qui ne sont pas suffisamment fortes pour induire des couplages assez intenses pour protéger les molécules des pertes.Pour y remédier, nous proposons d'utiliser un faible champ électrique statique, qui pourrait coupler des états au 1er ordre, induisant des interactions dipôle-dipôle plus fortes et donc un écrantage plus efficace. Un tel champ est nécessaire dans les futures expériences visant à étudier les effets anisotropes dans les gaz quantiques moléculaires ultra-froids
This work is part of the ongoing research into quantum gases of ultracold molecules. This rapidly expanding field positions these systems as promising platforms for the complete control of quantum gases for applications such as quantum simulation or ultracold chemistry.When these molecules are prepared in their absolute ground state and trapped, observations reveal the rapid escape of molecules from the trap due to collision processes that are still not fully understood, preventing any applications. One solution is to expose these molecules to an electromagnetic field to suppress these losses by "shielding" collisions between molecules. Shielding involves transforming attractive interactions into repulsive ones.In this thesis, I propose a new technique for collision shielding based on a two-photon process in the optical domain. The main motivation for this method is to combine the advantages of existing techniques in the microwave domain while eliminating their limitations.I begin by exploring and modeling long-range interactions between polar molecules, dominated by dipole-dipole interactions. I present my calculations of the potential energy curves of long-range interactions between two molecules in their electronic ground state as well as in electronically excited states. This calculation, carried out in the coupled angular momentum basis in the laboratory frame, allowed me to identify configurations where the interaction between the molecules is repulsive.Thus, it is necessary to couple the attractive initial state of the colliding molecules to this repulsive state. I modeled the interaction between two molecules in a two-photon Raman-type scheme within the dipole approximation. At infinity, the individual molecules are placed in conditions of electromagnetically induced transparency (EIT), to protect them from photon scattering, which contributes to the heating of the quantum gas.When the molecules interact, I showed that their exposure to the two photons is modeled through a 5-level scheme, each of which is composed of multiple components. This imposes the need to consider this intrinsic complexity for a faithful representation of the molecules' behavior, departing from known small-level models. The Rabi frequencies and the detuning of the two lasers allow control over the evolution of the collision between molecules.By applying time-independent scattering theory, I propagated the wave function of the two molecules, whose interaction is described by the light-dressed potential curves, using a purely quantum formalism. I calculated the elastic, inelastic, and reactive collision rates induced by the lasers.My goal was to determine the conditions under which the elastic collision rate dominates the inelastic and reactive collision rates, which account for the observed losses. For Rabi frequency and detuning values compatible with typical experimental conditions, the elastic collision rate remains lower than the other rates, preventing effective shielding, though still demonstrating the real influence of the lasers. The main reason for this limited effectiveness is that the proposed scheme relies on second-order dipole-dipole interactions, which are not strong enough to induce sufficiently intense couplings to protect the molecules from losses.To address this issue, we propose using a weak static electric field, which could couple states at the first order, inducing stronger dipole-dipole interactions and thereby more effective shielding. Such a field is necessary for future experiments aiming to study anisotropic effects in quantum gases of ultracold molecules
APA, Harvard, Vancouver, ISO, and other styles
6

Viteau, Matthieu. "Pompage optique et refroidissement laser de la vibration de molecules froides." Phd thesis, Université Paris Sud - Paris XI, 2008. http://tel.archives-ouvertes.fr/tel-00367369.

Full text
Abstract:
Cette thèse présente différentes études sur la formation et la détection de molécules froides. Différents états moléculaires de grandes élongations, pour la molécule Cs2, sont étudié par spectroscopie de photoassociation et d'ionisation. Ces différentes études ont permis d'affiner notre compréhension des mécanismes de photoassociation d'atomes froids formant des molécules dans l'état fondamental triplet (a 3Σu+).
Une détection non sélective a été développée, pour la recherche de mécanismes de formation de molécules froides dans l'état fondamental singulet avec peu de vibration. Avec cette nouvelle détection, un nouveau mécanisme de formation de molécules par photoassociation d'atomes froids de césium a été trouvé. Celui-ci permet de former efficacement des molécules dans une distribution de niveaux avec très peu de vibration dans l'état fondamental (X 1Σg+).
En utilisant un laser femtoseconde (large spectralement) façonné, un refroidissement vibrationnel des molécules a été démontré, permettant la formation de molécules froides sans vibrations. Le laser femtoseconde, permet d'exciter les nombreux niveaux vibrationnels, créés par photoassociation, il réalise ainsi un pompage optique des molécules. Le laser est façonné de manière à rendre l'état de vibration zéro, noir pour ce laser, et ainsi accumuler toutes les molécules vers ce seul état.
Ce résultat est également simulé par un model théorique simple. Cette simulation permet de généraliser l'idée au refroidissement de la rotation des molécules.

Une partie (résumée) présente, en s'appuyant sur les différents articles publiés, les études sur les interactions dipôle-dipôle, à grandes portées, entre atomes de Rydberg.
APA, Harvard, Vancouver, ISO, and other styles
7

Tong, Xin. "Non-covalent interactions in aromatic molecules and clusters : studies by laser spectroscopy." Thesis, University of York, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Labeye, Marie. "Molecules interacting with short and intense laser pulses : simulations of correlated ultrafast dynamics." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS193/document.

Full text
Abstract:
Cette thèse porte sur différents aspects des dynamiques ultra-rapides d’atomes et de molécules soumises à des impulsions laser infrarouges courtes et intenses. Nous étudions des processus fortement non linéaires tels que l’ionisation tunnel, la génération d’harmoniques d’ordre élevé ou l’ionisation au-dessus du seuil. Deux approches différentes sont utilisées. D’un côté nous mettons au point des modèles analytiques approchés qui nous permettent de construire des interprétations physiques de ces processus. D’autre part nous appuyons les interprétations données par ces modèles avec les résultats obtenus par des simulations numériques qui résolvent explicitement l’équation de Schrödinger dépendante du temps en dimension réduite. Nous étudions également une méthode numérique basée sur l’interaction de configuration dépendante du temps afin de pouvoir des décrire des systèmes à plusieurs électrons plus gros et plus complexes
In this thesis we study different aspects of the ultrafast dynamics of atoms and molecules triggered by intense and short infrared laser pulses. Highly non-linear processes like tunnel ionization, high order harmonic generation and above threshold ionization are investigated. Two different and complementary approaches are used. On the one hand we construct approximate analytical models to get physical insight on these processes. On the other hand, these models are supported by the results of accurate numerical simulations that explicitly solve the time dependent Schrödinger equation for simple benchmark models in reduced dimensions. A numerical method based on time dependent configuration interaction is investigated to describe larger and more more complex systems with several electrons
APA, Harvard, Vancouver, ISO, and other styles
9

Boutu, Willem. "DYNAMIQUE DE LA GENERATION D'HARMONIQUES DANS LES ATOMES ET LES MOLECULES." Phd thesis, Université Paris Sud - Paris XI, 2007. http://tel.archives-ouvertes.fr/tel-00593728.

Full text
Abstract:
La génération d'harmoniques d'ordre élevé par focalisation d'impulsions laser femtosecondes et intenses dans des gaz permet d'obtenir des trains d'impulsions attosecondes dans l'XUV. Dans cette thèse, nous présentons une technique destinée à optimiser l'efficacité de génération, puis nous montrons comment la caractérisation du rayonnement permet l'étude de la dynamique des molécules en champ fort. Dans une première partie, par une manipulation de sa phase spatiale, nous transformons le profil du faisceau laser infrarouge au foyer afin d'agrandir le volume de génération. Nous mettons en évidence la possibilité de créer un profil carré, élargi d'un facteur 2.5 par rapport au profil gaussien. Nous étudions ensuite la génération d'harmoniques dans les gaz rares par un tel faisceau, à la fois expérimentalement et numériquement. Bien que nous n'ayons pu observer d'augmentation significative du signal harmonique, les simulations effectuées à plus forte énergie indiquent un gain d'efficacité. Dans une seconde partie, nous montrons que le spectre et la phase spectrale du rayonnement harmonique issu d'un ensemble de molécules linéaires alignées présentent des structures liées aux caractéristiques des molécules. Nous mettons en évidence la présence d'un saut de phase lié à un phénomène d'interférences quantiques lors de l'étape de recombinaison. Nous étudions la dépendance de ce saut de phase en fonction de différents paramètres, tels que l'orientation des molécules ou l'éclairement de génération. Ces mesures permettent l'étude de la dynamique électronique lors de la recombinaison du paquet d'ondes électroniques. De plus, elles devront servir de support pour les nouvelles modélisations du comportement des molécules en champ intense.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Bo. "Experimental Studies of Quantum Dynamics and Coherent Control in Homonuclear Alkali Diatomic Molecules." Doctoral thesis, KTH, Physics, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3420.

Full text
Abstract:

The main theme covered in this thesis is experimentalstudies of quantum dynamics and coherent control in homonuclearalkali diatomic molecules by ultrafast laser spectroscopy iththe implementation of pump-probe techniques.

A series of experiments have been performed on the Rb2molecules in a molecular beam as well as in a thermal oven. Thereal-time molecular quantum dynamics of the predissociatingelectronically excited D(3)1Πu state of Rb2, which couples to/intersects several otherneighbouring states, is investigated using wavepackets. Thepredissociation of the D state, explored by this wavepacketmethod, arises from two independent states, the (4)3Σu+and (1)3u, for which the second corresponds to a much fasterdecay channel above a sharp energy threshold around 430 nm. Thelifetime of the D state above the energy threshold is obtained,τ ≈ 5 ps, by measuring the decay time of thewavepacket in a thermal oven. Further experimentalinvestigation performed in a molecular beam together withquantum calculations of wavepacket dynamics on the D state haveexplored new probe channels of wavepacket evolution: theD′(3)1Σu+ channel, which exhibits vibrational motionin a shelf state and the (4)3Σu+ channel, where direct build-up of thewavefunction is observed due to its spin-orbit oupling to the Dstate.

The real-time quantum dynamics of wavepackets confined totwo bound states, A1Σu+(0u+) and b3Πu(0u+), have been studied by experiment andcalculations. It is shown that these two states are fullycoupled by spin-orbit interaction, characterised by itsintermediate strength. The intermediate character of thedynamics is established by complicated wavepacket oscillationatterns and a value of 75 cm-1is estimated for the coupling strength at thestate crossing.

The experiments on the Li2molecule are performed by coherent control ofrovibrational molecular wavepackets. First, the Deutsch-Jozsaalgorithm is experimentally demonstrated for three-qubitfunctions using a pure coherent superposition of Li2rovibrational eigenstates. The function’scharacter, either constant or balanced, is evaluated by firstimprinting the function, using a phase-tailored femtosecond(fs) pulse, on a coherent superposition of the molecularstates, and then projecting the superposition onto an ionicfinal state using a second fs pulse at a specific delay time.Furthermore, an amplitude-tailored fs pulse is used to exciteselected rovibrational eigenstates and collision induceddephasing of the wavepacket signal, due to Li2-Ar collisions, is studied experimentally. Theintensities of quantum beats decaying with the delay time aremeasured under various pressures and the collisional crosssections are calculated for each well-defined rovibrationalquantum beat, which set the upper limitsfor ure dephasingcross sections.

Keywords:Ultrafast laser spectroscopy, pump-probetechnique, predissociation, wavepacket, pin-orbit interaction,coherent control, (pure) dephasing

APA, Harvard, Vancouver, ISO, and other styles
11

Ferré, Amelie. "Etude des dynamiques moléculaires sondées par générations d'harmoniques d'ordres élevés." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0165/document.

Full text
Abstract:
Grâce à ses propriétés (cohérence, brillance, durée), le rayonnement XUV femtoseconde produit par génération d'harmoniques d'ordre élevé est utilisé comme un processus de sonde pour l'étude de dynamiques atomiques et moléculaires, avec une bonne résolution spatiale et temporelle (femtoseconde voire attoseconde). Ainsi, des dynamiques rotationnelles ont été résolues sur des petits systèmes moléculaires (N2, CO2). Les travaux de cette thèse ont consisté à étendre les méthodes de spectroscopie harmoniques et les appliquer à des systèmes moléculaires complexes d'intérêt femtochimique. Parmi elles, nous présenterons la génération d'harmoniques à deux sources, le réseau transitoire d'excitation ou encore la génération d'harmoniques à deux couleurs. Ces techniques nous ont permis de résoudre des dynamiques femtosecondes dans N2O4 et SF6. La HHG est aussi utilisée comme source de rayonnement XUV, en jouant le rôle d'impulsion pompe lors d'expériences de type pompe-sonde. Cette approche a été utilisée pour l'étude du dichroïsme circulaire de photoélectrons de molécules chirales ionisées par un champ XUV harmonique de polarisation quasi circulaire. Nous nous attarderons à détailler la découverte de cette nouvelle source XUV femtoseconde de polarisation quasi circulaire
High harmonic generation (HHG) spectroscopy has proven to be a promisingtool (like probe in pump-probe experiments) in revealing the atomic and molecular dynamicswith the potential for subangstrom spatial resolution and subfemtosecond temporalresolution. Then, rotational dynamics have been resolved on small molecular systems (N2,CO2). This thesis looks to extending HHG spectroscopy methods to probe the structureand the dynamic of complex molecular systems. We will describe the two sources highharmonic generation, the transient grating of excitation and the two-color high harmonicgeneration. We enable to resolve the femtosecond nuclear dynamics in N2O4 and SF6. HHGis also used like a XUV radiation source, playing the role of pump pulse. This approach hasbeen used for the study of photoelectron circular dichroism. An XUV harmonic field witha quasi-circular polarization ionizes chiral molecules. In this manuscript, we will developthis new femtosecond XUV and quasi circular polarization radiation
APA, Harvard, Vancouver, ISO, and other styles
12

Marinov, Daniil. "Reactive adsorption of molecules and radicals on surfaces under plasma exposure." Palaiseau, Ecole polytechnique, 2012. https://pastel.hal.science/docs/00/75/29/87/PDF/PhD_DM.PDF.

Full text
Abstract:
Les sources d'atomes, la protection thermique pour la rentrée atmosphérique et la dépollution de l'air par couplage plasma-catalyseur voici quelques exemples d'applications pour lesquelles l'interaction plasma-surface joue un rôle principal. Les mécanismes des réactions hétérogènes dans les plasmas contenant les gaz atmosphériques N2/O2 sont encore peu compris. La précision et la capacité de prédiction des modèles cinétiques sont limitées par la connaissance des conditions de la surface. Dans la première partie de ce travail, nous avons étudié l'adsorption et les réactions chimiques des atomes O et N sur des surfaces de différents oxydes (silice, Pyrex, TiO2) sous exposition plasma. Nous avons utilisé la spectroscopie d'absorption par laser accordable, la spectroscopie d'absorption UV, la fluorescence induite par laser à deux photons (TALIF) et la spectrométrie de masse pour suivre l'interaction entre les espèces en phase gaz et les surfaces. L'analyse chimique de surface a été effectuée par spectrométrie photoélectronique X (XPS). Nous avons montré que des atomes stables Nads et Oads peuvent être chimisorbés sur la surface par plasma dans O2 et N2 à basse pression (~ 1 mbar). Leur densité et la réactivité ont été évaluées par réactions avec des molécules stables (NO, C2H2) et des radicaux (O, N) sur la surface prétraitée. Le rôle des atomes chimisorbés pour la recombinaison hétérogène d'atomes a été étudié en utilisant l'échange isotopique 15N ↔ 14Nads et 18O ↔ 16Oads sous exposition plasma. Dans la deuxième partie de cette thèse, nous avons étudié la relaxation vibrationnelle des molécules de N2 sur des surfaces catalytiques par la technique de titrage infrarouge (IR). Des mélanges contenant 0,05 - 1% de CO2 (CO ou N2O) dans N2 à la pression p = 1,3 mbar ont été excités par une décharge dc pulsée. La cinétique de la relaxation vibrationnelle des traceurs IR dans la post-décharge a été mesurée par un laser à cascade quantique. Grace à un couplage très efficace entre N2 et CO2 (CO ou N2O), l'excitation vibrationnelle de CO2 (CO ou N2O) reflet l'excitation de N2. Un modèle numérique de la cinétique vibrationnelle a été développé afin d'interpréter les mesures de relaxation. La probabilité de perte d'un quanta vibrationnel de N2 sur la surface a été déterminée à partir du meilleur accord entre l'expérience et le modèle
Atomic sources, thermal protection for atmospheric re-entry and plasma-catalyst systems for air pollution control are just few examples of applications where interaction between N2/O2 containing plasmas and the surface plays a central role. Mechanisms of heterogeneous processes in plasmas are still barely understood. Unknown conditions on the surface limit the accuracy and predictive capability of the kinetic models. In the first part of this work we investigate adsorption and chemical reactions of O and N atoms on oxide surfaces (silica, Pyrex, TiO2) under plasma exposure. We use tuneable laser absorption spectroscopy, broad-band UV absorption spectroscopy, two-photon absorption laser-induced fluorescence (TALIF) and mass spectrometry to monitor interaction between gas phase species and the surface. Surface analysis is performed using x-ray photoelectron spectroscopy (XPS). It has been shown that stable Oads and Nads atoms are grafted to oxide surfaces under exposure to low pressure (~1 mbar) plasmas in O2 and N2. The coverage and reactivity of adsorbed atoms has been probed by exposing the pretreated surface to stable molecules (NO, C2H2) and radicals (O, N). Using isotopic exchange 15N↔14Nads and 18O↔16Oads under plasma exposure the role of chemisorbed species in surface catalysed recombination of atoms has been investigated. In the second part of this thesis, relaxation of vibrationally excited N2 molecules on catalytic surfaces is studied using infrared (IR) titration technique. Mixtures containing 0. 05 - 1% of CO2 (CO, N2O) in N2 at p=1. 3 mbar are excited by a single dc discharge pulse. The kinetics of vibrational relaxation of IR tracers during the post-discharge is followed using quantum cascade laser absorption spectroscopy. Due to a very efficient vibrational energy transfer between N2 and CO2 (CO, N2O), excitation of IR tracers is an image of the vibrational excitation of N2. Relaxation measurements have been interpreted in terms of a numerical model of non-equilibrium vibrational kinetics. Probability of N2 vibrational quantum loss has been determined from the best agreement between the experiment and the model
APA, Harvard, Vancouver, ISO, and other styles
13

Puthumpally, Joseph Raijumon. "Quantum Interferences in the Dynamics of Atoms and Molecules in Electromagnetic Fields." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS035/document.

Full text
Abstract:
Les interférences quantiques apparaissant lors de la superposition cohérente d'états quantiques de la matière sont à l'origine de la compréhension et du contrôle de nombreux processus élémentaires. Dans cette thèse, deux problèmes distincts, qui ont pour origine de tels effets, sont discutés avec leurs applications potentielles : 1. Diffraction électronique induite par Laser (LIED) et imagerie des orbitales moléculaires ; 2. Effets collectifs dans des vapeurs denses et transparence électromagnétique induite par interaction dipôle-dipôle (DIET). La première partie de cette thèse traite du mécanisme de recollision dans des molécules linéaires simples lorsque le système est exposé à un champ laser infrarouge de forte intensité. Cette interaction provoque une ionisation tunnel du système moléculaire, conduisant à la création d'un paquet d'ondes électronique dans le continuum. Ce paquet d'ondes suit une trajectoire oscillante, dirigée par le champ laser. Cela provoque une collision avec l'ion parent qui lui a donné naissance. Ce processus de diffraction peut être de nature inélastique, engendrant la génération d'harmoniques d'ordre élevé (HHG) ou l'ionisation double non-séquentielle, ou de nature élastique, processus que l'on appelle généralement « diffraction électronique induite par laser ». La LIED porte des informations sur la molécule et sur l'état initial à partir duquel les électrons sont arrachés sous forme de motifs de diffraction formés en raison de l'interférence entre différentes voies de diffraction. Dans ce projet, une méthode est développée pour l'imagerie des orbitales moléculaires, reposant sur des spectres de photo-électrons obtenus par LIED. Cette méthode est basée sur le fait que la fonction d'ondes du continuum conserve la mémoire de l'objet à partir duquel elle a été diffractée. Un modèle analytique basé sur l'approximation de champ fort (SFA) est développé pour des molécules simples linéaires et appliqué aux orbitales moléculaires HOMO et HOMO-1 du dioxyde de carbone. L'interprétation et l'extraction des informations orbitalaires imprimées dans les spectres de photo-électrons sont présentées en détail. Par ailleurs, nous estimons que ce type d'approche pourrait être étendu à l'imagerie de la dynamique électro-nucléaire de tels systèmes. La deuxième partie de cette thèse traite des effets collectifs dans des vapeurs atomiques ou moléculaires denses. L'action de la lumière sur ces gaz crée des dipôles induits qui oscillent et produisent des ondes électromagnétiques secondaires. Lorsque les particules constitutives du gaz sont assez proches, ces ondes secondaires peuvent coupler les dipôles induits entre-eux, et lorsque cette corrélation devient prépondérante la réponse du gaz devient une réponse collective. Ceci conduit à des effets spécifiques pour de tels systèmes, comme l'effet Dicke, la superradiance, et les décalages spectraux de Lorentz-Lorenz ou de Lamb. A cette liste d'effets collectifs, nous avons ajouté un effet de transparence induite dans l'échantillon. Cet effet collectif a été appelé « transparence électromagnétique induite par interaction dipôle-dipôle ». La nature collective de l'excitation du gaz dense réduit la vitesse de groupe de la lumière transmise à quelques dizaines de mètre par seconde, créant ainsi une lumière dite « lente ». Ces effets sont démontrés pour les transitions D1 du 85Rb et d'autres applications potentielles sont également discutées
Quantum interference, coherent superposition of quantum states, are widely used for the understanding and engineering of the quantum world. In this thesis, two distinct problems that are rooted in quantum interference are discussed with their potential applications: 1. Laser induced electron diffraction (LIED) and molecular orbital imaging, 2. Collective effects in dense vapors and dipole induced electromagnetic transparency (DIET). The first part deals with the recollision mechanism in molecules when the system is exposed to high intensity infrared laser fields. The interaction with the intense field will tunnel ionize the system, creating an electron wave packet in the continuum. This wave packet follows an oscillatory trajectory driven by the laser field. This results in a collision with the parent ion from which the wave packet was formed. This scattering process can end up in different channels including either inelastic scattering resulting in high harmonic generation (HHG) and non-sequential double ionization, or elastic scattering often called laser induced electron diffraction. LIED carries information about the molecule and about the initial state from which the electron was born as diffraction patterns formed due to the interference between different diffraction pathways. In this project, a method is developed for imaging molecular orbitals relying on scattered photoelectron spectra obtained via LIED. It is based on the fact that the scattering wave function keeps the memory of the object from which it has been scattered. An analytical model based on the strong field approximation (SFA) is developed for linear molecules and applied to the HOMO and HOMO-1 molecular orbitals of carbon dioxide. Extraction of orbital information imprinted in the photoelectron spectra is presented in detail. It is anticipated that it could be extended to image the electro-nuclear dynamics of such systems. The second part of the thesis deals with collective effects in dense atomic or molecular vapors. The action of light on the vapor samples creates dipoles which oscillate and produce secondary electro-magnetic waves. When the constituent particles are close enough and exposed to a common exciting field, the induced dipoles can affect one another, setting up a correlation which forbids them from responding independently towards the external field. The result is a cooperative response leading to effects unique to such systems which include Dicke narrowing, superradiance, Lorentz-Lorenz and Lamb shifts. To this list of collective effects, one more candidate has been added, which is revealed during this study: an induced transparency in the sample. This transparency, induced by dipole-dipole interactions, is named “dipole-induced electromagnetic transparency”. The collective nature of the dense vapor excitation reduces the group velocity of the transmitted light to a few tens of meter per second resulting in 'slow' light. These effects are demonstrated for the D1 transitions of 85Rb and other potential applications are also discussed
APA, Harvard, Vancouver, ISO, and other styles
14

Devolder, Adrien. "Contrôle par laser de la formation de molécules polaires paramagnétiques ultra-froides." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS361/document.

Full text
Abstract:
La thèse se positionne dans le domaine des molécules ultra-froides, c’est-à-dire des molécules qui ont des vitesses correspondant à des températures de l’ordre du µK. L’obtention de gaz dilués moléculaires à ces températures peut ouvrir la porte à des applications importantes en simulation ou en informatique quantique. La thèse s’intéresse plus particulièrement à la formation de molécules dipolaires électriques et magnétiques. Celles-ci sont présagées pour être un système idéal dans l’optique d’un simulateur quantique du système réseau-spin, permettant de décrire le magnétisme dans les solides. Nous avons choisi l’exemple de la molécule RbSr qui fait l’objet actuellement d’une expérience à Amsterdam. Nous avons donc exploré plusieurs alternatives basées sur l’emploi de laser pour la formation de molécules RbSr ultra-froides Nous avons d’abord considéré la photoassociation dont le principe est de coupler l’état de collision initial avec un état rovibrationnel d’un état électronique excité. L’étape d’émission spontanée qui suit forme des molécules dans l’état électronique fondamental. Nous avons également considéré le problème des pertes supplémentaires d’atomes lorsque le laser de photoassociation est intense et focalisé, mises en évidence dans une expérience à Bangalore. Dans la suite de la thèse, nous avons exploré des méthodes cohérentes. Nous avons montré que des molécules faiblement liées de RbSr peuvent être formées à l’aide d’un STIRAP en partant de paires d’atomes isolées et confinées dans un isolant de Mott. Nous avons ensuite étudié leur stabilisation vers le niveau le plus profond de l’état fondamental de la molécule à l’aide d’un second STIRAP. Enfin, nous avons étudié des méthodes se déroulant uniquement dans l’état électronique fondamental. La formation est induite par l’utilisation d’une impulsion à dérive de fréquence induisant un passage adiabatique ou à l’aide d’une impulsion-pi. En plus, nous avons découvert que cette méthode formation peut être reliée à une résonance de Feshbach dans la représentation habillée par les photons, que nous avons appelée Résonance de Feshbach auto-induité assistée par Laser (LASIFR en anglais). Nous montrons qu’elles sont un outil prometteur et puissant pour le contrôle des propriétés de mélange de gaz d’atomes ultra-froids, comme par exemple la longueur de diffusion
The thesis is positioned in the ultracold domain, i.e molecules which have velocities corresponding to microkelvin temperatures. The formation of molecular diluted gas at these temperatures is promising for important applications in quantum simulation, quantum information or in precision measurements.More particularly, the thesis is focused on the formation of molecules which are polar and paramagnetic. Some recent works are predicted that these molecules could be the ideal system for creating a quantum simulator of the lattice-spin system, which can describe the magnetism in solids. We have chosen the example of RbSr molecules for whose an experience runs in Amsterdam. We explored some alternatives based on the use of lasers for the formation of ultracold RbSr molecules.First, we considered the photoassociation whose the principle is coupling the initial scattering state with a rovibrational level of an excited electronic state. The following spontaneous emission step creates molecules in the electronic ground state. We also considered the problem of atom losses observed by experiments in Bangalore, when a focused photoassociation laser is applied. In the rest of the thesis, we explored coherent methods. Firstly, we showed a STIRAP sequence could create weakly bound molecules from isolated atomic pairs confined in a Mott insulator. Lastly, we explored some of these methods where the dynamic occurs only in the electronic ground state. The formation is induced by the use of a chirped pulse or a pi-pulse. We studied the factors of the transfer. Moreover, we discovered this method is related to a new kind of Feshbach resonances in the photon dressed picture, called Laser Assisted Self-Induced Feshbach Resonance (LASIFR). We showed LASIFR present the advantages of Magnetic and Optical Feshbach Resonances. They are a promising and powerful tool for the control of properties of quantum gas mixtures, like the interspecies scattering length
APA, Harvard, Vancouver, ISO, and other styles
15

Beaulieu, Samuel. "Probing femtosecond and attosecond electronic and chiral dynamics : high-order harmonic generation, XUV free induction decay, photoelectron spectroscopy and Coulomb explosion." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0063/document.

Full text
Abstract:
Ce manuscrit de thèse s'articule autour de l'étude de l'interaction entre des impulsions lumineuses ultra brèves et des atomes ainsi que des molécules polyatomiques et chirales en phase gazeuse. En utilisant des techniques développées en physique attoseconde ainsi qu'en femtochimie, notre objectif général est de parvenir à une meilleure compréhension des dynamiques ultrarapides photoinduites dans la matière. Pour ce faire, nous avons développé des sources de lumière à ultra brèves dans le proche infrarouge et l’infrarouge moyen, qui ont été utilisées pour construire une source de rayons X dans la fenêtre de l’eau, basée surla génération d'harmoniques d’ordre élevé (GHOE), ainsi que pour l’étude de nouveaux canaux de GHOE impliquant des états hautement excités (Rydberg). Cette dernière étude a démontré une émission harmonique via l'ionisation depuis des états de Rydberg et la recombinaison radiative sur l'état fondamental, attirant ainsi notre intérêt pour le rôle des états de Rydberg en physique des champs forts. Cela nous a conduit à étudier la décroissance libre de l’induction XUV de paquets d'ondes électroniques comme une nouvelle technique de spectroscopie 2D. De plus, nous avons découvert que l'interaction entre un laser intense et un atome préparé dans une superposition cohérente d'états électroniques peut conduire à la génération de lignes hyper-Raman concomitantes avec la GHOE standard. Ce mécanisme avait été prédit lors des premiers calculs théoriques de GHOE, mais n'avait jamais été démontré expérimentalement. Par la suite, nous nous sommes intéressé à l’étude de systèmes moléculaires, dans lesquelles une excitation électronique induite par la lumière peut déclencher des dynamiques nucléaires. Nous avons étudié la photo isomérisation non-adiabatique de l’acétylène cationique en vinylidène cationique ainsi que le contrôle cohérent de la localisation électronique lors de la photodissociation de H2+. La simplicité de ces systèmes moléculaires a permis la comparaison des résultats expérimentaux avec des calculs théoriques de pointe,révélant l'importance du couplage entre les degrés de liberté nucléaires et électroniques lors de dynamiques moléculaires photoinduites.Un autre pilier majeur de cette thèse est l'étude de l'ionisation de molécules chirales avec des impulsions chirales. On sait depuis les années 70 que l'ionisation d'un ensemble de molécules chirales aléatoirement orientées, en utilisant une impulsion polarisée circulairement, conduit à une forte asymétrie avant-arrière dans le nombre de photoélectrons émis, selon l'axe de propagation de la lumière (DichroismeCirculaire de Photoélectron, DCPE). Avant cette thèse, le DCPE a été largement étudié à l’aide du rayonnement synchrotron (ionisation à un photon) et a récemment été démontré avec des lasers femtoseconde, via des schémas d'ionisation multiphotonique. Dans cette thèse, nous avons montré que le DCPE est un effet universel, c'est-à-dire qu'il émerge dans tous les régimes d'ionisation: l'ionisation àun photon, l'ionisation à multiphonique, l'ionisation au-dessus du seuil ainsi que l’ionisation par effet tunnel. Ensuite, nous avons démontré que la combinaison d’approches standard de femtochimie et du DCPE peuvent être utilisées pour suivre des dynamique de molécules chirales photoexcitées. En utilisant des approches expérimentales similaires, avec des séquences d'impulsions ayant des états de polarisation contre-intuitifs, nous avons démontré un nouvel effet chiroptique, appelé Dichroïsme Circulaire de Photoexcitation (DCPX), qui est décrit par un courant électronique directionnel et chirosensible, lorsque plusieurs niveaux sont peuplés de manière cohérente avec de la lumière chirale. Enfin, nous avons introduit une perspective temporelle à la photoionisation chirale en mesurant l'asymétrie avant arrièredes retards de photoionisation dans les molécules chirales photoionisées par des impulsions lumineuses chirales
This thesis manuscript is articulated around the investigation of the interaction between ultrashort light pulses and gas-phase atoms, polyatomic and chiral molecules. Using the toolboxes developed in attosecond and strong-field physics as well as in femtochemistry, our general goal is to reach a better understanding of subtle effects underlying ultrafast light-induced dynamics in matter.To do so, we developed cutting-edge near-infrared and mid-infrared few-cycle light sources, which were used to build a water-window soft-X-ray source based on high order harmonic generation (HHG), as well as to study new HHG channels involving highly-excited (Rydberg) states. The latter study revealed a delayed HHG emission from the ionization of Rydberg states and radiative recombination onto the electronicground state, triggering our interest in the role of Rydberg states in strong-field physics. This led us to investigate the laser-induced XUV Free Induced Decay from electronic wave packets as a new background-free 2D spectroscopic technique.More over, we have found out that strong-field interaction with a well prepared coherent superposition of electronic states led to the generation of hyper-Ramanlines concomitant with standard high-order harmonics. These spectral features were predicted in the early-days theoretical calculations of HHG but had never been reported experimentally.After these experiments in rare gas atoms, we moved to molecular targets, in whichlight-induced electronic excitation can trigger nuclear dynamics. Using simple benchmark molecules, we have studied dynamics involving the participation of both nuclear and electronic degrees of freedom: first, we studied the ultrafast non adiabatic photoisomerization of the acetylene cation into vinylidene cation, andsecond, we investigated the coherent control of electron localization during molecular photodissociation of H2+. The simplicity of these molecular targets enabled the comparison of the experimental results with state-of-the-art theoretical calculations,revealing the importance of the coupling between nuclear and electronic degrees of freedom in photoinduced molecular dynamics.The other major pillar of this thesis is the study of ionization of chiral molecules usingchiral light pulses. It has been known since the 70s that the ionization from an ensemble of randomly oriented chiral molecules, using circularly polarized light pulse,leads to a strong forward-backward asymmetry in the number of emitted photoelectrons, along the light propagation axis (Photoelectron Circular Dichroism,PECD). Prior to this thesis, PECD was widely studied at synchrotron facilities (single photonionization) and had recently been demonstrated using table-top lasers in resonant-enhanced multiphoton ionization schemes. In this thesis, we have shownthat PECD is a universal effect, i.e. that it emerges in all ionization regimes, from single photon ionization, to few-photon ionization, to above-threshold ionization, up to the tunneling ionization regime. This bridges the gap between chiral photoionizationand strong-field physics. Next, we have shown how the combination of standard femtochemistry approaches and PECD can be used to follow the dynamics of photoexcited chiral molecules using time-resolved PECD. Using similar experimental approaches, but by using pulse sequences with counter-intuitive polarization states,we have demonstrated a novel electric dipolar chiroptical effect, called Photoexcitation Circular Dichroism (PXCD), which emerges as a directional and chirosensitive electron current when multiple excited bound states of chiral molecules are coherently populated with chiral light. Last, we introduced a time-domain perspective on chiral photoionization by measuring the forward-backward asymmetry of photoionization delays in chiral molecules photoionized by chiral light pulses. Our work thus carried chiral-sensitive studies down to the femtosecond and attosecond ranges
APA, Harvard, Vancouver, ISO, and other styles
16

Karimi, Reza. "Fragmentation Dynamics of Triatomic Molecules in Femtosecond Laser Pulses Probed by Coulomb Explosion Imaging." Thesis, 2013. http://hdl.handle.net/10012/7617.

Full text
Abstract:
In this thesis we have utilized few-cycle pulses in the range 10-15s, to initiate CE to allow us to image the structure, dynamics, and kinetics of ionization and dissociation of triatomic molecules. We have made a series of measurements of this process for CO2 and N2O, by varying the laser pulse duration from 7 to 500 fs with intensity ranging from 2.5×1014 to 4×1015 (W/cm2), in order to identify the charge states and time scales involved. This is a new approach in CEI introducing a multi-dimensional aspect to the science of non-perturbative laser-molecule interaction. We refer to this approach as FEmtosecond Multi-PUlse Length Spectroscopy (FEMPULS). The use of a time and position sensitive detector allow us to observe all fragment ions in coincidence. By representing the final fragmentation with Dalitz and Newton plots, we have identified the underlying break up dynamics. Momentum conservation has been used to extract the correlated fragment ions which come from a single parent ion. This is achieved by considering that the total momentum of all correlated fragments must add up to zero. One of the main outcomes of our study is observation of charge resonance enhanced ionization (CREI) for triatomic molecules. In the case of CO2, we found that for the 4+ and higher charge states, 100 fs is the time scale required to reach the critical geometry RCO= 2.1Å and ӨOCO =163º (equilibrium CO2 geometry is RCO= 1:16Å and ӨOCO =172º. The CO23+ molecule, however, appears always to begin dissociation from closer than 1.7 Å indicating that dynamics on charge states lower than 3+ is not sufficient to initiate CREI. Finally, we make quantum ab initio calculations of ionization rates for CO2 and identify the electronic states responsible for CREI. Total kinetic energy (KER) has been measured for channels (1, 1, 1) to (2, 2, 2) and it was found that the (1, 1, 1) channel is not Coulombic, while (2, 2, 2) channel is very close to Coulombic (KER close to 90% of the coulombic potential). As another outcome of our study, for the case of N2O, we observed for the first time that there are two stepwise dissociation pathways for N2O3+: (1) N2O3+ → N++ NO2+ → N+ + N++ O+ and (2) N2O3+ → N22++O+ → N+ + N++ O+ as well as one for N2O4+ → N2++ NO2+ → N2+ + N++ O+. The N22+ stepwise channel is suppressed for longer pulse length, a phenomenon which we attribute to the influence which the structure of the 3+ potential has on the dissociating wave packet propagation. Finally, by observing the KER for each channel as a function of pulse duration, we show the increasing importance of CREI for channels higher than 3+.
APA, Harvard, Vancouver, ISO, and other styles
17

Chatterjee, Souvik. "Population transfer and dissociation control in diatomic molecules in intense pulse lasers." Thesis, 2019. http://hdl.handle.net/10821/8291.

Full text
Abstract:
The study of laser molecular interactions continues to be a highly exciting and significant field of research both for probing the intricacies of molecular dynamics as well as to control the different field induced molecular processes. The control aspects of laser molecular interactions have gained prominence in recent times and with the availability of intense ultrashort laser pulses it has become easier to manipulate the desired outcome of the different field induced molecular processes. The study of multiphoton dissociation and population transfer, in presence of a pulsed laser field within the theoretical framework of wavepacket propagation have been discussed in this thesis. The thesis also includes discussions of results related to generation of wavepackets for molecular ions under intense field and the subsequent probing and control of such wavepackets. Small diatomic molecules have been chosen as the model quantum system for this work and this helps in a simple physical interpretation of the complicated dynamical processes involved. The thesis starts with a brief introduction of the current scenario of the laser molecular interaction studies. It also gives an account of the basic objectives of the works undertaken. The rest of the thesis is divided into two parts. The first part deals with the time dependent studies of laser induced molecular dissociation and wavepacket dynamics- their generation, probing and control. The second part includes studies related to laser induced population transfer to particular quantum states in diatomic molecules.
The research was carried out under the supervision of Prof. S S Bhattacharya of the Materials Science division under the SMS [School of Materials Science]
The research was conducted under the CSIR research grant and fellowship
APA, Harvard, Vancouver, ISO, and other styles
18

Chervenkov, Sotir [Verfasser]. "Investigation of weak intra- and intermolecular interactions and conformational structures of flexible molecules and complexes by mass selective high resolution resonance enhanced two photon ionization laser spectroscopy / Sotir Chervenkov." 2007. http://d-nb.info/985919426/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography