To see the other types of publications on this topic, follow the link: Intelligent Edge Networks.

Dissertations / Theses on the topic 'Intelligent Edge Networks'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 21 dissertations / theses for your research on the topic 'Intelligent Edge Networks.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Mestoukirdi, Mohamad. "Reliable and Communication-Efficient Federated Learning for Future Intelligent Edge Networks." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS432.

Full text
Abstract:
Dans le domaine des futurs réseaux sans fil 6G, l'intégration de la périphérie intelligente grâce à l'avènement de l'IA représente un bond en avant considérable, promettant des avancées révolutionnaires en matière de communication sans fil. Cette intégration favorise une synergie harmonieuse, capitalisant sur le potentiel collectif de ces technologies transformatrices. Au cœur de cette intégration se trouve le rôle de l'apprentissage fédéré, un paradigme d'apprentissage décentralisé qui préserve la confidentialité des données tout en exploitant l'intelligence collective des appareils interconnectés. Dans la première partie de la thèse, nous nous attaquons au problème de l'hétérogénéité statistique dans l'apprentissage fédéré, qui découle des distributions de données divergentes entre les ensembles de données des dispositifs. Plutôt que d'entraîner un modèle unique conventionnel, qui donne souvent de mauvais résultats avec des données non identifiées, nous proposons un ensemble de règles centrées sur l'utilisateur qui produisent des modèles personnalisés adaptés aux objectifs de chaque utilisateur. Pour atténuer la surcharge de communication prohibitive associée à l'apprentissage d'un modèle personnalisé distinct pour chaque utilisateur, les utilisateurs sont répartis en groupes sur la base de la similarité de leurs objectifs. Cela permet l'apprentissage collectif de modèles personnalisés spécifiques à la cohorte. En conséquence, le nombre total de modèles personnalisés formés est réduit. Cette réduction diminue la consommation de ressources sans fil nécessaires à la transmission des mises à jour de modèles sur des canaux sans fil à bande passante limitée. Dans la deuxième partie, nous nous concentrons sur l'intégration des dispositifs à distance de l'IdO dans la périphérie intelligente en exploitant les véhicules aériens sans pilote en tant qu'orchestrateur d'apprentissage fédéré. Alors que des études antérieures ont largement exploré le potentiel des drones en tant que stations de base volantes ou relais dans les réseaux sans fil, leur utilisation pour faciliter l'apprentissage de modèles est encore un domaine de recherche relativement nouveau. Dans ce contexte, nous tirons parti de la mobilité des drones pour contourner les conditions de canal défavorables dans les zones rurales et établir des terrains d'apprentissage pour les dispositifs IoT distants. Cependant, les déploiements de drones posent des défis en termes de planification et de conception de trajectoires. À cette fin, une optimisation conjointe de la trajectoire du drone, de l'ordonnancement du dispositif et de la performance d'apprentissage est formulée et résolue à l'aide de techniques d'optimisation convexe et de la théorie des graphes. Dans la troisième partie de cette thèse, nous jetons un regard critique sur la surcharge de communication imposée par l'apprentissage fédéré sur les réseaux sans fil. Bien que les techniques de compression telles que la quantification et la sparsification des mises à jour de modèles soient largement utilisées, elles permettent souvent d'obtenir une efficacité de communication au prix d'une réduction de la performance du modèle. Pour surmonter cette limitation, nous utilisons des réseaux aléatoires sur-paramétrés pour approximer les réseaux cibles par l'élagage des paramètres plutôt que par l'optimisation directe. Il a été démontré que cette approche ne nécessite pas la transmission de plus d'un seul bit d'information par paramètre du modèle. Nous montrons que les méthodes SoTA ne parviennent pas à tirer parti de tous les avantages possibles en termes d'efficacité de la communication en utilisant cette approche. Nous proposons une fonction de perte régularisée qui prend en compte l'entropie des mises à jour transmises, ce qui se traduit par des améliorations notables de l'efficacité de la communication et de la mémoire lors de l'apprentissage fédéré sur des dispositifs périphériques, sans sacrifier la précision
In the realm of future 6G wireless networks, integrating the intelligent edge through the advent of AI signifies a momentous leap forward, promising revolutionary advancements in wireless communication. This integration fosters a harmonious synergy, capitalizing on the collective potential of these transformative technologies. Central to this integration is the role of federated learning, a decentralized learning paradigm that upholds data privacy while harnessing the collective intelligence of interconnected devices. By embracing federated learning, 6G networks can unlock a myriad of benefits for both wireless networks and edge devices. On one hand, wireless networks gain the ability to exploit data-driven solutions, surpassing the limitations of traditional model-driven approaches. Particularly, leveraging real-time data insights will empower 6G networks to adapt, optimize performance, and enhance network efficiency dynamically. On the other hand, edge devices benefit from personalized experiences and tailored solutions, catered to their specific requirements. Specifically, edge devices will experience improved performance and reduced latency through localized decision-making, real-time processing, and reduced reliance on centralized infrastructure. In the first part of the thesis, we tackle the predicament of statistical heterogeneity in federated learning stemming from divergent data distributions among devices datasets. Rather than training a conventional one-model-fits-all, which often performs poorly with non-IID data, we propose user-centric set of rules that produce personalized models tailored to each user objectives. To mitigate the prohibitive communication overhead associated with training distinct personalized model for each user, users are partitioned into clusters based on their objectives similarity. This enables collective training of cohort-specific personalized models. As a result, the total number of personalized models trained is reduced. This reduction lessens the consumption of wireless resources required to transmit model updates across bandwidth-limited wireless channels. In the second part, our focus shifts towards integrating IoT remote devices into the intelligent edge by leveraging unmanned aerial vehicles as a federated learning orchestrator. While previous studies have extensively explored the potential of UAVs as flying base stations or relays in wireless networks, their utilization in facilitating model training is still a relatively new area of research. In this context, we leverage the UAV mobility to bypass the unfavorable channel conditions in rural areas and establish learning grounds to remote IoT devices. However, UAV deployments poses challenges in terms of scheduling and trajectory design. To this end, a joint optimization of UAV trajectory, device scheduling, and the learning performance is formulated and solved using convex optimization techniques and graph theory. In the third and final part of this thesis, we take a critical look at thecommunication overhead imposed by federated learning on wireless networks. While compression techniques such as quantization and sparsification of model updates are widely used, they often achieve communication efficiency at the cost of reduced model performance. We employ over-parameterized random networks to approximate target networks through parameter pruning rather than direct optimization to overcome this limitation. This approach has been demonstrated to require transmitting no more than a single bit of information per model parameter. We show that SoTA methods fail to capitalize on the full attainable advantages in terms of communication efficiency using this approach. Accordingly, we propose a regularized loss function which considers the entropy of transmitted updates, resulting in notable improvements to communication and memory efficiency during federated training on edge devices without sacrificing accuracy
APA, Harvard, Vancouver, ISO, and other styles
2

Sigwele, Tshiamo, Yim Fun Hu, M. Ali, Jiachen Hou, M. Susanto, and H. Fitriawan. "An intelligent edge computing based semantic gateway for healthcare systems interoperability and collaboration." IEEE, 2018. http://hdl.handle.net/10454/17552.

Full text
Abstract:
Yes
The use of Information and Communications Technology (ICTs) in healthcare has the potential of minimizing medical errors, reducing healthcare cost and improving collaboration between healthcare systems which can dramatically improve the healthcare service quality. However interoperability within different healthcare systems (clinics/hospitals/pharmacies) remains an issue of further research due to a lack of collaboration and exchange of healthcare information. To solve this problem, cross healthcare system collaboration is required. This paper proposes a conceptual semantic based healthcare collaboration framework based on Internet of Things (IoT) infrastructure that is able to offer a secure cross system information and knowledge exchange between different healthcare systems seamlessly that is readable by both machines and humans. In the proposed framework, an intelligent semantic gateway is introduced where a web application with restful Application Programming Interface (API) is used to expose the healthcare information of each system for collaboration. A case study that exposed the patient's data between two different healthcare systems was practically demonstrated where a pharmacist can access the patient's electronic prescription from the clinic.
British Council Institutional Links grant under the BEIS-managed Newton Fund.
APA, Harvard, Vancouver, ISO, and other styles
3

Hasanaj, Enis, Albert Aveler, and William Söder. "Cooperative edge deepfake detection." Thesis, Jönköping University, JTH, Avdelningen för datateknik och informatik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-53790.

Full text
Abstract:
Deepfakes are an emerging problem in social media and for celebrities and political profiles, it can be devastating to their reputation if the technology ends up in the wrong hands. Creating deepfakes is becoming increasingly easy. Attempts have been made at detecting whether a face in an image is real or not but training these machine learning models can be a very time-consuming process. This research proposes a solution to training deepfake detection models cooperatively on the edge. This is done in order to evaluate if the training process, among other things, can be made more efficient with this approach.  The feasibility of edge training is evaluated by training machine learning models on several different types of iPhone devices. The models are trained using the YOLOv2 object detection system.  To test if the YOLOv2 object detection system is able to distinguish between real and fake human faces in images, several models are trained on a computer. Each model is trained with either different number of iterations or different subsets of data, since these metrics have been identified as important to the performance of the models. The performance of the models is evaluated by measuring the accuracy in detecting deepfakes.  Additionally, the deepfake detection models trained on a computer are ensembled using the bagging ensemble method. This is done in order to evaluate the feasibility of cooperatively training a deepfake detection model by combining several models.  Results show that the proposed solution is not feasible due to the time the training process takes on each mobile device. Additionally, each trained model is about 200 MB, and the size of the ensemble model grows linearly by each model added to the ensemble. This can cause the ensemble model to grow to several hundred gigabytes in size.
APA, Harvard, Vancouver, ISO, and other styles
4

Kattadige, Chamara Manoj Madarasinghe. "Network and Content Intelligence for 360 Degree Video Streaming Optimization." Thesis, The University of Sydney, 2023. https://hdl.handle.net/2123/29904.

Full text
Abstract:
In recent years, 360° videos, a.k.a. spherical frames, became popular among users creating an immersive streaming experience. Along with the advances in smart- phones and Head Mounted Devices (HMD) technology, many content providers have facilitated to host and stream 360° videos in both on-demand and live stream- ing modes. Therefore, many different applications have already arisen leveraging these immersive videos, especially to give viewers an impression of presence in a digital environment. For example, with 360° videos, now it is possible to connect people in a remote meeting in an interactive way which essentially increases the productivity of the meeting. Also, creating interactive learning materials using 360° videos for students will help deliver the learning outcomes effectively. However, streaming 360° videos is not an easy task due to several reasons. First, 360° video frames are 4–6 times larger than normal video frames to achieve the same quality as a normal video. Therefore, delivering these videos demands higher bandwidth in the network. Second, processing relatively larger frames requires more computational resources at the end devices, particularly for end user devices with limited resources. This will impact not only the delivery of 360° videos but also many other applications running on shared resources. Third, these videos need to be streamed with very low latency requirements due their interactive nature. Inability to satisfy these requirements can result in poor Quality of Experience (QoE) for the user. For example, insufficient bandwidth incurs frequent rebuffer- ing and poor video quality. Also, inadequate computational capacity can cause faster battery draining and unnecessary heating of the device, causing discomfort to the user. Motion or cyber–sickness to the user will be prevalent if there is an unnecessary delay in streaming. These circumstances will hinder providing im- mersive streaming experiences to the much-needed communities, especially those who do not have enough network resources. To address the above challenges, we believe that enhancements to the three main components in video streaming pipeline, server, network and client, are essential. Starting from network, it is beneficial for network providers to identify 360° video flows as early as possible and understand their behaviour in the network to effec- tively allocate sufficient resources for this video delivery without compromising the quality of other services. Content servers, at one end of this streaming pipeline, re- quire efficient 360° video frame processing mechanisms to support adaptive video streaming mechanisms such as ABR (Adaptive Bit Rate) based streaming, VP aware streaming, a streaming paradigm unique to 360° videos that select only part of the larger video frame that fall within the user-visible region, etc. On the other end, the client can be combined with edge-assisted streaming to deliver 360° video content with reduced latency and higher quality. Following the above optimization strategies, in this thesis, first, we propose a mech- anism named 360NorVic to extract 360° video flows from encrypted video traffic and analyze their traffic characteristics. We propose Machine Learning (ML) mod- els to classify 360° and normal videos under different scenarios such as offline, near real-time, VP-aware streaming and Mobile Network Operator (MNO) level stream- ing. Having extracted 360° video traffic traces both in packet and flow level data at higher accuracy, we analyze and understand the differences between 360° and normal video patterns in the encrypted traffic domain that is beneficial for effec- tive resource optimization for enhancing 360° video delivery. Second, we present a WGAN (Wesserstien Generative Adversarial Network) based data generation mechanism (namely VideoTrain++) to synthesize encrypted network video traffic, taking minimal data. Leveraging synthetic data, we show improved performance in 360° video traffic analysis, especially in ML-based classification in 360NorVic. Thirdly, we propose an effective 360° video frame partitioning mechanism (namely VASTile) at the server side to support VP-aware 360° video streaming with dy- namic tiles (or variable tiles) of different sizes and locations on the frame. VASTile takes a visual attention map on the video frames as the input and applies a com- putational geometric approach to generate a non-overlapping tile configuration to cover the video frames adaptive to the visual attention. We present VASTile as a scalable approach for video frame processing at the servers and a method to re- duce bandwidth consumption in network data transmission. Finally, by applying VASTile to the individual user VP at the client side and utilizing cache storage of Multi Access Edge Computing (MEC) servers, we propose OpCASH, a mech- anism to personalize the 360° video streaming with dynamic tiles with the edge assistance. While proposing an ILP based solution to effectively select cached variable tiles from MEC servers that might not be identical to the requested VP tiles by user, but still effectively cover the same VP region, OpCASH maximize the cache utilization and reduce the number of requests to the content servers in congested core network. With this approach, we demonstrate the gain in latency and bandwidth saving and video quality improvement in personalized 360° video streaming.
APA, Harvard, Vancouver, ISO, and other styles
5

Abernot, Madeleine. "Digital oscillatory neural network implementation on FPGA for edge artificial intelligence applications and learning." Electronic Thesis or Diss., Université de Montpellier (2022-....), 2023. http://www.theses.fr/2023UMONS074.

Full text
Abstract:
Au cours des dernières décennies, la multiplication des objets embarqués dans de nombreux domaines a considérablement augmenté la quantité de données à traiter et la complexité des tâches à résoudre, motivant l'émergence d'algorithmes probabilistes d'apprentissage tels que l'intelligence artificielle (IA) et les réseaux de neurones artificiels (ANN). Cependant, les systèmes matériels pour le calcul embarqué basés sur l'architecture von Neuman ne sont pas efficace pour traiter cette quantité de données. C'est pourquoi des paradigmes neuromorphiques dotés d'une mémoire distribuée sont étudiés, s'inspirant de la structure et de la représentation de l'information des réseaux de neurones biologiques. Dernièrement, la plupart de la recherche autour des paradigmes neuromorphiques ont exploré les réseaux de neurones à impulsion ou spiking neural networks (SNNs), qui s'inspirent des impulsions utilisées pour transmettre l'information dans les réseaux biologiques. Les SNNs encodent l'information temporellement à l'aide d'impulsions pour assurer un calcul de données continues naturel et à faible énergie. Récemment, les réseaux de neurones oscillatoires (ONN) sont apparu comme un paradigme neuromorphique alternatif pour du calcul temporel, rapide et efficace, à basse consommation. Les ONNs sont des réseaux d'oscillateurs couplés qui émulent les propriétés de calcul collectif des zones du cerveau par le biais d'oscillations. Les récentes implémentations d'ONN combinées à l'émergence de composants compacts à faible consommation d'énergie encouragent le développement des ONNs pour le calcul embarqué. L’état de l’art de l'ONN le configure comme un réseau de Hopfield oscillatoire (OHN) avec une architecture d’oscillateurs entièrement couplés pour effectuer de la reconnaissance de formes avec une précision limitée. Cependant, le grand nombre de synapses de l'architecture limite l’implémentation de larges ONNs et le champs des applications de l'ONN. Cette thèse se concentre pour étudier si et comment l'ONN peut résoudre des applications significatives d'IA embarquée à l'aide d'une preuve de concept de l'ONN implémenté en digital sur FPGA. Tout d'abord, ce travail explore de nouveaux algorithmes d'apprentissages pour OHN, non supervisé et supervisé, pour améliorer la précision et pour intégrer de l'apprentissage continu sur puce. Ensuite, cette thèse étudie de nouvelles architectures pour l'ONN en s'inspirant des architectures en couches des ANNs pour créer dans un premier temps des couches d'OHN en cascade puis des réseaux ONN multi-couche. Les nouveaux algorithmes d'apprentissage et les nouvelles architectures sont démontrées avec l'ONN digital pour des applications d'IA embarquée, telles que pour la robotique avec de l'évitement d'obstacles et pour le traitement d'images avec de la reconnaissance de formes, de la détection de contour, de l'extraction d'amers, ou de la classification
In the last decades, the multiplication of edge devices in many industry domains drastically increased the amount of data to treat and the complexity of tasks to solve, motivating the emergence of probabilistic machine learning algorithms with artificial intelligence (AI) and artificial neural networks (ANNs). However, classical edge hardware systems based on von Neuman architecture cannot efficiently handle this large amount of data. Thus, novel neuromorphic computing paradigms with distributed memory are explored, mimicking the structure and data representation of biological neural networks. Lately, most of the neuromorphic paradigm research has focused on Spiking neural networks (SNNs), taking inspiration from signal transmission through spikes in biological networks. In SNNs, information is transmitted through spikes using the time domain to provide a natural and low-energy continuous data computation. Recently, oscillatory neural networks (ONNs) appeared as an alternative neuromorphic paradigm for low-power, fast, and efficient time-domain computation. ONNs are networks of coupled oscillators emulating the collective computational properties of brain areas through oscillations. The recent ONN implementations combined with the emergence of low-power compact devices for ONN encourage novel attention over ONN for edge computing. State-of-the-art ONN is configured as an oscillatory Hopfield network (OHN) with fully coupled recurrent connections to perform pattern recognition with limited accuracy. However, the large number of OHN synapses limits the scalability of ONN implementation and the ONN application scope. The focus of this thesis is to study if and how ONN can solve meaningful AI edge applications using a proof-of-concept of the ONN paradigm with a digital implementation on FPGA. First, it explores novel learning algorithms for OHN, unsupervised and supervised, to improve accuracy performances and to provide continual on-chip learning. Then, it studies novel ONN architectures, taking inspiration from state-of-the-art layered ANN models, to create cascaded OHNs and multi-layer ONNs. Novel learning algorithms and architectures are demonstrated with the digital design performing edge AI applications, from image processing with pattern recognition, image edge detection, feature extraction, or image classification, to robotics applications with obstacle avoidance
APA, Harvard, Vancouver, ISO, and other styles
6

Laroui, Mohammed. "Distributed edge computing for enhanced IoT devices and new generation network efficiency." Electronic Thesis or Diss., Université Paris Cité, 2022. http://www.theses.fr/2022UNIP7078.

Full text
Abstract:
Dans le cloud computing, les services et les ressources sont centralisés dans des centres de données auxquels l’utilisateur peut accéder à partir de ses appareils connectés. L’infrastructure cloud traditionnelle sera confrontée à une série de défis en raison de la centralisation de calcul, du stockage et de la mise en réseau dans un petit nombre de centres de données, et de la longue distance entre les appareils connectés et les centres de données distants. Pour répondre à ce besoin, l’edge computing s’appuie sur un modèle dans lequel les ressources de calcul sont distribuées dans le edge de réseau selon les besoins, tout en décentralisant le traitement des données du cloud vers le edge autant que possible. Ainsi, il est possible d’avoir rapidement des informations exploitables basées sur des données qui varient dans le temps. Dans cette thèse, nous proposons de nouveaux modèles d’optimisation pour optimiser l’utilisation des ressources dans le edge de réseau pour deux domaines de recherche de l’edge computing, le "service offloading" et "vehicular edge computing". Nous étudions différents cas d’utilisation dans chaque domaine de recherche. Pour les solutions optimales, Premièrement, pour le "service offloading", nous proposons des algorithmes optimaux pour le placement des services dans les serveurs edge (Tasks, Virtual Network Functions (VNF), Service Function Chain (SFC)) en tenant compte des contraintes de ressources de calcul. De plus, pour "vehicular edge computing", nous proposons des modèles exacts liés à la maximisation de la couverture des véhicules par les taxis et les Unmanned Aerial Vehicle (UAV) pour les applications de streaming vidéo en ligne. De plus, nous proposons un edge- autopilot VNFs offloading dans le edge de réseau pour la conduite autonome. Les résultats de l’évaluation montrent l’efficacité des algorithmes proposés dans les réseaux avec un nombre limité d’appareils en termes de temps, de coût et d’utilisation des ressources. Pour faire face aux réseaux denses avec un nombre élevé d’appareils et des problèmes d’évolutivité, nous proposons des algorithmes à grande échelle qui prennent en charge une énorme quantité d’appareils, de données et de demandes d’utilisateurs. Des algorithmes heuristiques sont proposés pour l’orchestration SFC, couverture maximale des serveurs edge mobiles (véhicules). De plus, les algorithmes d’intelligence artificielle (apprentissage automatique, apprentissage en profondeur et apprentissage par renforcement en profondeur) sont utilisés pour le placement des "5G VNF slices", le placement des "VNF-autopilot" et la navigation autonome des drones. Les résultats numériques donnent de bons résultats par rapport aux algorithmes exacts avec haute efficacité en temps
Traditional cloud infrastructure will face a series of challenges due to the centralization of computing, storage, and networking in a small number of data centers, and the long-distance between connected devices and remote data centers. To meet this challenge, edge computing seems to be a promising possibility that provides resources closer to IoT devices. In the cloud computing model, compute resources and services are often centralized in large data centers that end-users access from the network. This model has an important economic value and more efficient resource-sharing capabilities. New forms of end-user experience such as the Internet of Things require computing resources near to the end-user devices at the network edge. To meet this need, edge computing relies on a model in which computing resources are distributed to the edge of a network as needed, while decentralizing the data processing from the cloud to the edge as possible. Thus, it is possible to quickly have actionable information based on data that varies over time. In this thesis, we propose novel optimization models to optimize the resource utilization at the network edge for two edge computing research directions, service offloading and vehicular edge computing. We study different use cases in each research direction. For the optimal solutions, First, for service offloading we propose optimal algorithms for services placement at the network edge (Tasks, Virtual Network Functions (VNF), Service Function Chain (SFC)) by taking into account the computing resources constraints. Moreover, for vehicular edge computing, we propose exact models related to maximizing the coverage of vehicles by both Taxis and Unmanned Aerial Vehicle (UAV) for online video streaming applications. In addition, we propose optimal edge-autopilot VNFs offloading at the network edge for autonomous driving. The evaluation results show the efficiency of the proposed algorithms in small-scale networks in terms of time, cost, and resource utilization. To deal with dense networks with a high number of devices and scalability issues, we propose large-scale algorithms that support a huge amount of devices, data, and users requests. Heuristic algorithms are proposed for SFC orchestration, maximum coverage of mobile edge servers (vehicles). Moreover, The artificial intelligence algorithms (machine learning, deep learning, and deep reinforcement learning) are used for 5G VNF slices placement, edge-autopilot VNF placement, and autonomous UAV navigation. The numerical results give good results compared with exact algorithms with high efficiency in terms of time
APA, Harvard, Vancouver, ISO, and other styles
7

Minerva, Roberto. "Will the Telco survive to an ever changing world ? Technical considerations leading to disruptive scenarios." Thesis, Evry, Institut national des télécommunications, 2013. http://www.theses.fr/2013TELE0011/document.

Full text
Abstract:
Le secteur des télécommunications passe par une phase délicate en raison de profondes mutations technologiques, principalement motivées par le développement de l'Internet. Elles ont un impact majeur sur l'industrie des télécommunications dans son ensemble et, par conséquent, sur les futurs déploiements des nouveaux réseaux, plateformes et services. L'évolution de l'Internet a un impact particulièrement fort sur les opérateurs des télécommunications (Telcos). En fait, l'industrie des télécommunications est à la veille de changements majeurs en raison de nombreux facteurs, comme par exemple la banalisation progressive de la connectivité, la domination dans le domaine des services de sociétés du web (Webcos), l'importance croissante de solutions à base de logiciels et la flexibilité qu'elles introduisent (par rapport au système statique des opérateurs télécoms). Cette thèse élabore, propose et compare les scénarios possibles basés sur des solutions et des approches qui sont technologiquement viables. Les scénarios identifiés couvrent un large éventail de possibilités: 1) Telco traditionnel; 2) Telco transporteur de Bits; 3) Telco facilitateur de Plateforme; 4) Telco fournisseur de services; 5) Disparition des Telco. Pour chaque scénario, une plateforme viable (selon le point de vue des opérateurs télécoms) est décrite avec ses avantages potentiels et le portefeuille de services qui pourraient être fournis
The telecommunications industry is going through a difficult phase because of profound technological changes, mainly originated by the development of the Internet. They have a major impact on the telecommunications industry as a whole and, consequently, the future deployment of new networks, platforms and services. The evolution of the Internet has a particularly strong impact on telecommunications operators (Telcos). In fact, the telecommunications industry is on the verge of major changes due to many factors, such as the gradual commoditization of connectivity, the dominance of web services companies (Webcos), the growing importance of software based solutions that introduce flexibility (compared to static system of telecom operators). This thesis develops, proposes and compares plausible future scenarios based on future solutions and approaches that will be technologically feasible and viable. Identified scenarios cover a wide range of possibilities: 1) Traditional Telco; 2) Telco as Bit Carrier; 3) Telco as Platform Provider; 4) Telco as Service Provider; 5) Telco Disappearance. For each scenario, a viable platform (from the point of view of telecom operators) is described highlighting the enabled service portfolio and its potential benefits
APA, Harvard, Vancouver, ISO, and other styles
8

PELUSO, VALENTINO. "Optimization Tools for ConvNets on the Edge." Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2845792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Busacca, Fabio Antonino. "AI for Resource Allocation and Resource Allocation for AI: a two-fold paradigm at the network edge." Doctoral thesis, Università degli Studi di Palermo, 2022. https://hdl.handle.net/10447/573371.

Full text
Abstract:
5G-and-beyond and Internet of Things (IoT) technologies are pushing a shift from the classic cloud-centric view of the network to a new edge-centric vision. In such a perspective, the computation, communication and storage resources are moved closer to the user, to the benefit of network responsiveness/latency, and of an improved context-awareness, that is, the ability to tailor the network services to the live user's experience. However, these improvements do not come for free: edge networks are highly constrained, and do not match the resource abundance of their cloud counterparts. In such a perspective, the proper management of the few available resources is of crucial importance to improve the network performance in terms of responsiveness, throughput, and power consumption. However, networks in the so-called Age of Big Data result from the dynamic interactions of massive amounts of heterogeneous devices. As a consequence, traditional model-based Resource Allocation algorithms fail to cope with this dynamic and complex networks, and are being replaced by more flexible AI-based techniques as a result. In such a way, it is possible to design intelligent resource allocation frameworks, able to quickly adapt to the everchanging dynamics of the network edge, and to best exploit the few available resources. Hence, Artificial Intelligence (AI), and, more specifically Machine Learning (ML) techniques, can clearly play a fundamental role in boosting and supporting resource allocation techniques at the edge. But can AI/ML benefit from optimal Resource Allocation? Recently, the evolution towards Distributed and Federated Learning approaches, i.e. where the learning process takes place in parallel at several devices, has brought important advantages in terms of reduction of the computational load of the ML algorithms, in the amount of information transmitted by the network nodes, and in terms of privacy. However, the scarceness of energy, processing, and, possibly, communication resources at the edge, especially in the IoT case, calls for proper resource management frameworks. In such a view, the available resources should be assigned to reduce the learning time, while also keeping an eye on the energy consumption of the network nodes. According to this perspective, a two-fold paradigm can emerge at the network edge, where AI can boost the performance of Resource Allocation, and, vice versa, optimal Resource Allocation techniques can speed up the learning process of AI algorithms. Part I of this work of thesis explores the first topic, i.e. the usage of AI to support Resource Allocation at the edge, with a specific focus on two use-cases, namely UAV-assisted cellular networks, and vehicular networks. Part II deals instead with the topic of Resource Allocation for AI, and, specifically, with the case of the integration between Federated Learning techniques and the LoRa LPWAN protocol. The designed integration framework has been validated on both simulation environments, and, most importantly, on the Colosseum platform, the biggest channel emulator in the world.
APA, Harvard, Vancouver, ISO, and other styles
10

Minerva, Roberto. "Will the Telco survive to an ever changing world ? Technical considerations leading to disruptive scenarios." Electronic Thesis or Diss., Evry, Institut national des télécommunications, 2013. http://www.theses.fr/2013TELE0011.

Full text
Abstract:
Le secteur des télécommunications passe par une phase délicate en raison de profondes mutations technologiques, principalement motivées par le développement de l'Internet. Elles ont un impact majeur sur l'industrie des télécommunications dans son ensemble et, par conséquent, sur les futurs déploiements des nouveaux réseaux, plateformes et services. L'évolution de l'Internet a un impact particulièrement fort sur les opérateurs des télécommunications (Telcos). En fait, l'industrie des télécommunications est à la veille de changements majeurs en raison de nombreux facteurs, comme par exemple la banalisation progressive de la connectivité, la domination dans le domaine des services de sociétés du web (Webcos), l'importance croissante de solutions à base de logiciels et la flexibilité qu'elles introduisent (par rapport au système statique des opérateurs télécoms). Cette thèse élabore, propose et compare les scénarios possibles basés sur des solutions et des approches qui sont technologiquement viables. Les scénarios identifiés couvrent un large éventail de possibilités: 1) Telco traditionnel; 2) Telco transporteur de Bits; 3) Telco facilitateur de Plateforme; 4) Telco fournisseur de services; 5) Disparition des Telco. Pour chaque scénario, une plateforme viable (selon le point de vue des opérateurs télécoms) est décrite avec ses avantages potentiels et le portefeuille de services qui pourraient être fournis
The telecommunications industry is going through a difficult phase because of profound technological changes, mainly originated by the development of the Internet. They have a major impact on the telecommunications industry as a whole and, consequently, the future deployment of new networks, platforms and services. The evolution of the Internet has a particularly strong impact on telecommunications operators (Telcos). In fact, the telecommunications industry is on the verge of major changes due to many factors, such as the gradual commoditization of connectivity, the dominance of web services companies (Webcos), the growing importance of software based solutions that introduce flexibility (compared to static system of telecom operators). This thesis develops, proposes and compares plausible future scenarios based on future solutions and approaches that will be technologically feasible and viable. Identified scenarios cover a wide range of possibilities: 1) Traditional Telco; 2) Telco as Bit Carrier; 3) Telco as Platform Provider; 4) Telco as Service Provider; 5) Telco Disappearance. For each scenario, a viable platform (from the point of view of telecom operators) is described highlighting the enabled service portfolio and its potential benefits
APA, Harvard, Vancouver, ISO, and other styles
11

Lanzarone, Lorenzo Biagio. "Manutenzione predittiva di macchinari industriali tramite tecniche di intelligenza artificiale: una valutazione sperimentale." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22853/.

Full text
Abstract:
Nella società è in corso un processo di evoluzione tecnologica, il quale sviluppa una connessione tra l’ambiente fisico e l’ambiente digitale, per scambiare dati e informazioni. Nella presente tesi si approfondisce, nel contesto dell’Industria 4.0, la tematica della manutenzione predittiva di macchinari industriali tramite tecniche di intelligenza artificiale, per prevedere in anticipo il verificarsi di un imminente guasto, identificandolo prima ancora che si possa verificare. La presente tesi è divisa in due parti complementari, nella prima parte si approfondiscono gli aspetti teorici relativi al contesto e allo stato dell’arte, mentre nella seconda parte gli aspetti pratici e progettuali. In particolare, la prima parte è dedicata a fornire una panoramica sull’Industria 4.0 e su una sua applicazione, rappresentata dalla manutenzione predittiva. Successivamente vengono affrontate le tematiche inerenti l’intelligenza artificiale e la Data Science, tramite le quali è possibile applicare la manutenzione predittiva. Nella seconda parte invece, si propone un progetto pratico, ossia il lavoro da me svolto durante un tirocinio presso la software house Open Data di Funo di Argelato (Bologna). L’obiettivo del progetto è stato la realizzazione di un sistema informatico di manutenzione predittiva di macchinari industriali per lo stampaggio plastico a iniezione, utilizzando tecniche di intelligenza artificiale. Il fine ultimo è l’integrazione di tale sistema all’interno del software Opera MES sviluppato dall’azienda.
APA, Harvard, Vancouver, ISO, and other styles
12

MINERVA, Roberto. "Will the Telco survive to an ever changing world ? Technical considerations leading to disruptive scenarios." Phd thesis, Institut National des Télécommunications, 2013. http://tel.archives-ouvertes.fr/tel-00917966.

Full text
Abstract:
The telecommunications industry is going through a difficult phase because of profound technological changes, mainly originated by the development of the Internet. They have a major impact on the telecommunications industry as a whole and, consequently, the future deployment of new networks, platforms and services. The evolution of the Internet has a particularly strong impact on telecommunications operators (Telcos). In fact, the telecommunications industry is on the verge of major changes due to many factors, such as the gradual commoditization of connectivity, the dominance of web services companies (Webcos), the growing importance of software based solutions that introduce flexibility (compared to static system of telecom operators). This thesis develops, proposes and compares plausible future scenarios based on future solutions and approaches that will be technologically feasible and viable. Identified scenarios cover a wide range of possibilities: 1) Traditional Telco; 2) Telco as Bit Carrier; 3) Telco as Platform Provider; 4) Telco as Service Provider; 5) Telco Disappearance. For each scenario, a viable platform (from the point of view of telecom operators) is described highlighting the enabled service portfolio and its potential benefits
APA, Harvard, Vancouver, ISO, and other styles
13

Barreto, Ricardo Manuel Carriço. "IoT Edge Computing Neural Networks on Reconfigurable Logic." Master's thesis, 2019. http://hdl.handle.net/10316/87970.

Full text
Abstract:
Dissertação de Mestrado Integrado em Engenharia Electrotécnica e de Computadores apresentada à Faculdade de Ciências e Tecnologia
Nos últimos anos, temos visto a expanção da inteligência artificial em diferentes áreas e dispositivos. No entanto, no ecossistema IoT, temos uma tendência constante a usar a computação na nuvem para armazenar e processar as vastas quantidades de dados geradas por estes dispositivos, devido aos recursos locais limitados. Esta dissertação propõe a implementa çãao de dispositivos IoT inteligentes capazes de fornecer informações específicas a partir de dados produzidos a partir de algum sensor, por exemplo uma câmara ou microfone, em vez dos próprios dados brutos. O foco será o processamento de imagens usando CNNs. Essa abordagem é claramente distinta das tendências atuais em dispositivos IoT que usam computação na nuvem para processar os dados produzidos. Pretendemos uma viragem no paradigma estabelecido e procuramos uma abordagem deedge computing. Como o foco ser ão dispositivos pequenos e simples, precisamos de uma solução de baixa potência para o cálculo da CNN. Os dispositivos SoC ganharam popularidade devido à sua heterogeneidade. Este trabalho usará um sistema que combina uma unidade de processamento ARM em conjunto com a FPGA, mantendo baixa potência e aproveitando a FPGA para obter um alto desempenho. O HADDOC2 será usado como uma ferramenta que converterá o código CNN em VHDL para ser sintetizado na FPGA, enquanto no ARM haverá um sistema que irá gerir todo o processo usando pontes de comunicação com a FPGA e protocolos de comunicação IoT para enviar as informações processadas. No fim é obtido um sistema com uma CNN implementada na FPGA o usando o HPS como gestor de todo o processo e que se comunica com o exterior através do MQTT.
In recent years we have seen the emergence of AI in wider application areas and in more devices. However, in the IoT ecosystem there is the tendency to use cloud computing to store and process the vast amounts of information generated by these devices, due to the limited local resources. This dissertation proposes the implementation of smart IoT devices able to provide specific information from raw data produced from some sensor, e.g. a camera or microphone, instead of the raw data itself. The focus will be embedded image processing using Convolutional Neuronal Networks (CNN). This approach is clearly distinct from the current trends in IoT devices that use cloud computing to process the collected data. We intend a twist on the established paradigm and pursue an edge computing approach. Since we are targeting small and simple devices, we need some low power solution for the CNN computation. SoC devices have gained popularity due to their heterogeneity. In our work we use a system that combines an ARM processing unit in conjunction with FPGA, while maintaining low power, taking advantage of FPGA to achieve high performance.HADDOC2 will be used as a tool that will convert CNN to VHDL code to be synthesized to FPGA, while in ARM there will be a system that will manage the entire process using IoT communication protocols to send the processed information. A system with a CNN implemented in the FPGA is obtained using HPS as the manager of the entire process and then this system communicates with the outside through MQTT.
APA, Harvard, Vancouver, ISO, and other styles
14

Wong, Jun Hua. "Efficient Edge Intelligence in the Era of Big Data." Thesis, 2021. http://hdl.handle.net/1805/26385.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
Smart wearables, known as emerging paradigms for vital big data capturing, have been attracting intensive attentions. However, one crucial problem is their power-hungriness, i.e., the continuous data streaming consumes energy dramatically and requires devices to be frequently charged. Targeting this obstacle, we propose to investigate the biodynamic patterns in the data and design a data-driven approach for intelligent data compression. We leverage Deep Learning (DL), more specifically, Convolutional Autoencoder (CAE), to learn a sparse representation of the vital big data. The minimized energy need, even taking into consideration the CAE-induced overhead, is tremendously lower than the original energy need. Further, compared with state-of-the-art wavelet compression-based method, our method can compress the data with a dramatically lower error for a similar energy budget. Our experiments and the validated approach are expected to boost the energy efficiency of wearables, and thus greatly advance ubiquitous big data applications in era of smart health. In recent years, there has also been a growing interest in edge intelligence for emerging instantaneous big data inference. However, the inference algorithms, especially deep learning, usually require heavy computation requirements, thereby greatly limiting their deployment on the edge. We take special interest in the smart health wearable big data mining and inference. Targeting the deep learning’s high computational complexity and large memory and energy requirements, new approaches are urged to make the deep learning algorithms ultra-efficient for wearable big data analysis. We propose to leverage knowledge distillation to achieve an ultra-efficient edge-deployable deep learning model. More specifically, through transferring the knowledge from a teacher model to the on-edge student model, the soft target distribution of the teacher model can be effectively learned by the student model. Besides, we propose to further introduce adversarial robustness to the student model, by stimulating the student model to correctly identify inputs that have adversarial perturbation. Experiments demonstrate that the knowledge distillation student model has comparable performance to the heavy teacher model but owns a substantially smaller model size. With adversarial learning, the student model has effectively preserved its robustness. In such a way, we have demonstrated the framework with knowledge distillation and adversarial learning can, not only advance ultra-efficient edge inference, but also preserve the robustness facing the perturbed input.
APA, Harvard, Vancouver, ISO, and other styles
15

Gupta, Rachana Ashok. "An edge-detection and HPF based intelligent space a network based integrated navigation system /." 2006. http://www.lib.ncsu.edu/theses/available/etd-05072006-132525/unrestricted/etd.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

(11013474), Jun Hua Wong. "Efficient Edge Intelligence In the Era of Big Data." Thesis, 2021.

Find full text
Abstract:
Smart wearables, known as emerging paradigms for vital big data capturing, have been attracting intensive attentions. However, one crucial problem is their power-hungriness, i.e., the continuous data streaming consumes energy dramatically and requires devices to be frequently charged. Targeting this obstacle, we propose to investigate the biodynamic patterns in the data and design a data-driven approach for intelligent data compression. We leverage Deep Learning (DL), more specifically, Convolutional Autoencoder (CAE), to learn a sparse representation of the vital big data. The minimized energy need, even taking into consideration the CAE-induced overhead, is tremendously lower than the original energy need. Further, compared with state-of-the-art wavelet compression-based method, our method can compress the data with a dramatically lower error for a similar energy budget. Our experiments and the validated approach are expected to boost the energy efficiency of wearables, and thus greatly advance ubiquitous big data applications in era of smart health.
In recent years, there has also been a growing interest in edge intelligence for emerging instantaneous big data inference. However, the inference algorithms, especially deep learning, usually require heavy computation requirements, thereby greatly limiting their deployment on the edge. We take special interest in the smart health wearable big data mining and inference.

Targeting the deep learning’s high computational complexity and large memory and energy requirements, new approaches are urged to make the deep learning algorithms ultra-efficient for wearable big data analysis. We propose to leverage knowledge distillation to achieve an ultra-efficient edge-deployable deep learning model. More specifically, through transferring the knowledge from a teacher model to the on-edge student model, the soft target distribution of the teacher model can be effectively learned by the student model. Besides, we propose to further introduce adversarial robustness to the student model, by stimulating the student model to correctly identify inputs that have adversarial perturbation. Experiments demonstrate that the knowledge distillation student model has comparable performance to the heavy teacher model but owns a substantially smaller model size. With adversarial learning, the student model has effectively preserved its robustness. In such a way, we have demonstrated the framework with knowledge distillation and adversarial learning can, not only advance ultra-efficient edge inference, but also preserve the robustness facing the perturbed input.
APA, Harvard, Vancouver, ISO, and other styles
17

(10716561), Sanket Ramesh Joshi. "HBONEXT: AN EFFICIENT DNN FOR LIGHT EDGE EMBEDDED DEVICES." Thesis, 2021.

Find full text
Abstract:
Every year the most effective Deep learning models, CNN architectures are showcased based on their compatibility and performance on the embedded edge hardware, especially for applications like image classification. These deep learning models necessitate a significant amount of computation and memory, so they can only be used on high-performance computing systems like CPUs or GPUs. However, they often struggle to fulfill portable specifications due to resource, energy, and real-time constraints. Hardware accelerators have recently been designed to provide the computational resources that AI and machine learning tools need. These edge accelerators have high-performance hardware which helps maintain the precision needed to accomplish this mission. Furthermore, this classification dilemma that investigates channel interdependencies using either depth-wise or group-wise convolutional features, has benefited from the inclusion of Bottleneck modules. Because of its increasing use in portable applications, the classic inverted residual block, a well-known architecture technique, has gotten more recognition. This work takes it a step forward by introducing a design method for porting CNNs to low-resource embedded systems, essentially bridging the difference between deep learning models and embedded edge systems. To achieve these goals, we use closer computing strategies to reduce the computer's computational load and memory usage while retaining excellent deployment efficiency. This thesis work introduces HBONext, a mutated version of Harmonious Bottlenecks (DHbneck) combined with a Flipped version of Inverted Residual (FIR), which outperforms the current HBONet architecture in terms of accuracy and model size miniaturization. Unlike the current definition of inverted residual, this FIR block performs identity mapping and spatial transformation at its higher dimensions. The HBO solution, on the other hand, focuses on two orthogonal dimensions: spatial (H/W) contraction-expansion and later channel (C) expansion-contraction, which are both organized in a bilaterally symmetric manner. HBONext is one of those versions that was designed specifically for embedded and mobile applications. In this research work, we also show how to use NXP Bluebox 2.0 to build a real-time HBONext image classifier. The integration of the model into this hardware has been a big hit owing to the limited model size of 3 MB. The model was trained and validated using CIFAR10 dataset, which performed exceptionally well due to its smaller size and higher accuracy. The validation accuracy of the baseline HBONet architecture is 80.97%, and the model is 22 MB in size. The proposed architecture HBONext variants, on the other hand, gave a higher validation accuracy of 89.70% and a model size of 3.00 MB measured using the number of parameters. The performance metrics of HBONext architecture and its various variants are compared in the following chapters.
APA, Harvard, Vancouver, ISO, and other styles
18

"Study of Knowledge Transfer Techniques For Deep Learning on Edge Devices." Master's thesis, 2018. http://hdl.handle.net/2286/R.I.49325.

Full text
Abstract:
abstract: With the emergence of edge computing paradigm, many applications such as image recognition and augmented reality require to perform machine learning (ML) and artificial intelligence (AI) tasks on edge devices. Most AI and ML models are large and computational heavy, whereas edge devices are usually equipped with limited computational and storage resources. Such models can be compressed and reduced in order to be placed on edge devices, but they may loose their capability and may not generalize and perform well compared to large models. Recent works used knowledge transfer techniques to transfer information from a large network (termed teacher) to a small one (termed student) in order to improve the performance of the latter. This approach seems to be promising for learning on edge devices, but a thorough investigation on its effectiveness is lacking. The purpose of this work is to provide an extensive study on the performance (both in terms of accuracy and convergence speed) of knowledge transfer, considering different student-teacher architectures, datasets and different techniques for transferring knowledge from teacher to student. A good performance improvement is obtained by transferring knowledge from both the intermediate layers and last layer of the teacher to a shallower student. But other architectures and transfer techniques do not fare so well and some of them even lead to negative performance impact. For example, a smaller and shorter network, trained with knowledge transfer on Caltech 101 achieved a significant improvement of 7.36\% in the accuracy and converges 16 times faster compared to the same network trained without knowledge transfer. On the other hand, smaller network which is thinner than the teacher network performed worse with an accuracy drop of 9.48\% on Caltech 101, even with utilization of knowledge transfer.
Dissertation/Thesis
Masters Thesis Computer Science 2018
APA, Harvard, Vancouver, ISO, and other styles
19

(10911822), Priyank Kalgaonkar. "AI on the Edge with CondenseNeXt: An Efficient Deep Neural Network for Devices with Constrained Computational Resources." Thesis, 2021.

Find full text
Abstract:
Research work presented within this thesis propose a neoteric variant of deep convolutional neural network architecture, CondenseNeXt, designed specifically for ARM-based embedded computing platforms with constrained computational resources. CondenseNeXt is an improved version of CondenseNet, the baseline architecture whose roots can be traced back to ResNet. CondeseNeXt replaces group convolutions in CondenseNet with depthwise separable convolutions and introduces group-wise pruning, a model compression technique, to prune (remove) redundant and insignificant elements that either are irrelevant or do not affect performance of the network upon disposition. Cardinality, a new dimension to the existing spatial dimensions, and class-balanced focal loss function, a weighting factor inversely proportional to the number of samples, has been incorporated in order to relieve the harsh effects of pruning, into the design of CondenseNeXt’s algorithm. Furthermore, extensive analyses of this novel CNN architecture was performed on three benchmarking image datasets: CIFAR-10, CIFAR-100 and ImageNet by deploying the trained weight on to an ARM-based embedded computing platform: NXP BlueBox 2.0, for real-time image classification. The outputs are observed in real-time in RTMaps Remote Studio’s console to verify the correctness of classes being predicted. CondenseNeXt achieves state-of-the-art image classification performance on three benchmark datasets including CIFAR-10 (4.79% top-1 error), CIFAR-100 (21.98% top-1 error) and ImageNet (7.91% single model, single crop top-5 error), and up to 59.98% reduction in forward FLOPs compared to CondenseNet. CondenseNeXt can also achieve a final trained model size of 2.9 MB, however at the cost of 2.26% in accuracy loss. Thus, performing image classification on ARM-Based computing platforms without requiring a CUDA enabled GPU support, with outstanding efficiency.
APA, Harvard, Vancouver, ISO, and other styles
20

Kalgaonkar, Priyank B. "AI on the Edge with CondenseNeXt: An Efficient Deep Neural Network for Devices with Constrained Computational Resources." Thesis, 2021. http://dx.doi.org/10.7912/C2/64.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
Research work presented within this thesis propose a neoteric variant of deep convolutional neural network architecture, CondenseNeXt, designed specifically for ARM-based embedded computing platforms with constrained computational resources. CondenseNeXt is an improved version of CondenseNet, the baseline architecture whose roots can be traced back to ResNet. CondeseNeXt replaces group convolutions in CondenseNet with depthwise separable convolutions and introduces group-wise pruning, a model compression technique, to prune (remove) redundant and insignificant elements that either are irrelevant or do not affect performance of the network upon disposition. Cardinality, a new dimension to the existing spatial dimensions, and class-balanced focal loss function, a weighting factor inversely proportional to the number of samples, has been incorporated in order to relieve the harsh effects of pruning, into the design of CondenseNeXt’s algorithm. Furthermore, extensive analyses of this novel CNN architecture was performed on three benchmarking image datasets: CIFAR-10, CIFAR-100 and ImageNet by deploying the trained weight on to an ARM-based embedded computing platform: NXP BlueBox 2.0, for real-time image classification. The outputs are observed in real-time in RTMaps Remote Studio’s console to verify the correctness of classes being predicted. CondenseNeXt achieves state-of-the-art image classification performance on three benchmark datasets including CIFAR-10 (4.79% top-1 error), CIFAR-100 (21.98% top-1 error) and ImageNet (7.91% single model, single crop top-5 error), and up to 59.98% reduction in forward FLOPs compared to CondenseNet. CondenseNeXt can also achieve a final trained model size of 2.9 MB, however at the cost of 2.26% in accuracy loss. Thus, performing image classification on ARM-Based computing platforms without requiring a CUDA enabled GPU support, with outstanding efficiency.
APA, Harvard, Vancouver, ISO, and other styles
21

Ganin, Iaroslav. "Natural image processing and synthesis using deep learning." Thèse, 2019. http://hdl.handle.net/1866/23437.

Full text
Abstract:
Nous étudions dans cette thèse comment les réseaux de neurones profonds peuvent être utilisés dans différents domaines de la vision artificielle. La vision artificielle est un domaine interdisciplinaire qui traite de la compréhension d’images et de vidéos numériques. Les problèmes de ce domaine ont traditionnellement été adressés avec des méthodes ad-hoc nécessitant beaucoup de réglages manuels. En effet, ces systèmes de vision artificiels comprenaient jusqu’à récemment une série de modules optimisés indépendamment. Cette approche est très raisonnable dans la mesure où, avec peu de données, elle bénéficient autant que possible des connaissances du chercheur. Mais cette avantage peut se révéler être une limitation si certaines données d’entré n’ont pas été considérées dans la conception de l’algorithme. Avec des volumes et une diversité de données toujours plus grands, ainsi que des capacités de calcul plus rapides et économiques, les réseaux de neurones profonds optimisés d’un bout à l’autre sont devenus une alternative attrayante. Nous démontrons leur avantage avec une série d’articles de recherche, chacun d’entre eux trouvant une solution à base de réseaux de neurones profonds à un problème d’analyse ou de synthèse visuelle particulier. Dans le premier article, nous considérons un problème de vision classique: la détection de bords et de contours. Nous partons de l’approche classique et la rendons plus ‘neurale’ en combinant deux étapes, la détection et la description de motifs visuels, en un seul réseau convolutionnel. Cette méthode, qui peut ainsi s’adapter à de nouveaux ensembles de données, s’avère être au moins aussi précis que les méthodes conventionnelles quand il s’agit de domaines qui leur sont favorables, tout en étant beaucoup plus robuste dans des domaines plus générales. Dans le deuxième article, nous construisons une nouvelle architecture pour la manipulation d’images qui utilise l’idée que la majorité des pixels produits peuvent d’être copiés de l’image d’entrée. Cette technique bénéficie de plusieurs avantages majeurs par rapport à l’approche conventionnelle en apprentissage profond. En effet, elle conserve les détails de l’image d’origine, n’introduit pas d’aberrations grâce à la capacité limitée du réseau sous-jacent et simplifie l’apprentissage. Nous démontrons l’efficacité de cette architecture dans le cadre d’une tâche de correction du regard, où notre système produit d’excellents résultats. Dans le troisième article, nous nous éclipsons de la vision artificielle pour étudier le problème plus générale de l’adaptation à de nouveaux domaines. Nous développons un nouvel algorithme d’apprentissage, qui assure l’adaptation avec un objectif auxiliaire à la tâche principale. Nous cherchons ainsi à extraire des motifs qui permettent d’accomplir la tâche mais qui ne permettent pas à un réseau dédié de reconnaître le domaine. Ce réseau est optimisé de manière simultané avec les motifs en question, et a pour tâche de reconnaître le domaine de provenance des motifs. Cette technique est simple à implémenter, et conduit pourtant à l’état de l’art sur toutes les tâches de référence. Enfin, le quatrième article présente un nouveau type de modèle génératif d’images. À l’opposé des approches conventionnels à base de réseaux de neurones convolutionnels, notre système baptisé SPIRAL décrit les images en termes de programmes bas-niveau qui sont exécutés par un logiciel de graphisme ordinaire. Entre autres, ceci permet à l’algorithme de ne pas s’attarder sur les détails de l’image, et de se concentrer plutôt sur sa structure globale. L’espace latent de notre modèle est, par construction, interprétable et permet de manipuler des images de façon prévisible. Nous montrons la capacité et l’agilité de cette approche sur plusieurs bases de données de référence.
In the present thesis, we study how deep neural networks can be applied to various tasks in computer vision. Computer vision is an interdisciplinary field that deals with understanding of digital images and video. Traditionally, the problems arising in this domain were tackled using heavily hand-engineered adhoc methods. A typical computer vision system up until recently consisted of a sequence of independent modules which barely talked to each other. Such an approach is quite reasonable in the case of limited data as it takes major advantage of the researcher's domain expertise. This strength turns into a weakness if some of the input scenarios are overlooked in the algorithm design process. With the rapidly increasing volumes and varieties of data and the advent of cheaper and faster computational resources end-to-end deep neural networks have become an appealing alternative to the traditional computer vision pipelines. We demonstrate this in a series of research articles, each of which considers a particular task of either image analysis or synthesis and presenting a solution based on a ``deep'' backbone. In the first article, we deal with a classic low-level vision problem of edge detection. Inspired by a top-performing non-neural approach, we take a step towards building an end-to-end system by combining feature extraction and description in a single convolutional network. The resulting fully data-driven method matches or surpasses the detection quality of the existing conventional approaches in the settings for which they were designed while being significantly more usable in the out-of-domain situations. In our second article, we introduce a custom architecture for image manipulation based on the idea that most of the pixels in the output image can be directly copied from the input. This technique bears several significant advantages over the naive black-box neural approach. It retains the level of detail of the original images, does not introduce artifacts due to insufficient capacity of the underlying neural network and simplifies training process, to name a few. We demonstrate the efficiency of the proposed architecture on the challenging gaze correction task where our system achieves excellent results. In the third article, we slightly diverge from pure computer vision and study a more general problem of domain adaption. There, we introduce a novel training-time algorithm (\ie, adaptation is attained by using an auxilliary objective in addition to the main one). We seek to extract features that maximally confuse a dedicated network called domain classifier while being useful for the task at hand. The domain classifier is learned simultaneosly with the features and attempts to tell whether those features are coming from the source or the target domain. The proposed technique is easy to implement, yet results in superior performance in all the standard benchmarks. Finally, the fourth article presents a new kind of generative model for image data. Unlike conventional neural network based approaches our system dubbed SPIRAL describes images in terms of concise low-level programs executed by off-the-shelf rendering software used by humans to create visual content. Among other things, this allows SPIRAL not to waste its capacity on minutae of datasets and focus more on the global structure. The latent space of our model is easily interpretable by design and provides means for predictable image manipulation. We test our approach on several popular datasets and demonstrate its power and flexibility.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography