Academic literature on the topic 'Intelligent Polymers'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Intelligent Polymers.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Intelligent Polymers"

1

Andrade, J. D. "Polymers Have "Intelligent" Surfaces: Polymer Surface Dynamics." Journal of Intelligent Material Systems and Structures 5, no. 5 (September 1994): 612–18. http://dx.doi.org/10.1177/1045389x9400500503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jingcheng, Li, Vundrala Sumedha Reddy, Wanasinghe A. D. M. Jayathilaka, Amutha Chinnappan, Seeram Ramakrishna, and Rituparna Ghosh. "Intelligent Polymers, Fibers and Applications." Polymers 13, no. 9 (April 28, 2021): 1427. http://dx.doi.org/10.3390/polym13091427.

Full text
Abstract:
Intelligent materials, also known as smart materials, are capable of reacting to various external stimuli or environmental changes by rearranging their structure at a molecular level and adapting functionality accordingly. The initial concept of the intelligence of a material originated from the natural biological system, following the sensing–reacting–learning mechanism. The dynamic and adaptive nature, along with the immediate responsiveness, of the polymer- and fiber-based smart materials have increased their global demand in both academia and industry. In this manuscript, the most recent progress in smart materials with various features is reviewed with a focus on their applications in diverse fields. Moreover, their performance and working mechanisms, based on different physical, chemical and biological stimuli, such as temperature, electric and magnetic field, deformation, pH and enzymes, are summarized. Finally, the study is concluded by highlighting the existing challenges and future opportunities in the field of intelligent materials.
APA, Harvard, Vancouver, ISO, and other styles
3

Purohit, Arpana, Sameeksha Jain, Prakhar Nema, Harshna Vishwakarma, and Prateek Kumar Jain. "Intelligent or Smart Polymers: Advance in Novel Drug Delivery." Journal of Drug Delivery and Therapeutics 12, no. 5 (September 15, 2022): 208–16. http://dx.doi.org/10.22270/jddt.v12i5.5578.

Full text
Abstract:
Novel drug delivery system utilizing smart polymer to get significant and attracting changes in the targeting of drugs, increasing the bioavailability of drugs, enhancement patient compliance and gene therapy. The scientific community tries to mimic nature in the way that living organisms adopt their behavior as a function of environmental conditions to improve survival. In this sense, smart polymers offer materials that respond to numerous stimuli (temperature, pH, electric and magnetic fields, light intensity, biological molecules, etc.), and scientists must devise the best way to apply them in all research areas. Smart polymers are representing promising means for targeted drug delivery, enhanced drug delivery, gene therapy, actuator stimuli and protein folders. Smart polymers are very promising applicants in drug delivery, tissue engineering, cell culture, gene carriers, textile engineering, oil recovery, radioactive wastage and protein purification. The study is focused on the entire features of smart polymers and their most recent and relevant applications. Keywords: Smart polymer, Novel drug delivery system, Stimuli, Gene therapy
APA, Harvard, Vancouver, ISO, and other styles
4

Kiparissides, C., and J. Morris. "Intelligent manufacturing of polymers." Computers & Chemical Engineering 20 (January 1996): S1113—S1118. http://dx.doi.org/10.1016/0098-1354(96)00193-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lin, Guo Min, Fang Yuan, and Yan Hua Li. "Current Situation and Latest Development of Intelligent Materials." Advanced Materials Research 989-994 (July 2014): 288–91. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.288.

Full text
Abstract:
The background and design idea of the intelligent materials is introduced. Three elements of intelligent materials are given. Then based on classifying of intelligent materials, the features and applications of intelligent materials are researched.Principle and the latest applications of typical intelligent materials such as optical fiber, shape memory alloys, shape memory polymers, piezoelectric, magnetostrictive materials, fluid material and polymer colloid are analyzed simplely. The research difficulties and the future research focuses of intelligent material are pointed out.
APA, Harvard, Vancouver, ISO, and other styles
6

Ussia, Martina, and Martin Pumera. "Towards micromachine intelligence: potential of polymers." Chemical Society Reviews 51, no. 5 (2022): 1558–72. http://dx.doi.org/10.1039/d1cs00587a.

Full text
Abstract:
This tutorial introduces the fundamental aspects of polymers and micromachines. It highlights the role of polymeric microrobots in formulating intelligent systems by critically reviewing key factors affecting motion and functionalities.
APA, Harvard, Vancouver, ISO, and other styles
7

Hoffman, Allan S. "Bioconjugates of Intelligent Polymers and Recognition Proteins for Use in Diagnostics and Affinity Separations." Clinical Chemistry 46, no. 9 (September 1, 2000): 1478–86. http://dx.doi.org/10.1093/clinchem/46.9.1478.

Full text
Abstract:
Abstract Polymers that respond to small changes in environmental stimuli with large, sometimes discontinuous changes in their physical state or properties are often called “intelligent” or “smart” polymers. We have conjugated these polymers to different recognition proteins, including antibodies, protein A, streptavidin, and enzymes. These bioconjugates have been prepared by random polymer conjugation to lysine amino groups on the protein surface, and also by site-specific conjugation of the polymer to specific amino acid sites, such as cysteine sulfhydryl groups, that are genetically engineered into the known amino acid sequence of the protein. We have conjugated several different smart polymers to streptavidin, including temperature-, pH-, and light-sensitive polymers. The preparation of these conjugates and their many fascinating applications are reviewed here.
APA, Harvard, Vancouver, ISO, and other styles
8

Dinçer, S., M. Türk, and E. Pişkin. "Intelligent polymers as nonviral vectors." Gene Therapy 12, S1 (October 2005): S139—S145. http://dx.doi.org/10.1038/sj.gt.3302628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Morones-Ramírez, J. Rubén. "Coupling Metallic Nanostructures to Thermally Responsive Polymers Allows the Development of Intelligent Responsive Membranes." International Journal of Polymer Science 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/967615.

Full text
Abstract:
Development of porous membranes capable of controlling flow or changing their permeability to specific chemical entities, in response to small changes in environmental stimuli, is an area of appealing research, since these membranes present a wide variety of applications. The synthesis of these membranes has been mainly approached through grafting of environmentally responsive polymers to the surface walls of polymeric porous membranes. This synergizes the chemical stability and mechanical strength of the polymer membrane with the fast response times of the bonded polymer chains. Therefore, different composite membranes capable of changing their effective pore size with environmental triggers have been developed. A recent interest has been the development of porous membranes responsive to light, since these can achieve rapid, remote, noninvasive, and localized flow control. This work describes the synthesis pathway to construct intelligent optothermally responsive membranes. The method followed involved the grafting of optothermally responsive polymer-metal nanoparticle nanocomposites to polycarbonate track-etched porous membranes (PCTEPMs). The nanoparticles coupled to the polymer grafts serve as the optothermal energy converters to achieve optical switching of the pores. The results of the paper show that grafting of the polymer andin situsynthesis of the metallic particles can be easily achieved. In addition, the composite membranes allow fast and reversible switching of the pores using both light and heat permitting control of fluid flow.
APA, Harvard, Vancouver, ISO, and other styles
10

Okano, Teruo. "Intelligent Polymers for Targetable Drug Therapy." Journal of Life Support Engineering 9, Supplement (1997): 19–21. http://dx.doi.org/10.5136/lifesupport.9.supplement_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Intelligent Polymers"

1

Moulton, Brian D. ""Intelligent" Design of Molecular Materials: Understanding the Concepts of Design in Supramolecular Synthesis of Network Solids." [Tampa, Fla.] : University of South Florida, 2003. http://purl.fcla.edu/fcla/etd/SFE0000603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gottlieb, Ronny, and Karl-Friedrich Arndt. "Intelligente Werkstoffe - Vom Makromolekül zum intelligenten Material." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1188378259921-41093.

Full text
Abstract:
Sensitive polymers change their conformation in response to even a little change in the environmental conditions, e. g. temperature, pH value, concentration of a second component, or light. Crosslinking of these polymers and their swelling in water forms smart hydrogels (intelligent hydrogels). Different shapes and dimensions are possible: bulk gel, thin layers, intraor intermolecular crosslinked globular particles. Smart hydrogels display two important properties: Their volume (swelling degree) depends on the environment and can be switched between two states. The gels can thus be used as actuators. As the change in the gel properties is stimulated by changes in the environment, the gels can also be used as sensors. Smart hydrogels are suitable for applications in microsystems, and gel particles are potential carriers for drugs in the human body
Umgebungssensitive Polymere ändern in Abhängigkeit von Umgebungsbedingungen, wie zum Beispiel dem Licht, der Temperatur, dem pH-Wert oder der Konzentration einer zweiten Komponente neben dem Polymer, drastisch ihre Molekülgestalt. Vernetzt und in Wasser gequollen, bilden sie sogenannte smarte Hydrogele. Dabei werden die Besonderheiten eines Makromoleküls, dessen Eigenschaften durch die Umgebung beeinflusst werden, auf ein polymeres Material übertragen. Dies kann ein großer Körper, eine dünne Schicht oder ein Nanopartikel sein. Das Volumen der smarten Hydrogele kann zwischen zwei Zuständen geschaltet werden. Dabei können die Hydrogele wie Aktoren eine Kraft ausüben. Da das Schalten durch die Umgebung stimuliert wird, sind sie als Sensoren verwendbar. Die Polymerstrukturen sind miniaturisierbar, sodass smarte Hydrogele als Komponenten in Mikrosystemen angewendet werden können. Zum Beispiel werden die Partikel zur kontrollierten Abgabe von Arzneimittelwirkstoffen verwendet
APA, Harvard, Vancouver, ISO, and other styles
3

Motornov, Mikhail. "Fabrication and Study of Switchable Polymer Layers with Hydrophobic/Hydrophilic Behavior." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2004. http://nbn-resolving.de/urn:nbn:de:swb:14-1101369711031-72233.

Full text
Abstract:
The framework of this thesis aims to fabricate materials, which change surface characteristics in response to environmental conditions. This response may be employed to improve material characteristics as adhesion, wettability, interaction with cells etc. The mixed brushes introduce adaptive and switching behavior in different surrounding media. Two main approaches were employed to fabricate mixed polymer brushes: "grafting to" and "grafting from". Mixed PS/PVP polymer brushes were synthesized via step-by-step grafting of these two polymers from polyamide (PA) surfaces. NH3 plasma was used for the introduction of amino and OH functionalities on PA surfaces with following attachment of azo initiator of radical polymerizaton. The mixed brushes prepared on the surface of PA textiles combine both the switching effect and effect of composite surface (i.e. micrometer scale roughness) which substantially amplifies the switching range. Mixed polymer brushes prepared from P(S-b-2VP-b-EO) and P(S-b-4VP) block copolymers were grafted to both the flat surface of Si wafers and to the surface of silica nanoparticles via quaternization reaction of the pyridine nitrogen. This one step grafting technique has a substantial advantage over the multistep grafting of mixed polymer brushes. We have demonstrated that combination of the two level hierarchical organization of polymer films at macroscopic and nanoscopic levels resulted in the formation of self adaptive surfaces switchable in controlled environment from ultra-hydrophobic to hydrophilic energetic states. The PFS/PVP mixed brush was grafted onto the pre-treated PTFE surface (plasma etching) with the needle like topography. The size of vertical needles was at micron scale. If the brush is switched to the hydrophobic state the layer has shown a unique ultra-hydrophobic behavior (complete non-wetting) with the contact angle approaching value of 160o. If the mixed brush was switched into the hydrophilic state the surface became completely wetted due to the capillary forces in the pores formed by the needle like structure. Thus, the surface can be either highly wettable or completely non-wettable with the self cleaning properties.
APA, Harvard, Vancouver, ISO, and other styles
4

Hart, Sean Michael. "Intelligent Processing of PMR-15." W&M ScholarWorks, 1992. https://scholarworks.wm.edu/etd/1539625733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ngatchou, Patrick. "Intelligent techniques for optimization and estimation /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/5827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yu, Dingwen. "Development of an intelligent design tool for polymer screw extruders." Thesis, Nottingham Trent University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Marchant, Maïté. "Modélisation multi-échelles des systèmes nanophotoniques à base de matériaux intelligents." Thesis, Clermont-Ferrand 2, 2014. http://www.theses.fr/2014CLF22449.

Full text
Abstract:
Beaucoup d’applications en ingénierie demandent l’utilisation de matériaux intelligents qui peuvent se déformer en réponse à un stimulus extérieur. C’est dans ce contexte, que s’est posé ce projet de recherche. Bénéficiant d’un environnement pluridisciplinaire, grâce à l’association de deux axes de l'Institut Pascal : l’axe MMS (Mécanique, Matériaux et Structures) et l’axe PHOTON (Axe Photonique, Ondes, Nanomatériaux), cette thèse s’intègre parfaitement dans l’action transversale "Matériaux et Modélisations multi-échelles" du laboratoire. La première partie de ce travail s'appuie sur un système expérimental mis au point par une équipe américaine [Chang_10] qui permet la mesure sans contact du pH d'une solution en exploitant les caractéristiques photoniques du système. Ce système est composé d'un réseau d'hydrogel fixé sur un substrat rigide. Un modèle numérique est développé dans le but de simuler le fonctionnement de l'ensemble et d'optimiser le réseau d'hydrogel en vue d'applications dans le domaine médical. La seconde partie de ce travail concerne le développement d'une théorie sur le comportement mécanique de polymères sensibles à la lumière. L'objectif est d'établir une relation liant la déformation du matériau à l’intensité lumineuse. Les résultats obtenus sont comparés avec les résultats expérimentaux issus de la littérature. L'influence des interactions entre les molécules d'azobenzènes sur la déformation du matériau est étudiée
Many engineering applications involve stimuli-responsive materials that can change their shape under the action of an external stimulus. It is in this context that this project takes place. Thanks to a multidisciplinary environment with the association of two lines of research of the Institut Pascal: the Mechanical area (Mechanic, Materials and structure) and the Photonic area (Nanostructures and Nanophotonics), this PhD perfectly fits with the “Materials and multi-scale Modeling” transversal action of the laboratory. The first part of this work relies on an experimental system developed by an American team [Chang_10] which allows to measure the pH of a solution without contact, making use of its photonic characteristics. This system is composed of a hydrogel network fixed on a rigid substract. A numerical model is developed in order to simulate its behavior and optimize the hydrogel network with a view to applications in the medical domain. The second part of this PhD is related to the development of a theory on the mechanical behavior of photo-sensitive polymers. The aim is to establish a link between the material deformation and the light intensity. The obtained results are compared to experimental ones from literature. The interaction influence of the azobenzenes molecules on the material strain is studied
APA, Harvard, Vancouver, ISO, and other styles
8

Ramgobin, Aditya. "Synthèse et conception de retardateurs de flamme intelligents." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1R045/document.

Full text
Abstract:
Les matériaux polymères sont de plus en plus utilisés pour remplacer d’autres types de matériaux tels que la céramique ou le métal. Cependant, la majorité des polymères ont un désavantage : ils doivent être ignifugés. Néanmoins, grâce à la recherche dans le domaine des matériaux, des polymères haute performance qui résistent à la chaleur et aux scénarios feu ont été conçus. Malgré l’avantage technique qu’apportent ces matériaux, ils sont extrêmement chers. Le but de ce travail est de comprendre la réaction au feu des matériaux hautes performances afin de concevoir des retardateurs de flamme qui réagiraient comme ces polymères hautes performances quand ils sont soumis à des températures élevées ou dans un scénario feu. Dans cette optique, le comportement à haute température et la réaction au feu de trois matériaux hautes performances ont été étudiés : polyetheretherketone (PEEK), polyimide (PI), et polybenzoxazole (PBO). Les mécanismes de décomposition de ces matériaux ont été évalués à travers différentes méthodes analytique telles que le pyrolyseur GCMS et l’ATG-FTIR. La cinétique de décomposition de ces matériaux a aussi été évaluée en utilisant l’ATG dynamique sous différentes atmosphères (azote, 2% oxygène, et air). Cela nous a permis d’acquérir du recul par rapport aux comportements thermiques de ces matériaux hautes performances, que nous avons pu exploiter pour définir des nouveaux retardateurs de feu. Ainsi, une série de retardateurs de flamme ont été synthétisés. Ces retardateurs de flamme font partie de la famille de bases de Schiff et comprennent le salen et ses dérivées, ainsi que certains de leurs complexes métalliques. Le comportement thermique et réaction au feu de ses retardateurs de flamme ont été évalués dans deux polymères : le polyuréthane thermoplastique, et le polyamide 6. Bien qu’une partie de ces retardateurs de feu aient montré peu d’effet au feu, certains ont montré une amélioration importante en termes de chaleur dégagée. Cette nouvelle approche vers la conception de charges ignifugeantes est prometteuse et peut être utilisée comme une méthode complémentaire pour la conception de matériaux haute performance à bas cout
Polymeric materials have been increasingly used as replacement for other types of materials such as ceramics or metals. However, most polymers have a serious drawback: they need to be fire retarded. Nevertheless, thanks to advanced research in the field, high performance materials that resist high temperatures and fire scenarios have been developed. While these materials have extremely enviable properties, they are also very expensive. The aim of this PhD is to understand the fire behavior of high-performance polymers and design fire retardants that would mimic these high-performance materials under extreme heat or fire. To do so, the thermal and fire behavior of three high performance materials were studied: polyetheretherketone (PEEK), polyimide (PI), and polybenzoxazole (PBO). Their thermal decomposition pathways were evaluated thanks to high temperature analytical techniques like pyrolysis-GC/MS and TGA-FTIR. Model based kinetics of the thermal decomposition of these polymeric materials were also elucidated by using dynamic TGA under three different atmospheres (nitrogen, 2% oxygen, and air). These provided insight regarding the thermal behavior high performance polymers, which were used to conceptualize novel potential fire retardants. Therefore, a series of fire retardants that have demonstrated similar behaviors as high performance polymers in fire scenarios were synthesized. These fire retardants include a Schiff base: salen and its derivatives, as well as some of their metal complexes. The thermal behavior and fire performances of these fire retardants were evaluated in two polymeric materials using a relatively low loading (< 10 wt%): thermoplastic polyurethane, and polyamide 6. While some of the fire retardants had little effect, in terms of fire retardancy, some candidates showed a significant improvement in terms of peak of heat release rate. This reverse approach towards designing fire retardants has shown some promise and can be used as a complementary method for the design of high-performance materials at lower cost
APA, Harvard, Vancouver, ISO, and other styles
9

Lu, Jianbo. "Development of intelligent textiles from conductive polymer composites (CPC) for vapour and temperature sensing." Lorient, 2009. http://www.theses.fr/2009LORIS149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jamal, Al Dine Enaam. "Synthèse et caractérisation des nanoparticules intelligentes." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0054/document.

Full text
Abstract:
L’un des enjeux majeurs en nanomédecine est de développer des systèmes capables à la fois de permettre un diagnostic efficace et également de servir de plateforme thérapeutique pour combattre les infections et les neuro-dégénérescences. Dans cette optique, et afin d’améliorer la détection de tumeurs, des agents de contraste ont été développés dans le but d’augmenter le rapport signal sur bruit. Parmi ces agents, les nanoparticules (NPs) d’oxyde de fer superparamagnétiques (SPIOs) et les quantum dots (QDs) sont des candidats idéaux et ont reçu une grande attention depuis une vingtaine d’années. De surcroit, leurs propriétés spécifiques dues à leurs dimensions nanométriques et leurs formes permettent de moduler leur bio-distribution dans l’organisme. L’opportunité de revêtir ces NPs biocompatibles par des couches de polymères devraient permettre d’améliorer la stabilité de ces nanomatériaux dans l’organisme. Et par conséquent, favoriser leur biodistribution et également leur conférer de nouvelles applications en l’occurrence des applications biomédicales. Dans ce travail de thèse, nous avons développé de nouveaux systèmes thermo-répondant basés sur un cœur SPIOs ou QDs qui sont capables, à la fois, de transporter un principe actif anticancéreux, i.e. la doxorubicine (DOX) et de le relarguer dans le milieu physiologique à une température contrôlée. Deux familles de NPs ont été synthétisées. La première concerne des NPs de Fe3O4 SPIO qui ont été modifiées en surface par un copolymère thermorépondant biocompatible à base de 2-(2-methoxy) méthacrylate d’éthyle (MEO2MA), oligo (éthylène glycol) méthacrylate (OEGMA). La seconde famille, consiste en des NPs de ZnO recouverte du même copolymère. Pour la première fois, le copolymère de type P(MEO2MAX-OEGMA100-X) a été polymérisé par activateur-régénéré par transfert d’électron-polymérisation radicalaire par transfert d’atome (ARGET-ATRP). La polymérisation et copolymérisation ont été initiées à partir de la surface. Les NPs cœur/coquilles ont été caractérisées par microscopie électronique à transmission (TEM), analyse thermogravimétrique (TGA), etc. Nous avons montré que l’efficacité du procédé ARGET-ATRP pour modifier les surfaces des NPs de SiO2, Fe3O4 et de ZnO. L’influence de la configuration de la chaîne de copolymère et des propriétés interfaciales avec le solvant ou le milieu biologique en fonction de la température a été étudiée. Nous avons montré que les propriétés magnétiques des systèmes coeur/coquilles à base de Fe3O4 ne sont influencées que par la quantité de polymère greffée contrairement au QDs qui vient leur propriété optique réduire au-delà de la température de transition. Ce procédé simple et rapide que nous avons développé est efficace pour le greffage de nombreux copolymères à partir de surfaces de chimie différentes. Les expériences de largage et relarguage d’un molécule modèle telle que la DOX ont montré que ces nanosystèmes sont capables de relarguer la DOX à une température bien contrôlée, à la fois dans l’eau que dans des milieux complexes tels que les milieux biologique. De plus, les tests de cytocompatibilité ont montré que les NPs coeur/coquilles ne sont pas cytotoxiques en fonction de leur concentration dans le milieu biologique. A partir de nos résultats, il apparaît que ces nouveaux nanomatériaux pourront être envisagés comme une plateforme prometteuse pour le traitement du cancer
One of the major challenges in nanomedicine is to develop nanoparticulate systems able to serve as efficient diagnostic and/or therapeutic tools against sever diseases, such as infectious or neurodegenerative disorders. To enhance the detection and interpretation contrast agents were developed to increase the signal/noise ratio. Among them, Superparamagnetic Iron Oxide (SPIO) and Quantum Dots (QDs) nanoparticles (NPs) have received a great attention since their development as a liver contrasting agent 20 years ago for the SPIO. Furthermore, their properties, originating from the nanosized dimension and shape, allow different bio-distribution and opportunities beyond the conventional chemical imaging agents. The opportunity to coat those biocompatible NPs by a polymer shell that can ensure a better stability of the materials in the body, enhance their bio-distribution and give them new functionalities. It has appeared then that they are very challenging for medicinal applications. In this work, we have developed new responsive SPIO and QDs based NPs that are able to carry the anticancer drug doxorubicin (DOX) and release it in physiological media and at the physiological temperature. Two families of NPs were synthesized, the first one consist in superparamagnetic Fe3O4 NPs that were functionalized by a biocompatible responsive copolymer based on 2-(2-methoxy) ethyl methacrylate (MEO2MA), oligo (ethylene glycol) methacrylate (OEGMA). The second family consists in the ZnO NPs coated by the same copolymer. For the first time, P(MEO2MAX-OEGMA100-X) was grown by activator regenerated by electron transfer–atom radical polymerization (ARGET-ATRP) from the NPs surfaces by surface-initiated polymerization. The core/shell NPs were fully characterized by the combination of transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and by the physical properties of the nanostructures studied. We demonstrate the efficiency of the ARGET-ATRP process to graft polymers and copolymers at the surface of Fe3O4 and ZnO NPs. The influence of the polymer chain configuration (which leads to the aggregation of the NPs above the collapse temperature of the copolymer (LCST)) was studied. We have demonstrated that the magnetic properties of the core/shell Fe3O4-based nanostructures were only influenced by the amount of the grafted polymer and no influence of the aggregation was evidenced. This simple and fast developed process is efficient for the grafting of various co-polymers from any surfaces and the derived nanostructured materials display the combination of the physical properties of the core and the macromolecular behavior of the shell. The drug release experiments confirmed that DOX was largely released above the co-polymer LCST. Moreover, the cytocompatibility test showed that those developed NPs do not display any cytotoxicity depending on their concentration in physiological media. From the results obtained, it can be concluded that the new nanomaterials developed can be considered for further use as multi-modal cancer therapy tools
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Intelligent Polymers"

1

Wallace, Gordon G. Conductive electroactive polymers: Intelligent materials systems. Lancaster, Pa: Technomic Pub. Co., 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

G, Wallace Gordon, and Wallace Gordon G, eds. Conductive electroactive polymers: Intelligent materials systems. 2nd ed. Boca Raton, Fla: CRC Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hosseini, Majid, and Abdel Salam Hamdy Makhlouf, eds. Industrial Applications for Intelligent Polymers and Coatings. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26893-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

1946-, Wang H. P., Turng Lih-Sheng, Marchal Jean-Marie, American Society of Mechanical Engineers. Materials Division., and International Mechanical Engineering Congress and Exposition (1997 : Dallas, Tex.), eds. CAE and intelligent processing of polymeric materials: Presented at the 1997 ASME International Mechanical Engineering Congress and Exposition, November 16-21, 1997, Dallas, Texas. New York: ASME, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Adaskin, Anatoliy, Aleksandr Krasnovskiy, and Tat'yana Tarasova. Materials science and technology of metallic, non-metallic and composite materials. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1143245.

Full text
Abstract:
Book 1 of the textbook consists of two parts. Part I describes the structure of metallic, non-metallic, and composite materials. Technologies of production of metal materials are considered: metallurgical production of ferrous and non-ferrous metals; powder metallurgy; technologies of production of non-metallic materials: polymers, glass, graphite; technologies of production of composite materials, including semi-finished products-prepregs, premixes. Part II is devoted to methods for studying the properties of materials. Metal materials, technologies of their hardening by thermal, chemical-thermal treatment, and plastic deformation are considered. The features of organic and inorganic nonmetallic materials, as well as the possibility of changing their properties, are given. Composite materials are widely covered, and the areas of their rational application are shown. Revised chapter 14, which deals with intelligent materials. Meets the requirements of the federal state educational standards of higher education of the latest generation. For bachelors and undergraduates studying in groups of training areas 15.00.00 "Mechanical Engineering" and 22.00.00 "Materials Technologies". It can be used for training graduate students of engineering specialties, as well as for advanced training of engineering and technical workers of machine-building enterprises.
APA, Harvard, Vancouver, ISO, and other styles
6

Conductive electroactive polymers: Intelligent polymer systems. 3rd ed. Boca Raton: CRC Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Spinks, Geoffrey M., Peter R. Teasdale, Gordon G. Wallace, and Leon A. Kane-Maguire. Conductive Electroactive Polymers: Intelligent Polymer Systems. Taylor & Francis Group, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Spinks, Geoffrey M., Leon A. P. Kane-Maguire, Peter R. Teasdale, and Gordon G. Wallace. Conductive Electroactive Polymers: Intelligent Polymer Systems, Third Edition. Taylor & Francis Group, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Conductive Electroactive Polymers: Intelligent Polymer Systems, Third Edition. 3rd ed. CRC, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Spinks, Geoffrey M., Leon A. P. Kane-Maguire, Peter R. Teasdale, and Gordon G. Wallace. Conductive Electroactive Polymers: Intelligent Polymer Systems, Third Edition. Taylor & Francis Group, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Intelligent Polymers"

1

Jadoun, Sapana, and Ufana Riaz. "Intelligent Electroactive Polymers." In Electroactive Polymeric Materials, 63–73. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003173502-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mishra, Ajay Kumar, Shivani B. Mishra, and Ashutosh Tiwari. "Polymers/Composites Based Intelligent Transducers." In Intelligent Nanomaterials, 571–81. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118311974.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Price, William E., Gordon G. Wallace, and Huijun Zhao. "Intelligent Polymer Membranes." In Frontiers of Polymers and Advanced Materials, 599–605. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2447-2_56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rohwerder, Michael. "Intelligent Corrosion Protection by Conducting Polymers." In ACS Symposium Series, 274–87. Washington, DC: American Chemical Society, 2009. http://dx.doi.org/10.1021/bk-2009-1002.ch014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mirmohseni, A., W. E. Price, C. J. Small, C. O. Too, G. G. Wallace, and H. Zhao. "Communicating with Responsive Intelligent Membranes." In Polymers and Other Advanced Materials, 709–18. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-0502-4_73.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zain, Norazwani Muhammad, and Syazana Ahmad Zubir. "Polyurethane-Based Smart Polymers." In Industrial Applications for Intelligent Polymers and Coatings, 293–312. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26893-4_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

du Toit, Lisa C., Pradeep Kumar, Yahya E. Choonara, and Viness Pillay. "Electroactive Polymers and Coatings." In Industrial Applications for Intelligent Polymers and Coatings, 51–89. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26893-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yu, Haifeng, and Quan Li. "Photomechanical Liquid Crystalline Polymers: Motion in Response to Light." In Intelligent Stimuli-Responsive Materials, 233–64. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118680469.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kohut, Ananiy, Ivan Hevus, Stanislav Voronov, and Andriy Voronov. "Amphiphilic Invertible Polymers and Their Applications." In Industrial Applications for Intelligent Polymers and Coatings, 399–415. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26893-4_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sancin, U., and B. Dolšak. "Decision Support in Designing with Polymers." In Research and Development in Intelligent Systems XXVI, 493–98. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84882-983-1_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Intelligent Polymers"

1

Sodhi, Jaskirat S., and I. Joga Rao. "Modeling and Simulation of Light Activated Shape Memory Polymers." In ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3696.

Full text
Abstract:
This paper focuses on developing a model for light activated shape memory polymers (LASMP’s) undergoing deformation using the framework based on multiple natural configurations and simulating results for boundary value problems. LASMP’s are novel polymeric materials that are different in many ways from the first generation thermally controlled Shape Memory Polymers (SMP’s). Instead of using phase change to produce a mechanism, LASMP’s have photosensitive molecules grafted on their polymer chains. These photosensitive molecules, when exposed to light at certain wavelengths, form covalent bonds that act as crosslinks to give this class of SMP’s their temporary shape. By virtue of their different mechanism, LASMP’s provide a wide array of advantages such as remote activation and selective exposure, thus opening new doors as a potential for vast applications in the biomedical and aerospace industries [1].
APA, Harvard, Vancouver, ISO, and other styles
2

Venugopal, Vinithra, Hao Zhang, and Vishnu-Baba Sundaresan. "A Chemo-Mechanical Constitutive Model for Conducting Polymers." In ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/smasis2013-3218.

Full text
Abstract:
Conducting polymers undergo volumetric expansion through redox-mediated ion exchange with its electrolytic environment. The ion transport processes resulting from an applied electrical field controls the conformational relaxation in conducting polymer and regulates the generated stress and strain. In the last two decades, significant contributions from various groups have resulted in methods to fabricate, model and characterize the mechanical response of conducting polymer actuators in bending mode. An alternating electrical field applied to the polymer electrolyte interface produces the mechanical response in the polymer. The electrical energy applied to the polymer is used by the electrochemical reaction in the polymer backbone, for ion transport at the electrolyte-polymer interface and for conformational changes to the polymer. Due to the advances in polymer synthesis, there are multitudes of polymer-dopant combinations used to design an actuator. Over the last decade, polypyrrole (PPy) has evolved to be the most common conducting polymer actuator. Thin sheets of polymer are electrodeposited on to a substrate, doped with dodecylbezenesulfonate (DBS-) and microfabricated into a hermetic, air operated cantilever actuator. The electrical energy applied across the thickness of the polymer is expended by the electrochemical interactions at the polymer-electrolyte interface, ion transport and electrostatic interactions of the backbone. The widely adopted model for designing actuators is the electrochemically stimulated conformational relaxation (ESCR) model. Despite these advances, there have been very few investigations into the development of a constitutive model for conducting polymers that represent the input-output relation for chemoelectromechanical energy conversion. On one hand, dynamic models of conducting polymers use multiphysics-based non-linear models that are computationally intensive and not scalable for complicated geometries. On the other, empirical models that represent the chemomechanical coupling in conducting polymers present an over-simplified approach and lack the scientific rigor in predicting the mechanical response. In order to address these limitations and to develop a constitutive model for conducting polymers, its coupled chemomechanical response and material degradation with time, we have developed a constitutive model for polypyrrole-based conducting polymer actuator. The constitutive model is applied to a micron-scale conducting polymer actuator and coupling coefficients are expressed using a mechanistic representation of coupling in polypyrrole (dodecylbenzenesulfonate) [PPy(DBS)].
APA, Harvard, Vancouver, ISO, and other styles
3

Takahashi, Tatsuya, Kazuya Oguri, Akira Tonegawa, and Yoshitake Nishi. "EB-irradiation induced intelligent properties of polymers." In Smart Materials, Nano-, and Micro-Smart Systems, edited by Alan R. Wilson. SPIE, 2004. http://dx.doi.org/10.1117/12.582329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ogata, Naoya. "Supramolecular polymers for optical resolution." In 3rd International Conference on Intelligent Materials, edited by Pierre F. Gobin and Jacques Tatibouet. SPIE, 1996. http://dx.doi.org/10.1117/12.237148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Akhilesan, S., Susy Varughese, and C. Lakshmana Rao. "Electromechanical Behavior of Conductive Polyaniline/Poly (Vinyl Alcohol) Blend Films Under Uniaxial Loading." In ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/smasis2012-7937.

Full text
Abstract:
Polyaniline (PANI) an electronically conducting polymer, and its charge transfer complexes are interesting engineering materials due to their unique electronic conductivity, electrochemical behavior, low raw material cost, ease of synthesis and environmental stability in comparison with other conjugated polymers. The main disadvantage of PANI is its limited processability. Blending of conducting polymers with insulating polymers is a good choice to overcome the processability problem. In this study a solution-blend method is adopted to prepare conductive polyaniline/polyvinyl alcohol (PANI/PVA) blend films at various blend ratios. Interest in applications for polyaniline (PANI) has motivated investigators to study its electro mechanical properties, and its use in polymer composites or blends with common polymers. The work described here looks at the uniaxial deformation behavior of the conducting polymer films and the anisotropic dependency of electrical conductivity of the blend films exposed to static and dynamic loading conditions. The relation between mechanical strain, electrical conductivity and film microstructure is investigated on PANI/PVA blend films.
APA, Harvard, Vancouver, ISO, and other styles
6

Long, Kevin N., Timothy F. Scott, H. Jerry Qi, and Martin L. Dunn. "Photomechanics of Light-Activated Shape Memory Polymers." In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-562.

Full text
Abstract:
Photomechanical shape memory polymers are an exciting class of materials that are able to store a temporary shape and recover their original shape when stimulated by light. In this work we develop a model to simulate the photomechanical behavior of light-activated shape memory polymers. To the best of our knowledge this is the first theoretical model developed to describe this exciting class of active materials. Our model incorporates the interplay among four aspects of the underlying physical phenomena: light propagation, photo-chemistry, chemical-mechanical coupling, and mechanical response. The model framework is applied to a recently developed photo-induced shape memory polymer system [1, 2]. We describe a suite of experiments used to guide the modeling efforts, calibrate the model parameters, and then validate model predictions. Regarding the latter, we measure and then simulate the photo-induced bending behavior of shape memory polymer samples; model predictions are in good agreement with measurements. We use the model to then explore the effect of important photomechanical parameters (applied strain magnitude, irradiation time and intensity, and photoabsorber concentration) on material response with a view toward the design of novel actuator materials and structures.
APA, Harvard, Vancouver, ISO, and other styles
7

Phillips, David M., and Jeffery W. Baur. "Thermal Activation of Shape Memory Polymers Through Vascular Means." In ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-5090.

Full text
Abstract:
Thermal activation of shape memory polymers requires a heating mechanism that will achieve a temperature range that exceeds a minimum triggering temperature but does not overheat the material. In laboratory practice, ovens are typically used to achieve a uniform temperature during testing. In practical applications, active heating schemes must be utilized that are robust enough to handle changing environmental conditions. In this work, we analyze the intricacies of vascular heating and cooling methodologies for shape memory polymers operating in an open environment. Our methodology is based on analytical modeling of the steady state surface temperature of shape memory polymers that incorporate vascular channels. With the material properties and environmental conditions, the model is used to predict appropriate channel geometry for triggering the shape memory polymer. Thermography is used to verify the model predictions for real systems of shape memory polymers.
APA, Harvard, Vancouver, ISO, and other styles
8

Son, Seyul, and N. C. Goulbourne. "Anisotropic Bistable Electroactive Polymers: Large Strain Actuation of Shape Memory Polymers." In ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3891.

Full text
Abstract:
In this paper, constitutive equations to model the electromechanical behavior of shape memory polymers (SMPs) are introduced for the first time. SMPs are unique material that can be transformed into complicated shapes and recover their original shapes even under large deformations [1]. Above their transition temperature, elastic modulus decreases and they can be easily deformed by mechanical or electrical input. Advantage of this behavior is returning to the deformed shape utilizing a triggering temperature without any applied forces. This can be used to actuate the electroactive polymer to restore the deformed shape without applying an electric field [2]. Therefore in this paper, the equibiaxial extension of two different SMPs (PTBA (poly(tert-butylacrylate)) [2] and Sylgard (Sylgard 184)/PCL (poly(ε-caprolactone)) composite [3]) is simulated numerically to demonstrate the electromechanical behavior with respect to mechanical and electromechanical inputs. For simplification, the response of the SMP above the transition temperature is considered, so that material properties are constant and not a function of temperature. The SMPs are considered a fiber-reinforced membrane with two families of fibers, which enable to tune the material properties of SMPs [3]. To describe the constitutive relation of the SMPs, Mooney-Rivlin and Ogden model for isotropic SMPs, as well as Gasser et al model [4] for anisotropic SMPs, are applied. In the numerical computations, the isotropic and anisotropic electromechanical response of PTBA and Sylgard/PCL composite are presented. PTBA shows larger electromechanical effect in the range of stretch 1.5–2.5. Additionally, the effects of the fiber stiffness, angle, and dispersion on the deformation of the SMPs are observed. According to the result, the fiber stiffness can significantly affect on the electromechanical response and fiber angle and dispersion can influence the anisotropic deformation.
APA, Harvard, Vancouver, ISO, and other styles
9

McClung, Amber J. W., Joseph A. Shumaker, and Jeffery W. Baur. "Novel Bismaleimide-Based Shape Memory Polymers: Comparison to Commercial Shape Memory Polymers." In ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-5044.

Full text
Abstract:
A series of novel shape memory polymers, synthesized from 4-4-bismaleimidodiphenyl-methane, an extended chain aliphatic diamine, and a bis-isocyanate, have been created and characterized with the aim of providing a family of robust high temperature shape memory polymers with tailorable transition temperatures for use in reconfigurable aerospace structures. In the present study, three of the polymers are chosen for more detailed study of their thermomechanical properties. These materials are compared to commercial resins Veriflex® and Veriflex-E® which are styrene- and epoxy-based proprietary formulations, respectively. The thermal and mechanical properties are determined utilizing thermogravimetric analysis and dynamic mechanical analysis. The temperatures at which 2% weight loss is observed in dry air ranges from 272 to 305 °C for the synthesized polymers, and occurs at 242 and 317 °C for the commercial Veriflex® and Veriflex-E® respectively. The glass transition temperatures, as measured by the peak in the tan(δ) curve, for the synthesized polymers range from 110 to 144 °C which is a higher than the Veriflex® and Veriflex-E® achieve at 84.3 and 100 °C respectively. With operation temperatures of subsonic structural aircraft components often reaching 121 °C (250 °F), the transition temperatures of the bismaleimide-based shape memory polymers are clearly desirable to ensure that shape memory polymers used in aircraft structures will not be prematurely triggered by the existing heat loads. In addition, the shape memory performance of the bismaleimide-based shape memory polymers compares well with the Veriflex® and Veriflex-E® resins.
APA, Harvard, Vancouver, ISO, and other styles
10

Romo-Estrada, Jose A., Brittany Newell, and Jose Garcia. "Mechanical Iris Stretcher for Electroactive Polymers." In ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/smasis2018-7964.

Full text
Abstract:
An electroactive polymer is a material capable of changing its size and shape when an electric field is present. It is composed of a thin film of dielectric elastomer and two electrodes placed on the top and bottom of the dielectric material. Since the rediscovery of their capabilities, electroactive polymers have been proposed as novel materials for use in numerous fields such as in bioengineering, electronics, hydraulics, and aerospace. It has been demonstrated that the actuation potential of electroactive polymer dielastomers can be significantly enhanced by mechanically pre-straining the material prior to application of an electric field. Application of uniform pre-strain is critical for uniform actuation and is challenging to achieve. This research details methods for constructing an automated uniform stretcher that resulted in the production of a LabView controlled iris stretcher for flexible materials. The high torque stretcher was capable of pre-straining materials with a minimum diameter of 1 inch mm) to a maximum diameter of 16 inches. The stretcher calculates the percent strain and has adjustable speed control through a high torque micro-stepper motor and controller. The stretcher’s capabilities were demonstrated on materials within varying tensile strengths up to 725 psi.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Intelligent Polymers"

1

Calvert, Paul D., H. K. Hall, and Jr. Intelligent Synthetic Polymers. Fort Belvoir, VA: Defense Technical Information Center, January 1995. http://dx.doi.org/10.21236/ada292905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

JAMISON, GREGORY M., DOUGLAS A. LOY, DAVID R. WHEELER, RANDALL S. L. SAUNDERS, JOHN A. SHELNUTT, MARTIN J. CARR, and RAAFAT M. SHALTOUT. LDRD final report on intelligent polymers for nanodevice performance control. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/750884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Minaie, Bob. Advanced Polymer Composite Molding Through Intelligent Process Analysis and Control. Fort Belvoir, VA: Defense Technical Information Center, March 2007. http://dx.doi.org/10.21236/ada468818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography