Dissertations / Theses on the topic 'Interaction buckling'

To see the other types of publications on this topic, follow the link: Interaction buckling.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 36 dissertations / theses for your research on the topic 'Interaction buckling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Niu, Shuang. "Interaction Buckling of Cold-Formed Stainless Steel Beams." Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/11541.

Full text
Abstract:
The research investigates the interaction between sectional and global buckling of cold-formed stainless steel beams. Two separate experimental programs were carried out. The first program was on I sections, reflecting the local-global interaction buckling behavior, while the second program studied distortional-global interaction buckling in lipped channel beams. Three alloys were included: austenitic S30401(304), ferritic S44330(443) and lean duplex S32101(2101), for which extensive material tests were carried out to determine the material properties. Efforts were made to create a test rig which offered clearly defined support and loading conditions. A detailed finite element (FE) model was developed, incorporating actually measured material properties, imperfections and boundary conditions. The FE model was verified against the experimental results, and then was used in a parametric study to extend the experimental database. Practical ranges of overall and cross-sectional slenderness values were covered in the parametric study, and more concise boundary conditions were used to afford data better suited for further theoretical study. The current Australian, American and European design provisions for cold-formed stainless steel beams were evaluated with the parametric study results. All the design codes were found to be unsafe for I-section beams with intermediate or high local buckling slenderness. For lipped channel sections, the Australian and American design codes were reasonably accurate for a distortional slenderness of unity, but were optimistic for a higher distortional slenderness of 1.5. Contrarily, the European code yielded generally better predictions for the high distortional slenderness sections but was quite conservative for low slenderness sections. New design formulae in the form of the Direct Strength Method were proposed according to the existing strength database.
APA, Harvard, Vancouver, ISO, and other styles
2

Pinna, Rodney. "Buckling of suction caissons during installation." University of Western Australia. School of Civil Engineering, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0008.

Full text
Abstract:
Suction caissons are a foundation system for offshore structures which offer a number of advantages over traditional piled foundations. In particular, due to the method of installation used, they are well suited for deep-water applications. The suction caisson consists of an open ended cylindrical shell, which is installed below the seabed in a sequence which consists of two loading phases. The caisson is first installed part way under self weight, with the installation being completed by lowering the pressure within the cylinder and thus allowing the ambient water pressure to force the caisson into the ground. This thesis examines a number of structural issues which result from the form of the caisson — essentially a thin walled cylinder — and the interaction of the caisson with the surrounding soil during installation. To do this, variational analysis and nonlinear finite element analysis are employed to examine the buckling and collapse behaviour of these cylinders. In particular, two issues are considered; the influence of the open end, and the interaction between the cylinder and soil on the buckling and collapse loads. First, the behaviour of open ended cylinders is considered, where the boundary condition at the open end is allowed to vary continuously from completely free to pinned, by the use of a variable lateral spring. This lateral spring restraint may be considered to represent the intermediate restraint provided by a ring stiffener which is not fully effective. The effect of various combinations of boundary conditions is accounted for by the use of a multiplier on the lower bound to the buckling load of a cylinder with classical supports. The variable spring at the open end may also be considered to be an initial, simple representation of the effect of soil restraint on the buckling load. More complex representations of the soil restraint are also considered. A nondimensional factor is proposed to account for the influence of this spring on the buckling load. One combination of boundary conditions, where the upper end of the caisson is pinned, and the lower end free (referred to as a PF boundary condition), is found to have buckling and collapse behaviour which is unusual for cylindrical shells. Buckling loads for such shells are much lower than would be found for cylinders with more typical boundary conditions, and of similar dimensions. More unusually however, PF cylinders are shown to have positive postbuckling strength. The behaviour is found to be a result of the large flexibility which results from the low restraint provided by the PF boundary conditions. This is shown by continuously decreasing the flexibility of the cylinder, by increasing the axial restraint at the pinned end. It is shown that this results in a large increase in buckling load, and a return to more usual levels of imperfection sensitivity. In particular, with an intermediate level of axial restraint, buckling loads and imperfection sensitivity are intermediate between those of PF shells with no, and with full, axial restraint. Overall however, collapse loads for PF cylinders with no additional restraint are well below those of cylinders with stiffer boundary conditions, for equal geometries. Eigenvalue buckling of cylinders fully and partially embedded in an elastic material are examined, and two analytical solutions are proposed. One of these is an extension of a method previously proposed by Seide (1962), for core filled cylinders, to pin ended cylinders which have support from both a core and a surrounding material. The second method represents the elastic support as a two parameter foundation. While more approximate than the first method, this method allows for the examination of a wider range of boundary conditions, and of partial embedment. It is found that the buckling load of the shell/soil system decreases as the embedment ratio decreases. Collapse of fully and partially embedded cylinders is also examined, using nonlinear finite element analysis. The influence of plasticity in the soil is also considered. For cylinders with small imperfections, it is found that the collapse load shows a large increase over that of the same cylinder with no soil support. However, as the size of initial geometric imperfections increases, it is found that the collapse load rapidly approaches that of the unsupported cylinder. In particular, in weak soils the gain in strength over the unsupported shell may be minimal. The exception to this is again PF cylinders. As these have relatively low collapse loads, even very weak soils are able to offer an increase in collapse load over the unsupported case. Finally, a summary of these results is provided in the form of guidance for design of such structures.
APA, Harvard, Vancouver, ISO, and other styles
3

Becque, Jurgen. "The interaction of local and overall buckling of cold-formed stainless steel columns." Thesis, The University of Sydney, 2008. http://hdl.handle.net/2123/3772.

Full text
Abstract:
Abstract: The objective of this research is to investigate the interaction of local and overall flexural buckling in cold-formed stainless steel columns. Literature study exposes a lack of understanding of this subject and a need for experimental data, particularly on the local-overall interaction buckling of stainless steel open sections. Two separate experimental programs were therefore carried out. The first program included 36 tests on pin-ended lipped channel columns. Three alloys were considered: AISI 304, AISI 430 and 3Cr12. The specimens were designed to fail by local-overall interaction buckling in the inelastic stress range, thus highlighting the non-linear behaviour of stainless steel. Half of the specimens were tested under a concentric load. The other half had the load applied with a nominal eccentricity of Le/1500. The test results demonstrate the imperfection sensitivity of local-overall interaction buckling and illustrate the shift in effective centroid in pin-ended columns with singly symmetric cross-section. The second experimental program studied local-overall interaction buckling in 24 pin-ended stainless steel I-section columns. The specimens consisted of plain channels connected back-to-back using sheet metal screws. Two alloys were considered: AISI 304 and AISI 404. Local and overall imperfections were carefully measured in both experimental programs. Extensive material testing was carried out on the alloys employed in the experimental program, in order to determine tensile and compressive material properties, anisotropic parameters and enhanced corner properties. A detailed finite element model is presented, which includes non-linear material behaviour, anisotropy, increased material properties of the corner areas and local and overall imperfections. The model was verified against the two aforementioned experimental programs and against additional data available in literature on stainless steel SHS columns. The model yielded excellent predictions of the specimen failure mode, ultimate strength and load-deformation behaviour. The finite element model was used to generate additional data for stainless steel columns with lipped channel, plain channel, SHS and I-shaped cross-section, failing by local-overall interaction buckling. The parametric studies covered the practical ranges of overall and cross-sectional slenderness values. The Australian/New Zealand, European and North American standards for stainless steel were evaluated using the available data. The comparison reveals an inability of the design codes to properly account for the interaction effect as the cross-sectional slenderness increases. Predictions are unsafe for I-section columns with intermediate or high cross-sectional slenderness. A direct strength method is proposed for stainless steel columns, accounting for the local-overall interaction effect. The method offers a simple design solution which fits within the framework of the current Australian and North-American standards.
APA, Harvard, Vancouver, ISO, and other styles
4

Becque, Jurgen. "The interaction of local and overall buckling of cold-formed stainless steel columns." University of Sydney, 2008. http://hdl.handle.net/2123/3772.

Full text
Abstract:
PhD
Abstract: The objective of this research is to investigate the interaction of local and overall flexural buckling in cold-formed stainless steel columns. Literature study exposes a lack of understanding of this subject and a need for experimental data, particularly on the local-overall interaction buckling of stainless steel open sections. Two separate experimental programs were therefore carried out. The first program included 36 tests on pin-ended lipped channel columns. Three alloys were considered: AISI 304, AISI 430 and 3Cr12. The specimens were designed to fail by local-overall interaction buckling in the inelastic stress range, thus highlighting the non-linear behaviour of stainless steel. Half of the specimens were tested under a concentric load. The other half had the load applied with a nominal eccentricity of Le/1500. The test results demonstrate the imperfection sensitivity of local-overall interaction buckling and illustrate the shift in effective centroid in pin-ended columns with singly symmetric cross-section. The second experimental program studied local-overall interaction buckling in 24 pin-ended stainless steel I-section columns. The specimens consisted of plain channels connected back-to-back using sheet metal screws. Two alloys were considered: AISI 304 and AISI 404. Local and overall imperfections were carefully measured in both experimental programs. Extensive material testing was carried out on the alloys employed in the experimental program, in order to determine tensile and compressive material properties, anisotropic parameters and enhanced corner properties. A detailed finite element model is presented, which includes non-linear material behaviour, anisotropy, increased material properties of the corner areas and local and overall imperfections. The model was verified against the two aforementioned experimental programs and against additional data available in literature on stainless steel SHS columns. The model yielded excellent predictions of the specimen failure mode, ultimate strength and load-deformation behaviour. The finite element model was used to generate additional data for stainless steel columns with lipped channel, plain channel, SHS and I-shaped cross-section, failing by local-overall interaction buckling. The parametric studies covered the practical ranges of overall and cross-sectional slenderness values. The Australian/New Zealand, European and North American standards for stainless steel were evaluated using the available data. The comparison reveals an inability of the design codes to properly account for the interaction effect as the cross-sectional slenderness increases. Predictions are unsafe for I-section columns with intermediate or high cross-sectional slenderness. A direct strength method is proposed for stainless steel columns, accounting for the local-overall interaction effect. The method offers a simple design solution which fits within the framework of the current Australian and North-American standards.
APA, Harvard, Vancouver, ISO, and other styles
5

Kandil, Kamel Sayed Ahmed. "Interaction between local and Euler buckling modes in thin-walled columns." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lane, Andrew. "An experimental investigation of buckling mode interaction in PERP wide-flange columns." Thesis, University of Warwick, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thorpe, Maria Anastasia. "Deformation and buckling of isolated and interacting thin shells in an elastic medium." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/deformation-and-buckling-of-isolated-and-interacting-thin-shells-in-an-elastic-medium(14b4172d-e302-4cf7-9ab2-9718e9aa182f).html.

Full text
Abstract:
This thesis aims to model the effects of interaction and buckling upon pairs of micro-shells embedded within an elastic medium under far field hydrostatic pressure. This analysis is motivated by the role shell buckling plays in the nonlinear nature of the pressure relative volume curve of elastomers containing micro-shells. Current models of the effective properties of these types of composites assume shells are in a dilute distribution within the host medium, and as such assume shells will buckle at the pressure of the associated isolated embedded shell model. For composites with a high volume fraction of micro-shells, or in poorly mixed composites, the dilute distribution model may provide a first approximation to the effective properties of the composite, however, interaction between shells must be considered to find a more accurate model. We begin the process of modelling the buckling of interacting embedded shells by considering the buckling of an isolated embedded thin spherical shell. For a host medium undergoing far field hydrostatic pressure we demonstrate the parameter ranges in which Jones et al. thin shell buckling theory agrees with the thin shell buckling theory of Fok and Allwright. We then use scalings to increase the range of validity of the thin shell approximation used in the Jones et al. theory to include composites with a high contrast between medium and shell materials. This enables more accurate predictions of buckling pressures of embedded shells under far field axially symmetric pressures to also be found, as is demonstrated for an embedded shell under far field axial compression. We model the linear elastic deformation of pairs of embedded micro-shells using the Boussinesq-Papkovich stress function method, before employing the thin shell linear analysis method developed in previous chapters to calculate the critical buckling pressure and buckling patterns of the pair of embedded shells.
APA, Harvard, Vancouver, ISO, and other styles
8

Yap, Derrick. "Interaction of local and distortional buckling of high strength cold-formed steel columns." Thesis, The University of Sydney, 2008. https://hdl.handle.net/2123/28965.

Full text
Abstract:
Thin—walled high strength cold—formed steel sections, when subjected to axial compression, generally fail in a local, distortional and/or flexural—torsional buckling mode. The sections can have a complex shape and can be fabricated from high strength cold-formed steel with thickness as low as 0.42 mm. Such complex section designs may lead to the interaction of local and distortional buckling modes when subjected to axial compression. The objective of the thesis is to investigate both theoretically and experimentally the interaction of the local and distortional buckling modes of cold—formed steel channel section columns in the post-distortional buckling range. A theoretical study was carried out using the Finite Element Method (FEM) by analysing the stress distributions in a simple-lipped channel section under compression. A range of section thicknesses was analysed to observe sections failing in purely distortional buckling modes and with interaction of local and distortional buckling modes. Stress redistribution around the section in the postbuckling range was observed in a method similar to von Karman’s approach. From the stress distributions of the different sections, it was observed that when local and distortional buckling interacts in the postbuckling range, the effect of the post—distortional buckling on the post-local buckling stress is to push the stress higher at the flange-web junctions. This observation explains the mechanics of a section subjected to interaction of local and distortional buckling modes and why it may fail prematurely. The thesis describes two series of tests performed on Stiffened-Web Channel (SWC) section columns and Stiffened Cross-shaped (SCR) channel section columns fabricated from high strength cold-formed steel sheets with thicknesses of 1 mm and 0.42 mm respectively and a nominal yield stress of 550 MPa. For the SWC section, a total of 14 fixed—ended columns were tested in compression to study the local buckling failure of the short columns and the effect of the interaction of local and distortional buckling on the intermediate and long columns. For the SCR section, a total of 14 fixed-ended columns were tested to study the effect of the interaction of local and multiple distortional buckling modes on the failure loads. The effect of the inward and outward deflections in the distortional mode on failure was also observed. The test results are compared with structural design codes of the Australian Standard AS/NZS 4600:2005 and the North American Specification (NAS) for cold—formed steel structures. Both the Effective Width Method (EWM) and the Direct Strength Method (DSM) were found to predict unconservatively for sections failing in the local buckling mode. Further, the DSM predicts very unconservatively for sections failing in the distortional mode when the interaction of local and distortional buckling modes occur. Four new design methods are proposed to improve the local/overall and distortional DSM strength curves. Conclusions on the most appropriate of the four methods and the range of applicability are given.
APA, Harvard, Vancouver, ISO, and other styles
9

Yidris, Noorfaizal. "The post-buckled coupled mode interaction behaviour of thin-walled members in compression using finite element simulation." Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/9949.

Full text
Abstract:
The work of this thesis sets out to give a clearer in-depth understanding of the failure mechanics of thin-walled compression members which are associated with complex interactions between the different buckling modes during the loading process. This thesis employs the finite element method in order to examine the effect of the modelling techniques imposed at the section junctions of short struts and to investigate the influence of the local and global end conditions with regard to support and loading on the compressive response of various sections, i.e. I-sections, plain channel sections, box-sections, and lipped channel sections. The thesis also details appropriate finite element modelling strategies and solution procedures taking due account of the influence of material nonlinearity and geometrical imperfections for the determination of the coupled mode interactive response of thin-walled compression members. A detailed account of the complete loading history of the compression members from the beginning of loading through to final collapse is given in the thesis. This involves elastic local buckling, nonlinear elastic and elasto-plastic post-buckling interaction behaviour and yield propagation leading to the development of an appropriate failure mechanism which causes final collapse and unloading. A new finite element modelling strategy has been developed in the thesis with particular reference to being able to deal with the classical assumption of the stress-free in-plane boundary conditions existing at the section junctions of short length strut members during post-local buckling. Also, for fixed-ended columns, with particular reference to singly-symmetric plain channel sections, it has been shown that column deflections are initiated from the onset of local buckling for the case of the constituent plate elements of the section being locally rotationally constrained at their ends. Such columns should not therefore be considered as an overall bifurcation problem of the locally buckled member. In the case of the pinned and fixed-ended boundary conditions of the columns, the finite element simulations are shown to be able to accurately describe the rather different complex failure mechanics with a high degree of imperfection sensitivity being shown to be in evidence for the pin-ended case. Considerably good agreement has been shown to occur with the independent simulations of other researchers using the finite strip method of analysis, with the analytical solution procedures of others and with the findings from independent test work and this has provided confidence in the viability and usefulness of the modelling strategies and solution procedures developed in this thesis.
APA, Harvard, Vancouver, ISO, and other styles
10

YANG, Demao. "Compression Stability of High Strength Steel Sections with Low Strain-Hardening." University of Sydney. School of Civil Engineering, 2003. http://hdl.handle.net/2123/561.

Full text
Abstract:
Thin-walled steel sections made from high strength thin cold-reduced G550 steel to Australian Standard AS 1397-1993 under compression are investigated experimentally and theoretically in this thesis. This thesis describes three series of compression tests performed on box-section stub columns, box-section long columns and lipped channel section columns cold-formed from high strength steel plates in 0.42 mm or 0.60 mm thickness with nominal yield stress of 550 MPa. The tests presented in this thesis formed part of an Australian Research Council research project entitled: Compression Stability of High Strength Steel Sections with Low Strain-Hardening. For the fix-ended stub column tests, a total of 94 lipped-square and hexagonal section stub columns were tested to study the influence of low strain hardening of G550 steel on the compressive section capacities of the column members. For the pin-ended long column tests, a total of 28 box-section columns were tested to study the stability of members with sections which undergo local instability at loads significantly less than the ultimate loads. For the fix-ended lipped channel section columns, a total of 21 stub and long columns were tested to study the failure resulting from local and distortional buckling with interaction between the modes. A numerical simulation on the three series of tests using the commercial finite element computer program ABAQUS is also presented as part of this thesis. The post-buckling behaviour of thin-walled compression members is investigated. The effect of changing variables, such as geometric imperfections and end boundary conditions is also investigated. The ABAQUS analysis gives accurate simulations of the tests and is in good agreement to the experimental results. Theoretical studies using finite strip methods are presented in this thesis to investigate the buckling behaviour of cold-formed members in compression. The theoretical studies provide valuable information on the local and distortional buckling stresses for use in the interaction buckling studies. The finite strip models used are the semi-analytical and spline models. As expected for the stub columns tests, the greatest effect of low strain hardening was for the stockier sections where material properties play an important role. For the more slender sections where elastic local buckling and post-local buckling are more important, the effect of low strain hardening does not appear to be as significant. The pin-ended and fix-ended long column tests show that interaction, which is between local and overall buckling in the box sections, and between local and distortional buckling in the open channel sections, has a significant effect on their member capacities. The results of the successful column tests and ABAQUS simulation have been compared with the design procedures in the Australian & New Zealand Standard for Cold-Formed Steel Structures AS&NZS 4600 and the North American Specification for Cold-Formed Steel Structural Members prepared by the American Iron and Steel Institute. The stub column tests show that the current design rules give too conservative predictions on the compressive section capacities of the column members; whereas the long column tests show that the current column design rules are unconservative if used in their current form for G550 steel. Three design proposals are presented in this thesis to account for the effects of high strength thin steels on the section and member capacities.
APA, Harvard, Vancouver, ISO, and other styles
11

Zhang, Tianqi, and Chetan Bhandare. "Numerical Investigations on theBuckling Characteristics andAnalysis of Deformation andStress of Brush Seals." Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-15669.

Full text
Abstract:
Brush seals are contact seals which are efficient and reliable and can beused in any rotatory machinery. A theoretical model of a brush seal wassuggested and used for a simulation study. Comparison between the resultsof the experiment and simulation is used to verify the accuracy of model.Following the basic simulation steps, more simulation will be done to geta further analysis. The further analysis will be studied in bristles’ bucklingcharacteristics, deformation and stress. The buckling, stress anddeformation is related to the brush seal’s performance. This work givesthe different geometry of bristle’s effect to its buckling characteristics andthe study of stress and deformation caused by fluid flow across bristlesduring operation.
APA, Harvard, Vancouver, ISO, and other styles
12

Smith, Joshua Gabriel. "Loosely Coupled Hypersonic Airflow Simulation over a Thermally Deforming Panel with Applications for a POD Reduced Order Model." Miami University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=miami1501161884638821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Sirivolu, Dushyanth. "Marine Composite Panels under Blast Loading." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1467993101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Lee, Jung Hoon. "Local buckling behaviour and design of cold-formed steel compression members at elevated temperatures." Thesis, Queensland University of Technology, 2004. https://eprints.qut.edu.au/15972/1/Jung_Hoon_Lee_Thesis.pdf.

Full text
Abstract:
The importance of fire safety design has been realised due to the ever increasing loss of properties and lives caused by structural failures during fires. In recognition of the importance of fire safety design, extensive research has been undertaken in the field of fire safety of buildings and structures especially over the last couple of decades. In the same period, the development of fire safety engineering principles has brought significant reduction to the cost of fire protection. However the past fire research on steel structures has been limited to heavier, hot-rolled structural steel members and thus the structural behaviour of light gauge cold-formed steel members under fire conditions is not well understood. Since cold-formed steel structures have been commonly used for numerous applications and their use has increased rapidly in the last decade, the fire safety of cold-formed steel structural members has become an important issue. The current design standards for steel structures have simply included a list of reduction factors for the yield strength and elasticity modulus of hot-rolled steels without any detailed design procedures. It is not known whether these reduction factors are applicable to the commonly used thin, high strength steels in Australia. Further, the local buckling effects dominate the structural behaviour of light gauge cold-formed steel members. Therefore an extensive research program was undertaken at the Queensland University of Technology to investigate the local buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. The first phase of this research program included 189 tensile coupon tests including three steel grades and six thicknesses to obtain the accurate yield strength and elasticity modulus values at elevated temperatures because the deterioration of the mechanical properties is the major parameter in the structural design under fire conditions. The results obtained from the tensile tests were used to predict the ultimate strength of cold-formed steel members. An appropriate stress-strain model was also developed by considering the inelastic mechanical characteristics. The second phase of this research was based on a series of more than 120 laboratory experiments and corresponding numerical analyses on cold-formed steel compression members to investigate the local bucking behaviour of the unstiffened flange elements, stiffened web elements and stiffened web and flange elements at elevated temperatures up to 800°C. The conventional effective design rules were first simply modified considering the reduced mechanical properties obtained from the tensile coupon tests and their adequacy was studied using the experimental and numerical results. It was found that the simply modified effective width design rules were adequate for low strength steel members and yet was not adequate for high strength cold-formed steel members due to the severe reduction of the ultimate strength in the post buckling strength range and the severe reduction ratio of the elasticity modulus to the yield strength at elevated temperatures. Due to the inadequacy of the current design rules, the theoretical, semi-empirical and empirical effective width design rules were developed to accurately predict the ultimate strength of cold-formed steel compression members subject to local buckling effects at elevated temperatures. The accuracy of these new design methods was verified by comparing their predictions with a variety of experimental and numerical results. This thesis presents the details of extensive experimental and numerical studies undertaken in this research program and the results including comparison with simply modified effective width design rules. It also describes the advanced finite element models of cold-formed steel compression members developed in this research including the appropriate mechanical properties, initial imperfections, residual stresses and other significant factors. Finally, it presents the details of the new design methods proposed for the cold-formed steel compression members subject to local buckling effects at elevated temperatures.
APA, Harvard, Vancouver, ISO, and other styles
15

Lee, Jung Hoon. "Local buckling behaviour and design of cold-formed steel compression members at elevated temperatures." Queensland University of Technology, 2004. http://eprints.qut.edu.au/15972/.

Full text
Abstract:
The importance of fire safety design has been realised due to the ever increasing loss of properties and lives caused by structural failures during fires. In recognition of the importance of fire safety design, extensive research has been undertaken in the field of fire safety of buildings and structures especially over the last couple of decades. In the same period, the development of fire safety engineering principles has brought significant reduction to the cost of fire protection. However the past fire research on steel structures has been limited to heavier, hot-rolled structural steel members and thus the structural behaviour of light gauge cold-formed steel members under fire conditions is not well understood. Since cold-formed steel structures have been commonly used for numerous applications and their use has increased rapidly in the last decade, the fire safety of cold-formed steel structural members has become an important issue. The current design standards for steel structures have simply included a list of reduction factors for the yield strength and elasticity modulus of hot-rolled steels without any detailed design procedures. It is not known whether these reduction factors are applicable to the commonly used thin, high strength steels in Australia. Further, the local buckling effects dominate the structural behaviour of light gauge cold-formed steel members. Therefore an extensive research program was undertaken at the Queensland University of Technology to investigate the local buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. The first phase of this research program included 189 tensile coupon tests including three steel grades and six thicknesses to obtain the accurate yield strength and elasticity modulus values at elevated temperatures because the deterioration of the mechanical properties is the major parameter in the structural design under fire conditions. The results obtained from the tensile tests were used to predict the ultimate strength of cold-formed steel members. An appropriate stress-strain model was also developed by considering the inelastic mechanical characteristics. The second phase of this research was based on a series of more than 120 laboratory experiments and corresponding numerical analyses on cold-formed steel compression members to investigate the local bucking behaviour of the unstiffened flange elements, stiffened web elements and stiffened web and flange elements at elevated temperatures up to 800°C. The conventional effective design rules were first simply modified considering the reduced mechanical properties obtained from the tensile coupon tests and their adequacy was studied using the experimental and numerical results. It was found that the simply modified effective width design rules were adequate for low strength steel members and yet was not adequate for high strength cold-formed steel members due to the severe reduction of the ultimate strength in the post buckling strength range and the severe reduction ratio of the elasticity modulus to the yield strength at elevated temperatures. Due to the inadequacy of the current design rules, the theoretical, semi-empirical and empirical effective width design rules were developed to accurately predict the ultimate strength of cold-formed steel compression members subject to local buckling effects at elevated temperatures. The accuracy of these new design methods was verified by comparing their predictions with a variety of experimental and numerical results. This thesis presents the details of extensive experimental and numerical studies undertaken in this research program and the results including comparison with simply modified effective width design rules. It also describes the advanced finite element models of cold-formed steel compression members developed in this research including the appropriate mechanical properties, initial imperfections, residual stresses and other significant factors. Finally, it presents the details of the new design methods proposed for the cold-formed steel compression members subject to local buckling effects at elevated temperatures.
APA, Harvard, Vancouver, ISO, and other styles
16

Perera, Nilakshi. "Structural behaviour and design of innovative hollow flange steel plate grinders." Thesis, Queensland University of Technology, 2018. https://eprints.qut.edu.au/123310/1/Liyanage%20Nilakshi%20Piyahasi_Perera_Thesis.pdf.

Full text
Abstract:
This thesis proposes a new Hollow Flange Steel Plate Girder (HFSPG) by welding industrially available cold-formed Rectangular Hollow Sections (RHS) to a web plate for use in long span construction. Design procedures presented in the national and international design guidelines were reviewed and suitable improvements were made to accurately predict the structural behaviour and capacities of HFSPGs by undertaking detailed experimental and numerical studies into their unique structural behaviour. Local buckling/yielding, global buckling and local-global interaction failures were all considered in this thesis.
APA, Harvard, Vancouver, ISO, and other styles
17

Miri, Amin. "Mitigating severity of longitudinal interaction of rail-track-bridge system in transition zones for safer trains." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/236242/1/Amin%2BMiri%2BThesis%282%29.pdf.

Full text
Abstract:
Extreme heat and temperature fluctuation in Queensland result in buckling of railway tracks which jeopardize the safety of train operation and cost huge sums to repair. This thesis carried out an elaborate investigation on the issue of track buckling and provided several approaches to mitigate the risks of track buckling to enable safer trains and lower maintenance costs for railway operators in Australia.
APA, Harvard, Vancouver, ISO, and other styles
18

Tran, Dinh Cuong. "Interaction rupture-flambage, le cas du "splitting" de tube métallique : approche expérimentale et numérique." Phd thesis, INSA de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00825603.

Full text
Abstract:
Lorsqu'on découpe un feuillard à l'aide d'un outil, ou lorsqu'on découpe un tube selon son axe, au fur et à mesure que l'on propage la fissure qui traduit la découpe il arrive que des ondulations de flambage perturbent les deux bords libres générés par la propagation de la fissure. Cette étude vise à analyser les origines de ces ondulations. Nous avons mené une campagne expérimentale, dans laquelle des tubes en acier inox avec différentes géométries (rayon/épaisseur) sont " découpés " selon une génératrice. Une instrumentation adéquate, couplant des mesures ponctuelles, à l'aide de jauges de déformation, et une méthode champ par corrélation d'image, nous a permis de correctement mettre en exergue la phénoménologie, en particulier les cinématiques induites à l'échelle géométrique de la fissure (front de fissure) ainsi qu'à l'échelle du tube, avec les longueurs d'onde de flambage observées à l'aval de la fissure. La modélisation numérique menée en non linéaire géométrique (flambage), matériau (déchirure ductile), et conditions aux limites (contact) est aussi abordée à l'aide du code de calcul Abaqus/Standard. Pour la gestion de la propagation de la fissure, deux modèles de rupture sont proposés. Le premier modèle dit zone cohésive est développé et implanté dans le code Abaqus via la subroutine UEL. Pour la deuxième modélisation, nous avons utilisé le modèle dit " d'endommagement ductile " du code Abaqus. La modélisation via des éléments massifs ou des éléments coques volumiques ainsi que l'utilisation de ces modèles de rupture permettent de corroborer les observations expérimentales. Ces travaux montrent que l'augmentation de la charge inhérente au déplacement de l'outil de " découpe ", induit une extension dans la direction circonférentielle et donc une striction dans la direction radiale amenant finalement la rupture. Lors de la rupture, un " sillage plastique " apparait, relativement large, près et parallèle aux bords de la fissure. " Confiné " par les autres parties du tube qui restent élastiques, des contraintes de compression axiale résiduelles apparaissent dans ce sillage plastique, à l'aval de la fissure, leur intensité est suffisante pour produire les ondulations des bords libres qui traduisent un flambage local. Les contraintes résiduelles liées à l'opération de découpe induisent donc le flambage.
APA, Harvard, Vancouver, ISO, and other styles
19

Surano, Dominic E. "The Effectiveness of Damage Arrestment Devices in Delaying Fastener-Hole Interaction Failures in Carbon Fiber Polyurethane Foam Composite Sandwich Panels Subjected to Static and Dynamic Loading Under Increased Temperatures." DigitalCommons@CalPoly, 2010. https://digitalcommons.calpoly.edu/theses/436.

Full text
Abstract:
A study was conducted to investigate simple, cost-effective manufacturing techniques to delay skin-core delamination, micro-buckling and bearing stress failures resulting from fastener-hole interactions. Composite sandwich panels, with and without damage arrestment devices (DADs), were subjected to monotonic compression at a rate of 5mm per second, and compression-compression fatigue at 50% yield at an amplitude of 65%, under temperatures of 75, 100, 125, 150, 175, and 200 °F. The sandwiches tested were composed of two-layer cross-weave carbon fiber facesheets, a polyurethane foam core, and an epoxy film adhesive to join the two materials. The most successful method to delay the aforementioned failures involved milling rectangular slots in the foam core perpendicular to the holes and adding three additional layers of carbon fiber cross-weave. For the monotonic cases, the ultimate load increases were 97, 87, 100, 131, 96, and 119% for each of the respective temperatures listed above with a negligible weight increase. For the fatigue cases, the number of cycles for each test case was nearly identical. This still represents a large improvement because the yield used in the loading condition for the specimens with DADs was 97% greater than the specimens without DADs. The experimental results were compared with a finite element model (FEM) built in Abaqus/CAE. The numeric and experimental results showed a strong correlation. All test specimens were manufactured and tested in the California Polytechnic State University Aerospace/Composites Laboratory.
APA, Harvard, Vancouver, ISO, and other styles
20

Cai, Junle. "Interactive Buckling and Post-Buckling Studies of Thin-Walled Structural Members with Generalized Beam Theory." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/75055.

Full text
Abstract:
Most thin-walled metallic structural members experience some extent of interactive buckling that corrodes the load carrying capacity. Current design methods predict the strength of thin-walled metallic structural members based on individual buckling limit-states and limited case of interactive buckling limit state. In order to develop design methods for most coupled buckling limit states, the interaction of buckling modes needs to be studied. This dissertation first introduces a generally applicable methodology for Generalized Beam Theory (GBT) elastic buckling analysis on members with holes, where the buckling modes of gross cross-section interact with those of net cross-section. The approach treats member with holes as a structural system consisting of prismatic sub-members. These sub-members are connected by enforcing nodal compatibility conditions for the GBT discretization points at the interfaces. To represent the shear lag effect and nonlinear normal stress distribution in the vicinity of a hole, GBT shear modes with nonlinear warping are included. Modifications are made to the GBT geometric stiffness because of the influence from shear lag effect caused by holes. In the following sections, the GBT formulation for a prismatic bar is reviewed and the GBT formulation for members with holes is introduced. Special aspects of analyzing members with holes are defined, namely the compatibility conditions to connect sub-members and the geometric stiffness for members with holes. Validation and three examples are provided. The second topic of this dissertation involves a buckling mode decomposition method of normalized displacement field, bending stresses and strain energy for thin-walled member displacement field (point clouds or finite element results) based on generalized beam theory (GBT). The method provides quantitative modal participation information regarding eigen-buckling displacement fields, stress components and elastic strain energy, that can be used to inform future design approaches. In the method, GBT modal amplitudes are retrieved at discrete cross-sections, and the modal amplitude field is reconstructed assuming it can be piece-wisely approximated by polynomials. The unit displacement field, stress components and strain energy are all retrieved by using reconstructed GBT modal amplitude field and GBT constitutive laws. Theory and examples are provided, and potential applications are discussed including cold-formed steel member design and post-disaster evaluation of thin-walled structural members. In the third part, post-buckling modal decomposition is made possible by development of a geometrically nonlinear GBT software. This tool can be used to assist understanding couple-buckling limit-states. Lastly, the load-deformation response considering any one GBT mode is derived analytically for fast computation and interpretation of structural post-buckling behavior.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
21

da, Silva Luis Alberto Proenca Simoes. "Modal interactions in bending and buckling of sandwich structures." Thesis, Imperial College London, 1989. http://hdl.handle.net/10044/1/47662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bai, Li. "Interactive buckling in thin-walled I-section struts." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/25003.

Full text
Abstract:
Compression members, made from slender metallic plate elements, are prone to a wide range of different elastic instability phenomena. A thin-walled I-section strut, made from a linear elastic material, can suffer from the nonlinear interaction between a global (Euler) buckling mode, and a local flange plate buckling mode. The interactive buckling behaviour is usually much more unstable than when the modes are triggered individually and hence significantly reduces the load-carrying capacity of real struts. The current work focuses on such a problem using an analytical approach, the methodology of which has been well established in previous works on sandwich struts and I-section beams. An analytical model that describes the interactive buckling of a thin-walled I-section strut under pure compression based on variational principles is presented. Analytical formulations combining the Rayleigh-Ritz method and continuous displacement functions are presented to derive a series of systems that comprise differential and integral equilibrium equations for the structural component. Solving the systems of equations with numerical continuation reveals progressive cellular buckling (or snaking) arising from the nonlinear interaction between the weakly stable global buckling mode and the strongly stable local buckling mode. The resulting behaviour is highly unstable and when the model is extended to include geometric imperfections it compares excellently with some recently published experiments. Imperfection sensitivity studies reveal high sensitivity to both global and local imperfection types. The worst forms of local imperfection are identified in terms of the initial wavelength, amplitude and degree of localization. The effect of the varying rigidity of the joint of the section web and flanges is also studied and a rapid erosion of the cellular buckling response is revealed with increasing rigidity of the flange-web joint. A shell-based nonlinear finite element model is presented, primarily for validation purposes. The results from the analytical and finite element models show a good comparison, particularly for higher rigidities of the flange-web joint. A parametric study is conducted for two limiting cases, where the flange-web joint is assumed to be fully pinned or fully rigid. For a chosen set of geometries, the most undesirable interactive region is identified for both global and local slendernesses, in terms of the strut length and the flange width respectively. Practical implications are discussed in terms of the idealized buckling design curve. An analytical framework for the structural analysis of the thin-walled I-section struts that exhibit the nonlinear interaction of a global and a local buckling mode, including cellular buckling, has therefore been established.
APA, Harvard, Vancouver, ISO, and other styles
23

Da, Silva André. "Flambage de coques cylindriques minces sous chargements combinés : pression interne, compression, flexion et cisaillement." Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00782117.

Full text
Abstract:
Malgré le cumul de connaissances sur le sujet du flambage des coques minces, des questions essentielles demeurent. En effet, malgré les avancées et une meilleure compréhension de l'effet des défauts, le dimensionnement continue de recourir aux anciennes règles qui découlent d'une démarche empirique et qui s'avèrent souvent trop conservatives comme c'est le cas par exemple pour la NASA SP8007 (1968). Cette règle est utilisée notamment pour le dimensionnement du lanceur Ariane 5. L'Etage Principal Cryogénique est en effet constitué de coques cylindriques minces, qui sont soumises à une combinaison de chargements et donc sujettes au déclenchement d'instabilités pouvant être catastrophiques. Il est ainsi nécessaire d'avoir une meilleure compréhension du phénomène pour pouvoir améliorer ces méthodes de dimensionnement dans le cas de coques moyennement longues (1 < L/R < 3) et minces (250 < R/t <1500). Nous employons pour cela une approche à la fois numérique et expérimentale. L'outil numérique est utilisé, via une modélisation pertinente, afin de construire une nouvelle règle de dimensionnement et d'étudier l'influence des différents paramètres (géométriques, matériau). L'aspect expérimental a pris une place prépondérante, une large campagne nous permettant de valider les résultats simulations pour différentes configurations, mais également d'avoir une bonne compréhension du phénomène. Ces deux aspects de notre recherche nous ont également permis de mieux déterminer l'interaction entre les différents chargements (pression interne, compression, flexion, cisaillement), plus ou moins comprise selon les cas.
APA, Harvard, Vancouver, ISO, and other styles
24

Ghosh, Biswarup. "Consequences of Simultaneous Local and Overall Buckling in Stiffened Panels." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/31803.

Full text
Abstract:
In this thesis improved expressions for elastic local plate buckling and overall panel buckling of uniaxially compressed T-stiffened panels are developed and validated with 55 ABAQUS eigenvalue buckling analyses of a wide range of typical panel geometries. These two expressions are equated to derive a new expression for the rigidity ratio (EIx/Db)CO that uniquely identifies ¡°crossover¡± panels ¨C those for which local and overall buckling stresses are the same. The new expression for (EIx/Db)CO is also validated using the 55 FE models. Earlier work by (Chen, 2003) had produced a new step-by-step beam-column method for predicting stiffener-induced compressive collapse of stiffened panels. An alternative approach is to use orthotropic plate theory. As part of the validation of the new beam-column method, ABAQUS elasto-plastic Riks ultimate strength analyses were made for 107 stiffened panels ¨C the 55 crossover panels and 52 others. The beam-column and orthotropic approaches were also used. A surprising result was that the orthotropic approach has a large error for crossover panels whereas the beam-column method does not. Some possible reasons for this are suggested. Collapse patterns for the crossover panels are studied and classified from von Mises stress distribution at collapse. The collapse mechanism and load-deflection diagrams suggest stable inelastic post collapse behavior for most panels and an abrupt drop in load carrying capacity in only nine of the 55.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
25

Liu, Elizabeth Long. "Interactive buckling in thin-walled I-section struts of uniform thickness." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/43960.

Full text
Abstract:
Thin-walled, metallic structures are widely used across many engineering industries and are a popular choice due to their high load bearing capacity to self weight ratios. Interactive buckling is a common and potentially dangerous form of instability in these structures. The current work aims to investigate interactive global-local buckling in an I-section compression strut with rigidly rotating flange-web joints, using primarily an analytical approach. The analytical approach uses the Rayleigh-Ritz method, combined with continuous displacement functions to formulate a system of ordinary differential and integral equations, describing the equilibrium states of the strut. Initially, weak axis global-local buckling interaction is considered where both the flange and the web components of the cross-section contribute to the local buckling mode, owing to the rigidly rotating flange-web joint. The solutions are validated using a finite element (FE) model, showing excellent comparisons. The strut is then considered to be braced in the weak axis, thus susceptible to strong axis global-local buckling interaction. The strong axis global buckling mode and local buckling of the flange and web components are first considered separately, revealing a neutrally stable and stable post-buckling response respectively. The buckling modes are then combined in an analytical model, enabling them to act simultaneously; it is found that the critical, global buckling mode has a neutrally stable post-buckling path, which then becomes highly unstable when the local buckling mode is triggered and mode interaction is observed. The solution is validated against an FE model and shows excellent comparisons. Imperfection sensitivity of the strut is then investigated, revealing that the structure is sensitive to both global and local initial geometric imperfections. The shape of the local imperfection to which the strut is most sensitive is also identified and it shows a greater sensitivity when both global and local imperfections are present simultaneously. The solutions for an example strut with imperfections is compared to an FE model, again showing excellent comparisons. Parametric studies are conducted to investigate the effect of varying the geometry of the strut. Both the strut length and cross-section height are varied in independent studies, identifying the geometries that give rise to the most interactive, and therefore most undesirable, behaviour in the structure. The implications of the identified behaviour on the design of similar structures is discussed. The post-buckling behaviour of a thin-walled I-section strut, buckling under either weak or strong axis global-local mode interaction with rigidly rotating flange-web joints has therefore been established at a fundamental level, using an analytical approach.
APA, Harvard, Vancouver, ISO, and other styles
26

Maria, Joseph Amal Jerald Joseph. "Directional Actuation Induced by Interactive Buckling in Slender Structures with Imperfections." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1555525058577127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Trouncer, Adam Nevil. "Steel storage racks with locally unstable members." Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/11814.

Full text
Abstract:
This thesis presents comprehensive studies into locally unstable light-gauge steel structures. The aim of this project was to create guidelines for the design of thin-walled steel structures by analyses which consider the effect of cross-sectional instability. Research was conducted to address the knowledge gap associated with the amplification of second-order effects due to local instabilities, the treatment of imperfections in advanced analysis and the effect of interactive buckling on light gauge steel members. The objectives of this research were achieved through a combination of numerical and experimental investigations using two different types of ultra-light gauge steel storage rack uprights. The first series of experiments investigated the effects of interactive buckling through a number of compression tests on varying lengths of ultra-light gauge steel storage rack uprights. The second experimental investigation was used to study the effects of local instabilities on the second-order effects and behaviour of light gauge steel frames. Fourteen full scale storage rack tests were completed using different combinations of beam depths and nominal horizontal loads. Measured imperfection data and calibrated FE models were then used to determine a rational procedure for implementing geometric imperfections into advanced analysis. Special attention was given to the effect that local instabilities had on the second-order displacements of the frame. Based on both the experimental and numerical studies, recommendations were then provided regarding the effect of interactive buckling, inclusion of imperfections in advanced analysis and the effect that local instabilities have on the second-order displacements and ultimate loads of steel storage rack frames.
APA, Harvard, Vancouver, ISO, and other styles
28

Hirst, Paul B. "Buckling behaviour of slender structural elements under interactive axial static and cyclic loading." Thesis, Sheffield Hallam University, 1987. http://shura.shu.ac.uk/19797/.

Full text
Abstract:
The objective of the research programme has been to investigate the effects of pre-buckling low frequency inelastic cyclic hysteresis upon a range of imperfection sensitive circular hollow section struts. The programme has involved experimental and theoretical studies and computer graphics are widely employed throughout. The subject matter is introduced from a variety of perspectives, phenomenological, historical, theoretical and experimental in Chapter 1, together with an appreciation of therole of the digital computer within the research programme. Experimental factors are initially presented in Chapter 2 whilst the formal testing programme is described in Chapter 3. Original findings are definitively set out in Sections 3.3 and 3.7 wherein the concept of the 'cyclic step' is first introduced, theremaining sections in the chapter providing the necessary supporting data. Theoretical studies are reported in Chapter 4 with the novel moment-thrust-curvature modelling described in Sections 4.2 and 4.3 being of central importance. This modelling enables the formulation of a predictive cyclic strut system effectivelyrequiring of the end user the solution of only a pair of simultaneous equations and yet capable of providing data trends consistent with the experimental findings. Design interpretation together with an overview of the experimental and theoretical studies and their interrelationshipare set out in Chapter 5. A practical design procedure oriented about the effect of a pre-buckling cyclic action phase upon otherwise static strut performance is delineated and anappropriate design chart is provided. Conclusions are drawn with respect to the primary researchfindings in Chapter 6 wherein suggestions are also made regarding possible further studies. An Appendix is included providing the bibliography, nomenclature and respective published work; selected supporting documentation is also presented.
APA, Harvard, Vancouver, ISO, and other styles
29

Pokharel, Narayan. "Behaviour and design of sandwich panels subject to local buckling and flexural wrinkling effects." Thesis, Queensland University of Technology, 2003. https://eprints.qut.edu.au/15890/1/Narayan_Pokharel_Thesis.pdf.

Full text
Abstract:
Sandwich panels comprise a thick, light-weight plastic foam such as polyurethane, polystyrene or mineral wool sandwiched between two relatively thin steel faces. One or both steel faces may be flat, lightly profiled or fully profiled. Until recently sandwich panel construction in Australia has been limited to cold-storage buildings due to the lack of design methods and data. However, in recent times, its use has increased significantly due to their widespread structural applications in building systems. Structural sandwich panels generally used in Australia comprise of polystyrene foam core and thinner (0.42 mm) and high strength (minimum yield stress of 550 MPa and reduced ductility) steel faces bonded together using separate adhesives. Sandwich panels exhibit various types of buckling behaviour depending on the types of faces used. Three types of buckling modes can be observed which are local buckling of plate elements of fully profiled faces, flexural wrinkling of flat and lightly profiled faces and mixed mode buckling of lightly profiled faces due to the interaction of local buckling and flexural wrinkling. To study the structural performance and develop appropriate design rules for sandwich panels, all these buckling failure modes have to be investigated thoroughly. A well established analytical solution exists for the design of flat faced sandwich panels, however, the design solutions for local buckling of fully profiled sandwich panels and mixed mode buckling of lightly profiled sandwich panels are not adequate. Therefore an extensive research program was undertaken to investigate the local buckling behaviour of fully profiled sandwich panels and the mixed mode buckling behaviour of lightly profiled sandwich panels. The first phase of this research was based on a series of laboratory experiments and numerical analyses of 50 foam-supported steel plate elements to study the local buckling behaviour of fully profiled sandwich panels made of thin steel faces and polystyrene foam core covering a wide range of b/t ratios. The current European design standard recommends the use of a modified effective width approach to include the local buckling effects in design. However, the experimental and numerical results revealed that this design method can predict reasonable strength for sandwich panels with low b/t ratios (< 100), but it predicts unconservative strengths for panels with slender plates (high b/t ratios). The use of sandwich panels with high b/t ratios is very common in practical design due to the increasing use of thinner and high strength steel plates. Therefore an improved design rule was developed based on the numerical results that can be used for fully profiled sandwich panels with any practical b/t ratio up to 600. The new improved design rule was validated using six full-scale experiments of profiled sandwich panels and hence can be used to develop safe and economical design solutions. The second phase of this research was based on a series of laboratory experiments and numerical analyses on lightly profiled sandwich panels to study the mixed mode buckling behaviour due to the interaction of local buckling and flexural wrinkling. The current wrinkling formula, which is a simple modification of the methods utilized for flat panels, does not consider the possible interaction between these two buckling modes. As the rib depth and width of flat plates between the ribs increase, flat plate buckling can occur leading to the failure of the entire panel due to the interaction between local buckling and wrinkling modes. Experimental and numerical results from this research confirmed that the current wrinkling formula for lightly profiled sandwich panels based on the elastic half-space method is inadequate in its present form. Hence an improved equation was developed based on validated finite element analysis results to take into account the interaction of the two buckling modes. This new interactive buckling formula can be used to determine the true value of interactive buckling stress for safe and economical design of lightly profiled sandwich panels. This thesis presents the details of experimental investigations and finite element analyses conducted to study the local buckling behaviour of fully profiled sandwich panels and the mixed mode buckling behaviour of lightly profiled sandwich panels. It includes development and validation of suitable numerical and experimental models, and the results. Current design rules are reviewed and new improved design rules are developed based on the results from this research.
APA, Harvard, Vancouver, ISO, and other styles
30

Pokharel, Narayan. "Behaviour and Design of Sandwich Panels Subject to Local Buckling and Flexural Wrinkling Effects." Queensland University of Technology, 2003. http://eprints.qut.edu.au/15890/.

Full text
Abstract:
Sandwich panels comprise a thick, light-weight plastic foam such as polyurethane, polystyrene or mineral wool sandwiched between two relatively thin steel faces. One or both steel faces may be flat, lightly profiled or fully profiled. Until recently sandwich panel construction in Australia has been limited to cold-storage buildings due to the lack of design methods and data. However, in recent times, its use has increased significantly due to their widespread structural applications in building systems. Structural sandwich panels generally used in Australia comprise of polystyrene foam core and thinner (0.42 mm) and high strength (minimum yield stress of 550 MPa and reduced ductility) steel faces bonded together using separate adhesives. Sandwich panels exhibit various types of buckling behaviour depending on the types of faces used. Three types of buckling modes can be observed which are local buckling of plate elements of fully profiled faces, flexural wrinkling of flat and lightly profiled faces and mixed mode buckling of lightly profiled faces due to the interaction of local buckling and flexural wrinkling. To study the structural performance and develop appropriate design rules for sandwich panels, all these buckling failure modes have to be investigated thoroughly. A well established analytical solution exists for the design of flat faced sandwich panels, however, the design solutions for local buckling of fully profiled sandwich panels and mixed mode buckling of lightly profiled sandwich panels are not adequate. Therefore an extensive research program was undertaken to investigate the local buckling behaviour of fully profiled sandwich panels and the mixed mode buckling behaviour of lightly profiled sandwich panels. The first phase of this research was based on a series of laboratory experiments and numerical analyses of 50 foam-supported steel plate elements to study the local buckling behaviour of fully profiled sandwich panels made of thin steel faces and polystyrene foam core covering a wide range of b/t ratios. The current European design standard recommends the use of a modified effective width approach to include the local buckling effects in design. However, the experimental and numerical results revealed that this design method can predict reasonable strength for sandwich panels with low b/t ratios (< 100), but it predicts unconservative strengths for panels with slender plates (high b/t ratios). The use of sandwich panels with high b/t ratios is very common in practical design due to the increasing use of thinner and high strength steel plates. Therefore an improved design rule was developed based on the numerical results that can be used for fully profiled sandwich panels with any practical b/t ratio up to 600. The new improved design rule was validated using six full-scale experiments of profiled sandwich panels and hence can be used to develop safe and economical design solutions. The second phase of this research was based on a series of laboratory experiments and numerical analyses on lightly profiled sandwich panels to study the mixed mode buckling behaviour due to the interaction of local buckling and flexural wrinkling. The current wrinkling formula, which is a simple modification of the methods utilized for flat panels, does not consider the possible interaction between these two buckling modes. As the rib depth and width of flat plates between the ribs increase, flat plate buckling can occur leading to the failure of the entire panel due to the interaction between local buckling and wrinkling modes. Experimental and numerical results from this research confirmed that the current wrinkling formula for lightly profiled sandwich panels based on the elastic half-space method is inadequate in its present form. Hence an improved equation was developed based on validated finite element analysis results to take into account the interaction of the two buckling modes. This new interactive buckling formula can be used to determine the true value of interactive buckling stress for safe and economical design of lightly profiled sandwich panels. This thesis presents the details of experimental investigations and finite element analyses conducted to study the local buckling behaviour of fully profiled sandwich panels and the mixed mode buckling behaviour of lightly profiled sandwich panels. It includes development and validation of suitable numerical and experimental models, and the results. Current design rules are reviewed and new improved design rules are developed based on the results from this research.
APA, Harvard, Vancouver, ISO, and other styles
31

Erik, Johansson. "Molecular Interactions in Thin Films of Biopolymers, Colloids and Synthetic Polyelectrolytes." Doctoral thesis, KTH, Fiberteknologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-41023.

Full text
Abstract:
The development of the layer-by-layer (LbL) technique has turned out to be an efficient way to physically modify the surface properties of different materials, for example to improve the adhesive interactions between fibers in paper. The main objective of the work described in this thesis was to obtain fundamental data concerning the adhesive properties of wood biopolymers and LbL films, including the mechanical properties of the thin films, in order to shed light on the molecular mechanisms responsible for the adhesion between these materials. LbLs constructed from poly(allylamine hydrochloride) (PAH)/poly(acrylic acid) (PAA), starch containing LbL films, and LbL films containing nanofibrillated cellulose (NFC) were studied with respect to their adhesive and mechanical properties. The LbL formation was studied using a combination of stagnation point adsorption reflectometry (SPAR) and quartz crystal microbalance with dissipation (QCM-D) and the adhesive properties of the different LbL films were studied in water using atomic force microscopy (AFM) colloidal probe measurements and under ambient conditions using the Johnson-Kendall-Roberts (JKR) approach. Finally the mechanical properties were investigated by mechanical buckling and the recently developed SIEBIMM technique (strain-induced elastic buckling instability for mechanical measurements). From colloidal probe AFM measurements of the wet adhesive properties of surfaces treated with PAH/PAA it was concluded that the development of strong adhesive joints is very dependent on the mobility of the polyelectrolytes and interdiffusion across the interface between the LbL treated surfaces to allow for polymer entanglements. Starch is a renewable, cost-efficient biopolymer that is already widely used in papermaking which makes it an interesting candidate for the formation of LbL films in practical systems. It was shown, using SPAR and QCM-D, that LbL films can be successfully constructed from cationic and anionic starches on silicon dioxide and on polydimethylsiloxane (PDMS) substrates. Colloidal probe AFM measurements showed that starch LbL treatment have potential for increasing the adhesive interaction between solid substrates to levels beyond those that can be reached by a single layer of cationic starch. Furthermore, it was shown by SIEBIMM measurements that the elastic properties of starch-containing LbL films can be tailored using different nanoparticles in combination with starch. LbL films containing cellulose I nanofibrils were constructed using anionic NFC in combination with cationic NFC and poly(ethylene imine) (PEI) respectively. These NFC films were used as cellulose model surfaces and colloidal probe AFM was used to measure the adhesive interactions in water. Furthermore, PDMS caps were successfully coated by LbL films containing NFC which enabled the first known JKR adhesion measurements between cellulose/cellulose, cellulose/lignin and cellulose/glucomannan. The measured adhesion and adhesion hysteresis were similar for all three systems indicating that there are no profound differences in the interaction between different wood biopolymers. Finally, the elastic properties of PEI/NFC LbL films were investigated using SIEBIMM and it was shown that the stiffness of the films was highly dependent on the relative humidity.

QC 20110923

APA, Harvard, Vancouver, ISO, and other styles
32

Pevner, Jan. "Nadzemní parkovací dům." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2014. http://www.nusl.cz/ntk/nusl-226965.

Full text
Abstract:
The work focuses on the design and assessment of selected structural elements of one overground floor monolithic concrete structures and staircases. All calculations are done in accordance with Eurocode 2.
APA, Harvard, Vancouver, ISO, and other styles
33

Ferencz, Balázs. "Nosná železobetonová konstrukce objektu administrativní budovy." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2014. http://www.nusl.cz/ntk/nusl-226920.

Full text
Abstract:
The Master’s thesis is focused on the analysis and design of selected members of load-bearing structure of an administration building according to the ultimate limit states (ULS) and seviceability limit states (SLS). The calculation and the analysis was supported by design software SCIA ENGINEER 2012. Structural analysis deals with the design of the reinforced concrete (RC) flat slab above the 4rd strorey which is particularly supported by RC columns and particularly lies on RC walls. Furthermore, the Master’s thesis contains analysis of some selected columns of last three storeys, column of lowest storey, construction of stairway between 4rd and 5th storeys. The work beside this deals with the calculation and design of foundation of the object. The rest parts of the load-bearing structure are not solved in the Master’s thesis.
APA, Harvard, Vancouver, ISO, and other styles
34

Guidetti, Giulia. "Cellulose photonics : designing functionality and optical appearance of natural materials." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/277918.

Full text
Abstract:
Cellulose is the most abundant biopolymer on Earth as it is found in every plant cell wall; therefore, it represents one of the most promising natural resources for the fabrication of sustainable materials. In plants, cellulose is mainly used for structural integrity, however, some species organise cellulose in helicoidal nano-architectures generating strong iridescent colours. Recent research has shown that cellulose nanocrystals, CNCs, isolated from natural fibres, can spontaneously self-assemble into architectures that resemble the one producing colouration in plants. Therefore, CNCs are an ideal candidate for the development of new photonic materials that can find use to substitute conventional pigments, which are often harmful to humans and to the environment. However, various obstacles still prevent a widespread use of cellulose-based photonic structures. For instance, while the CNC films can display a wide range of colours, a precise control of the optical appearance is still difficult to achieve. The intrinsic low thermal stability and brittleness of cellulose-based films strongly limit their use as photonic pigments at the industrial scale. Moreover, it is challenging to integrate them into composites to obtain further functionality while preserving their optical response. In this thesis, I present a series of research contributions that make progress towards addressing these challenges. First, I use an external magnetic field to tune the CNC films scattering response. Then, I demonstrate how it is possible to tailor the optical appearance and the mechanical properties of the films as well as to enhance their functionality, by combining CNCs with other polymers. Finally, I study the thermal properties of CNC films to improve the retention of the helicoidal arrangement at high temperatures and to explore the potential use of this material in industrial fabrication processes, such as hot-melt extrusion.
APA, Harvard, Vancouver, ISO, and other styles
35

Abdel-Rahim, Abdel-Rahim Badawy. "Effect of web-flange interaction on the buckling behaviour of slender girders." 1996. http://hdl.handle.net/1993/19091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Μπουρνάς, Διονύσιος. "Ενίσχυση υποστυλωμάτων οπλισμένου σκυροδέματος με νέα υλικά : ινοπλέγματα ανόργανης μήτρας, οπλισμοί σύνθετων υλικών." Thesis, 2008. http://nemertes.lis.upatras.gr/jspui/handle/10889/1579.

Full text
Abstract:
Στην παρούσα διδακτορική διατριβή αναπτύσσεται μια νέα τεχνική ενίσχυσης υποστυλωμάτων οπλισμένου σκυροδέματος με βάση τη χρήση συνθέτων υλικών, τα οποία αποτελούνται από πλέγματα ινών σε ανόργανη μήτρα (π.χ. κονίαµα µε βάση το τσιμέντο), αποσκοπώντας στην επίλυση προβλημάτων που χαρακτηρίζουν τα Ινοπλισμένα Πολυμερή (ΙΟΠ) σχετικά µε τη χρήση εποξειδικών ρητινών. Τα Ινοπλέγματα σε Ανόργανη Μήτρα (ΙΑΜ) δοκιμάζονται στη μορφή μανδύα µε στόχο την περίσφιγξη και την αύξηση της πλαστιμότητας υποστυλωμάτων παλαιού τύπου, σχεδιασμένων δηλαδή χωρίς τις νέες αντισεισμικές λεπτομέρειες όπλισης. Εξετάζονται διάφορες παράμετροι, που περιλαμβάνουν τη χρήση ράβδων λείων ή με νευρώσεις, την πιθανή ένωση των ράβδων με υπερκάλυψη στον πόδα των υποστυλωμάτων και το μήκος υπερκάλυψης. Έτσι προσδιορίζεται η αποτελεσματικότητα των μανδυών ΙΑΜ και συγκρίνεται με αυτή τον ΙΟΠ ως μέσου περίσφιγξης στις κρίσιμες περιοχές υφισταμένων υποστυλωμάτων για όλες τις περιπτώσεις καμπτικών αστοχιών στην περιοχή της πλαστικής άρθρωσης. Το πειραματικό πρόγραμμα που ακολουθείται για την απόκτηση δεδομένων γύρω από τη συμπεριφορά υποστυλωμάτων οπλισμένου σκυροδέματος, ενισχυμένων με μανδύες ανόργανης (ΙΑΜ) ή οργανικής (ΙΟΠ) μήτρας, περιλαμβάνει συνολικά 28 δοκιμές επί δοκιμίων υποστυλωμάτων δύο τύπων: (α) 15 πρισματικά δοκίμια οπλισμένου σκυροδέματος που δοκιμάζονται σε κεντρική θλίψη και (β) 13 δοκίμια υποστυλωμάτων πλήρους κλίμακας, τα οποία δοκιμάζονται σε ανακυκλιζόμενη κάμψη με σταθερό αξονικό φορτίο. Καταδεικνύεται ότι η αποτελεσµατικότητα των µανδυών ΙΑΜ είναι υψηλή και γενικώς παρόµοια µε αυτή των µανδυών ΙΟΠ για όλες τις περιπτώσεις που εξετάστηκαν. Επιπροσθέτως, τα πειραματικά αποτελέσματα των 13 υποστυλωμάτων πλήρους κλίμακας που υποβλήθηκαν σε ανακυκλιζόμενη κάμψη (με σταθερό αξονικό φορτίο), συμβάλλουν στη διερεύνηση δύο ακόμα “θολών” μέχρι σήμερα πεδίων, όπως: (α) Ο λυγισμός των διαμήκων ράβδων σε περισφιγμένο με μανδύες ΙΑΜ ή ΙΟΠ σκυρόδεμα. Ιδιαίτερη έμφαση δίνεται στη μελέτη της αλληλεπίδρασης μεταξύ του μανδύα ΙΑΜ ή ΙΟΠ και των διαμήκων ράβδων, κατά την έναρξη και εξέλιξη του λυγισμού των τελευταίων. (β) Η αντοχή σε συνάφεια μεταξύ των ενωμένων με παράθεση ράβδων και του περισφιγμένου με μανδύες ΙΑΜ ή ΙΟΠ σκυροδέματος. Ιδιαίτερη έμφαση δίνεται στην πειραματική και αναλυτική μελέτη του μηχανισμού με τον οποίο η περίσφιγξη με μανδύες ΙΟΠ και ΙΑΜ συνεισφέρει στη βελτίωση των συνθηκών συνάφειας μεταξύ ράβδων οπλισμού και σκυροδέματος. Ακόμα στην παρούσα διδακτορική διατριβή διεξάγεται η πρώτη συστηματική μελέτη καμπτικής ενίσχυσης υποστυλωμάτων υπό ανακυκλιζόμενη κάμψη (και σταθερό αξονικό φορτίο) με Πρόσθετους Οπλισμούς νέου τύπου σε Εγκοπές (ΠΟΕ). Εξετάζονται υποστυλώματα που έχουν ενισχυθεί με πρόσθετο οπλισμό ινοπλισμένων πολυμερών (ελάσματα άνθρακα ή ράβδους γυαλιού) καθώς και με ράβδους ανοξείδωτου χάλυβα τοποθετημένων σε εγκοπές. Άλλη μια καινοτομία που εισαγάγει η παρούσα διατριβή είναι ο συνδυασμός του ΠΟΕ με τοπικούς μανδύες ινοπλεγμάτων σε ανόργανη μήτρα (IAM), οι οποίοι αποτελούν ένα εξαιρετικά αποτελεσματικό και πολλά υποσχόμενο σύστημα περίσφιγξης, όπως αναπτύσσεται και περιγράφεται λεπτομερώς στην παρούσα διδακτορική διατριβή. Η έρευνα που υλοποιείται για την απόκτηση δεδομένων γύρω από τη συμπεριφορά υποστυλωμάτων οπλισμένου σκυροδέματος ενισχυμένων σε κάμψη με ΠΟΕ, περιλαμβάνει τη διεξαγωγή 11 δοκιμών επί υποστυλωμάτων πλήρους κλίμακας, τα οποία υποβάλλονται σε ανακυκλιζόμενη κάμψη υπό σταθερό αξονικό φορτίο. . Καταδεικνύεται ότι μέσω ενός κατάλληλου σχεδιασμού, στα πλαίσια του οποίου ο ΠΟΕ συνδυάζεται με τοπικό μανδύα στα άκρα του υποστυλώματος (κορυφή και πόδα), είναι εφικτό η αύξηση της καμπτικής αντίστασης των υποστυλωμάτων να μην συνοδεύεται από μείωση της διαθέσιμης ικανότητας παραμόρφωσης. Τα χρήσιμα πειραματικά ευρήματα από τα ενισχυμένα με ΠΟΕ υποστυλώματα, συμπληρώνονται με την ανάπτυξη ενός αναλυτικού και υπολογιστικού προσομοιώματος, το οποίο έχει διττή συμβολή, καθώς επιτρέπει: (α) την εκτέλεση παραμετρικών αναλύσεων ώστε να μελετηθεί σε βάθος και χωρίς κόπο (πειραματικές δοκιμές) η επίδραση όλων σχεδόν των παραμέτρων, στην καμπτική αντίσταση των ενισχυμένων με ΠΟΕ υποστυλωμάτων. (β) Τη χρήση του ως πολύτιμου υπολογιστικού εργαλείου από το Μηχανικό για το σχεδιασμό καμπτικών ενισχύσεων υποστυλωμάτων με ΠΟΕ και / ή μανδύες συνθέτων υλικών. Η αξία της συμβολής του εν λόγω προσομοιώματος μεγιστοποιείται αν ληφθούν υπόψη ορισμένα χαρακτηριστικά του όπως: (1) Η μείωση των ροπών αντοχής ως προς τους δύο κύριους άξονες (ισχυρός και ασθενής), η οποία οφείλεται στην έντονη σύζευξή τους, για τα ενισχυμένα σε κάμψη υποστυλώματα που υποβάλλονται σε διαξονική κάμψη. (2) Η εφαρμογή ενός τραπεζοειδούς στερεού τάσεων για το σκυρόδεμα σε θλίψη, το οποίο σε σύγκριση με το κλασικό ορθογωνικό στερεό, προσομοιώνει με αρκετά μεγαλύτερη ακρίβεια τον όγκο του σκυροδέματος της θλιβόμενης ζώνης, ιδιαίτερα για τις ενισχυμένες διατομές. (3) Η ταυτόχρονη δράση της εξωτερικής περίσφιγξης με μανδύες συνθέτων υλικών στις ενισχυμένες σε κάμψη διατομές.
The effectiveness of a new structural material, namely Textile-Reinforced Mortar (TRM), was investigated experimentally in this PhD Thesis as a means of confining old-type reinforced concrete (RC) columns with limited capacity due to bar buckling or due to bond failure at lap splice regions. Comparisons with equal stiffness and strength fiber-reinforced polymer (FRP) jackets allow for the evaluation of the effectiveness of TRM versus FRP. Tests were carried out on nearly full scale non-seismically detailed RC columns subjected to cyclic uniaxial flexure under constant axial load. Thirteen cantilever-type specimens with either continuous or lap-spliced deformed longitudinal reinforcement at the floor level were constructed and tested. Experimental results indicated that TRM jacketing is quite effective as a means of increasing the cyclic deformation capacity of old-type RC columns with poor detailing, by delaying bar buckling and by preventing splitting bond failures in columns with lap-spliced bars. Compared with their FRP counterparts, the TRM jackets used in this study were found to be equally effective in terms of increasing both the strength and deformation capacity of the retrofitted columns. From the response of specimens tested in this study, it can be concluded that TRM jacketing is an extremely promising solution for the confinement of RC columns, including poorly detailed ones with or without lap splices in seismic regions. Moreover this PhD Thesis presents the results of a large-scale experimental program aiming to study the behavior of RC columns under simulated seismic loading, strengthened in flexure (of crucial importance in capacity design) with different types and configurations of near-surface mounted (NSM) reinforcing materials. The role of different parameters is examined, by comparison of the lateral load versus displacement response characteristics (peak force, drift ratios, energy dissipation, stiffness). Those parameters were as follows: carbon or glass fiber-reinforced polymers (FRP) versus stainless steel; configuration and amount of NSM reinforcement; confinement via local jacketing; and type of bonding agent (epoxy resin or mortar). The results demonstrate that NSM FRP or stainless steel reinforcement is a viable solution towards enhancing the flexural resistance of reinforced concrete columns subjected to seismic loads. With proper design, which should combine compulsory NSM reinforcement with local jacketing at column ends, it seems that column strength enhancement does not develop at the expense of low deformation capacity.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography