Academic literature on the topic 'INTEGRATIVE TRANSCRIPTOME'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'INTEGRATIVE TRANSCRIPTOME.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "INTEGRATIVE TRANSCRIPTOME"
Rhodes, Daniel R., and Arul M. Chinnaiyan. "Integrative analysis of the cancer transcriptome." Nature Genetics 37, S6 (June 2005): S31—S37. http://dx.doi.org/10.1038/ng1570.
Full textBerger, M. F., J. Z. Levin, K. Vijayendran, A. Sivachenko, X. Adiconis, J. Maguire, L. A. Johnson, et al. "Integrative analysis of the melanoma transcriptome." Genome Research 20, no. 4 (February 23, 2010): 413–27. http://dx.doi.org/10.1101/gr.103697.109.
Full textGrausa, Kristina, Ivars Mozga, Karlis Pleiko, and Agris Pentjuss. "Integrative Gene Expression and Metabolic Analysis Tool IgemRNA." Biomolecules 12, no. 4 (April 16, 2022): 586. http://dx.doi.org/10.3390/biom12040586.
Full textSingh, Amar V., Kenneth B. Knudsen, and Thomas B. Knudsen. "Integrative analysis of the mouse embryonic transcriptome." Bioinformation 1, no. 10 (April 10, 2007): 406–13. http://dx.doi.org/10.6026/97320630001406.
Full textSneha, Nela Pragathi, S. Akila Parvathy Dharshini, Y. H. Taguchi, and M. Michael Gromiha. "Integrative Meta-Analysis of Huntington’s Disease Transcriptome Landscape." Genes 13, no. 12 (December 16, 2022): 2385. http://dx.doi.org/10.3390/genes13122385.
Full textMorabito, Samuel, Emily Miyoshi, Neethu Michael, and Vivek Swarup. "Integrative genomics approach identifies conserved transcriptomic networks in Alzheimer’s disease." Human Molecular Genetics 29, no. 17 (August 17, 2020): 2899–919. http://dx.doi.org/10.1093/hmg/ddaa182.
Full textGan, Jingyi, Hans-Joachim Sonntag, Mei kuen Tang, Dongqing Cai, and Kenneth Ka Ho Lee. "Integrative Analysis of the Developing Postnatal Mouse Heart Transcriptome." PLOS ONE 10, no. 7 (July 22, 2015): e0133288. http://dx.doi.org/10.1371/journal.pone.0133288.
Full textZhang, Zhe, Zeyad Hailat, Marni J. Falk, and Xue-wen Chen. "Integrative analysis of independent transcriptome data for rare diseases." Methods 69, no. 3 (October 2014): 315–25. http://dx.doi.org/10.1016/j.ymeth.2014.06.003.
Full textGusev, Alexander, Arthur Ko, Huwenbo Shi, Gaurav Bhatia, Wonil Chung, Brenda W. J. H. Penninx, Rick Jansen, et al. "Integrative approaches for large-scale transcriptome-wide association studies." Nature Genetics 48, no. 3 (February 8, 2016): 245–52. http://dx.doi.org/10.1038/ng.3506.
Full textLi, Shuxin, Jiarui Wang, Jiale Li, Meihong Yue, Chuncheng Liu, Libing Ma, and Ying Liu. "Integrative analysis of transcriptome complexity in pig granulosa cells by long-read isoform sequencing." PeerJ 10 (May 25, 2022): e13446. http://dx.doi.org/10.7717/peerj.13446.
Full textDissertations / Theses on the topic "INTEGRATIVE TRANSCRIPTOME"
Padvitski, Tsimafei. "Integrative analysis of age-related changes in the transcriptome of Caenorhabditis elegans." Thesis, Högskolan i Skövde, Institutionen för biovetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-11825.
Full textWilson, Rebecca. "Investigating the Interaction of Monoamines and Diel Rhythmicity on Anti-Predator Behavior in an Orb-Weaving Spider, Larinioides cornutus (Araneae: Araneae)." Digital Commons @ East Tennessee State University, 2018. https://dc.etsu.edu/etd/3441.
Full textQi, Qin. "An integrative approach to understanding the fitness cost of rifampicin resistance in Pseudomonas aeruginosa." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:6a82bd64-3b3f-444b-b379-62f01f681594.
Full textDégletagne, Cyril. "Acclimatations des manchots aux contraintes de l’environnement polaire : approches transcriptomique et intégrative sur le manchot Royal (Aptenodytes patagonicus) et le manchot Adélie (Pygoscelis adeliae)." Thesis, Lyon 1, 2011. http://www.theses.fr/2011LYO10348/document.
Full textKing penguins have successfully colonized cold ecosystems of the southern hemisphere by developing physiological mechanisms that are not well understood. The aim of this study was to investigate, at different integrative levels from the gene to the whole animal, the functional responses developed by penguins to overcome polar constrains. We focused on acclimatization mechanisms enabling the first departure to sea of king penguin immatures and the rapid growth of Adélie penguin chicks.To explore differentially expressed genes in pectoralis muscle during penguin’s first sea acclimatization, we used Affymetrix microarrays design for chicken. We first set up and validated a new method to analyze heterologous hybridization transcriptomic profiles. We highlighted a selective shift in metabolic pathways favoring the use of lipids as fuel to sustain highly energetic needs imposed by marine life-style. Our results revealed a development of a global antioxidant response, potential consequences of penguin marine life-style that imposes repeated dives under apnea.Secondly, our integrative study on Adélie penguin’s chick revealed the development of molecular and cellular mechanisms which sustain an original strategy by first allocating most of the energy to growth and then promoting thermogenic processes.Our results showed that both king and Adélie penguins develop complex and coordinated physiological responses to energetic constraints highlighting their high phenotypic plasticity
Nascimento, Leandro Costa do. "Análise de expressão gênica diferencial entre diversas bibliotecas de soja." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/316766.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia
Made available in DSpace on 2018-08-17T20:48:34Z (GMT). No. of bitstreams: 1 Nascimento_LeandroCostado_M.pdf: 1292421 bytes, checksum: e05cfc27d3bf5ae000bfe8b621a750c8 (MD5) Previous issue date: 2010
Resumo: A soja é uma das principais commodities da economia internacional, sendo sua produção mundial de cerca de 220 milhões de toneladas por safra. Além de ser um alimento rico em proteínas e usado para a fabricação de óleo vegetal, a planta vem ganhando visibilidade devido a possibilidade de ser usada na fabricação de biocombustíveis, principalmente o biodiesel. Para o Brasil, a soja tem grande importância na balança comercial, sendo o país o segundo maior produtor do mundo. Neste contexto, no ano de 2007, o governo brasileiro estabeleceu um consórcio de pesquisas em soja - denominado GENOSOJA - com o objetivo de identificar características genéticas que possam facilitar o processo produtivo da planta, com foco nos diversos estresses que acometem a produção nacional, como a ocorrência de secas, o ataque de pragas e a doença da ferrugem asiática, causada pelo fungo Phakopsora pachyrhizi. Este trabalho está inserido no escopo do GENOSOJA, propondo a construção de bancos de dados contendo informações disponíveis nos diversos bancos públicos (sequências genômicas, ESTs e cDNA full-lenght), integrando-as com as informações geradas no decorrer do projeto (tags de SuperSAGE, bibliotecas subtrativas de cDNA e microRNAs). Além disso, foram construídas diversas interfaces web que oferecem aos usuários diversas funcionalidades, incluindo: comparações estatísticas, consultas por palavras-chave, dados sobre anotação e expressão dos genes nas diversas condições e experimentos estudados. Dessa forma, o ferramental de bioinformática aqui apresentado pode facilitar a compreensão de como as diferenças de expressão gênica da planta podem afetar características de importância agronômica
Abstract: Soybean is one of the main commodities in the international economy, with a world production of about 220 millions of tons per harvest. Besides being a protein rich food and used for vegetable oil production, the plant has been gaining visibility due to the possibility of being to make biofuels, especially biodiesel. The soybean culture is of great importance in the Brazilian economy, being the country the second largest producer in the world. In this context, in 2007, the Brazilian government established a research consortium in soybean - called GENOSOJA - aiming to identify genetic traits that may facilitate the production process of the plant, focusing on the different stresses that affect the national production, as the occurrence of drought, pests' attacks and the asian rust disease, caused by the Phakopsora pachyrhizi fungus. This work is inserted in the GENOSOJA, proposing to build a set of databases containing information available in several public databases (genomic sequences, ESTs and full-length cDNA), integrating them with information generated during the project (SuperSAGE tags, cDNA subtractive libraries and miRNAs). Additionally, several web interfaces were built. They offer to users many features, including: statics comparisons, keyword searches, data about annotation and gene expression in different experiments and conditions. Thus, the bioinformatics tools presented here may facilitate the understanding of how the differences in gene expression can affect plant traits with agronomic importance
Mestrado
Bioinformatica
Mestre em Genética e Biologia Molecular
Chintapalli, Venkateswara Rao. "An integrative and systems biology approach to Drosophila melanogaster transcriptomes." Thesis, University of Glasgow, 2012. http://theses.gla.ac.uk/3361/.
Full textMutwil, Marek. "Integrative transcriptomic approaches to analyzing plant co-expression networks." Phd thesis, Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2011/5075/.
Full textEs ist bereits ausgiebig gezeigt worden, dass Gene, deren Expression auf Transkriptionsebene koordiniert ist, häufig auch funktional in verwandten Stoffwechselwegen vorkommen, und dass sich dies wahrscheinlich auch Spezies- und sogar Reichübergreifend sagen lässt (Ihmels et al., 2004). Anfänglich wurden solche Beziehungen verwendet, um sogenannte Genfunktionsmodule in Hefe und Säugern aufzudecken (Ihmels et al., 2004), um dann orthologe Genfunktionen zwischen verschiedene Spezies und Reichen zu entdecken (Stuart et al., 2003; Bergmann et al., 2004). Modellorganismen wie Arabidopsis werden bevorzugt in der Forschung verwendet, weil man durch die schnelle Generationszeit in kurzer Zeit viele Daten erheben kann und aufgrund dessen die Ressourcen- und Informationsvielfalt um ein Vielfaches größer ist. Ein Hauptziel ist der Wissenstransfer von Modellorganismen auf Spezies, die gesellschaftlich von höherer Bedeutung sind wie z.B. Getreidearten oder andere Feldfrüchte. Pflanzen besitzen oft große Genfamilien und die eindeutige Identifizierung von gut charakterisierten Arabidopsisorthologen in besagten Nutzpflanzen ist kein triviales Vorhaben. In der vorliegenden Arbeit werden Konzepte zur Nutzung von Co-expressionsnetzwerken beschrieben, die helfen sollen (i) Genfunktionen zu identifizieren, (ii) die Organisation von biologischen Prozessen aufzuklären und (iii) das erworbene Wissen auf andere Spezies übertragbar zu machen. Ein häufig von Bioinformatikern übersehender Umstand ist, dass bioinformatische Methoden nur so sinnvoll sind wie ihre Zugänglichkeit. Deshalb basiert der Großteil dieser Arbeit auf freiverfügbaren und vor allem für Biologen nutzerfreundlichen Webtools.
Tarabichi, Maxime. "Integrative analyses of genome-wide transcriptomic and genomic thyroid cancer profiles." Doctoral thesis, Universite Libre de Bruxelles, 2016. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/225138.
Full textDoctorat en Sciences biomédicales et pharmaceutiques (Médecine)
info:eu-repo/semantics/nonPublished
Lin, Tiffany J. "Multinet Bayesian network models for large-scale transcriptome integration in computational medicine." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/77535.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 30).
Motivation: This work utilizes the closed loop Bayesian network framework for predictive medicine via integrative analysis of publicly available gene expression findings pertaining to various diseases and analyzes the results to determine which model, single net or multinet, is a more accurate predictor for determining disease status. Results: In general, it is suggested to use the multinet Bayesian network framework for predictive medicine instead of the single net Bayesian network, because for large numbers of samples and features, it is highly likely that it is the stronger predictor, and for smaller numbers of samples and features, if the multinet returns good results, it is likely to be a better predictor than the single net Bayesian network.
by Tiffany J. Lin.
M.Eng.
Cui, Chenming. "Integrating bioinformatic approaches to promote crop resilience." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/94424.
Full textDoctor of Philosophy
Meeting the food production demands of a burgeoning population in a changing environment, means adapting crop plants to become more resilient to environmental stress. One of the greatest barriers to understanding and predicting crop responses to future environmental change is our poor understanding of the functional and genomic basis of stress resistance traits for contemporary crops. This impediment presents a barrier for rapid crop improvement technologies, such as, gene editing or genomic selection, that is only partially overcome by generating large amounts of sequencing data. Here we need tools that allow us to process and evaluate huge amounts of data generated from next generation sequencing studies to help identify genomic regions associated with agronomic traits. We also need technical approaches that allow us to disentangle the complex genetic interactions that drive plant stress responses. Here we present work that used statistical analysis and recent advances of artificial intelligence to develop a bioinformatic approach to evaluate genomic sequencing data prior to downstream analyses. Secondly, we used a reductionist approach to filter thousands of genes to key genes associated with combined stress responses (herbivory and drought), in the most widely used vegetable in the world, tomato. Finally, we developed a method for generating whole genome sequences that is low-cost and time sensitive and tested it using a well-known plant pathogen genome, wherein we unraveled significant hidden complexity. Overall this work provides community-wide genomic tools and information to promote crop resilience.
Books on the topic "INTEGRATIVE TRANSCRIPTOME"
Grant, Warren, and Martin Scott-Brown. Principles of oncogenesis. Edited by Patrick Davey and David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0322.
Full textBook chapters on the topic "INTEGRATIVE TRANSCRIPTOME"
Berger, Emily, Deniz Yorukoglu, and Bonnie Berger. "HapTree-X: An Integrative Bayesian Framework for Haplotype Reconstruction from Transcriptome and Genome Sequencing Data." In Lecture Notes in Computer Science, 28–29. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16706-0_4.
Full textBenabdellah, Karim, Simone Thomas, and Hinrich Abken. "Genetic Engineering of Autologous or Allogeneic Immune Effector Cells." In The EBMT/EHA CAR-T Cell Handbook, 7–10. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94353-0_2.
Full textda Silva Filho, Reginaldo Inojosa, Ricardo Luis de Azevedo da Rocha, and Claudio Santos Oliveira. "Formal Language Model for Transcriptome and Proteome Data Integration." In Computational Science and Its Applications – ICCSA 2020, 727–35. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58814-4_60.
Full textUzun, Yasin, Hao Wu, and Kai Tan. "Integrating Single-Cell Methylome and Transcriptome Data with MAPLE." In Methods in Molecular Biology, 43–54. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2962-8_4.
Full textCassese, Alberto, Michele Guindani, and Marina Vannucci. "iBATCGH: Integrative Bayesian Analysis of Transcriptomic and CGH Data." In Statistical Analysis for High-Dimensional Data, 105–23. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27099-9_6.
Full textSagan, April, Xiaojun Ma, Koushul Ramjattun, and Hatice Ulku Osmanbeyoglu. "Linking Expression of Cell-Surface Receptors with Transcription Factors by Computational Analysis of Paired Single-Cell Proteomes and Transcriptomes." In Cancer Systems and Integrative Biology, 149–69. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3163-8_11.
Full textSirdeshmukh, Ravi, Savita Jayaram, Manoj Kumar Gupta, Pranali Sonpatki, Manika Singh, Raksha A. Ganesh, Chaitra B. Amaresha, and Nameeta Shah. "Integration of Transcriptomic and Proteomic Data for Disease Insights." In Neuromethods, 325–56. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7119-0_20.
Full textForestan, Cristian, Silvia Farinati, Alice Lunardon, and Serena Varotto. "Integrating Transcriptome and Chromatin Landscapes for Deciphering the Epigenetic Regulation of Drought Response in Maize." In Compendium of Plant Genomes, 97–112. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97427-9_7.
Full textGarcia, Maxime, Pascal Finetti, Francois Bertucci, Daniel Birnbaum, and Ghislain Bidaut. "Detection of Driver Protein Complexes in Breast Cancer Metastasis by Large-Scale Transcriptome–Interactome Integration." In Gene Function Analysis, 67–85. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-721-1_5.
Full textGonzalez, Luis Miguel, Elena Sevilla, Miguel Fernández-García, Alejandro Sanchez-Flores, and Estrella Montero. "Integration of Genomic and Transcriptomic Data to Elucidate Molecular Processes in Babesia divergens." In Methods in Molecular Biology, 199–215. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1681-9_12.
Full textConference papers on the topic "INTEGRATIVE TRANSCRIPTOME"
Park, Sungmin, Junghyun Jung, and Jong Wha Joanne Joo. "Integrative Meta-analysis of Transcriptome Data for Unmasking Biological Mechanism of Idiopathic pulmonary fibrosis." In 2020 Joint 11th International Conference on Soft Computing and Intelligent Systems and 21st International Symposium on Advanced Intelligent Systems (SCIS-ISIS). IEEE, 2020. http://dx.doi.org/10.1109/scisisis50064.2020.9322727.
Full textBenHamadou1, Alexandra Leitao, Zenaba Khatir, Noora Al-Shamary, Hassan Hassan, Zainab Hizan, Aisha Al-Ashwal, Mark Chatting, et al. "Pearl Oyster: From National Icon To Guardian of Qatar's Marine Environment." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0051.
Full textRohr, Michael W., and Deborah Altomare. "Abstract 2309: Predicting molecular networks mediating colorectal cancer neoplastic progression by integrative transcriptome-wide meta-analysis." In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-2309.
Full textShern, Jack F., Li Chen, Juliann Chmielecki, Jun Wei, Rajesh Patidar, Young Song, Hongling Liao, et al. "Abstract A21: Integrative genome and transcriptome sequencing defines the landscape of genetic alterations underlying pediatric rhabdomyosarcoma." In Abstracts: AACR Special Conference: Pediatric Cancer at the Crossroads: Translating Discovery into Improved Outcomes; November 3-6, 2013; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.pedcan-a21.
Full textZhang, Jinghui, Michael Rusch, Joy Nakitandwe, Zhaojie Zhang, Michael N. Edmonson, Matthew Parker, Xiaotu Ma, et al. "Abstract 2628: Molecular diagnosis for pediatric cancer through integrative analysis of whole-genome, whole-exome and transcriptome sequencing." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-2628.
Full textXia, Jun, Zhuoyi Song, and Chris Amos. "Abstract 3532: Post-GWAS in lung cancer: From transcriptome-wide association to the DNA damageome by Integrative functional screens." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-3532.
Full textKim, Yon Hui, Han Liang, Xiuping Liu, Julie Izzo, Robert Lemos, Ju-Seog Lee, Jae Yong Cho, et al. "Abstract 970: Multi-layer and integrative analysis of the whole transcriptome in Asian gastric cancer: AMPKβ modulation in cancer progression." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-970.
Full textPomponio, Robert, Qi Tang, Anthony Mei, Anne Caron, Bema Coulibaly, Joachim Theihaber, Maximilian Rogers-Grazado, Tun Tun Lin, and Rui Wang. "Abstract 345: An integrative approach of image analysis and transcriptome profiling to explore potential predictive biomarkers for TGF-beta blockade therapy." In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-345.
Full textDi Liberto, Maurizio, Peter Martin, David Chiron, Priyanka Vijay, Xiangao Huang, Pedro Blecua, Scott Ely, et al. "Abstract 3095: Longitudinal integrative whole transcriptome and exome sequencing identifies genes that reprogram lymphoma cells for clinical response to CDK4/6 inhibition in combination therapy." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-3095.
Full textChudasama, Priya, Sadaf Mughal, Mathijs Sanders, Daniel Hübschmann, Inn Chung, Aurélie Ernst, Bernd Kasper, et al. "Abstract 4336: Integrative genomic and transcriptomic analysis of leiomyosarcoma." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-4336.
Full textReports on the topic "INTEGRATIVE TRANSCRIPTOME"
Tucker, Mark L., Shimon Meir, Amnon Lers, Sonia Philosoph-Hadas, and Cai-Zhong Jiang. Elucidation of signaling pathways that regulate ethylene-induced leaf and flower abscission of agriculturally important plants. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7597929.bard.
Full textDudareva, Natalia, Alexander Vainstein, Eran Pichersky, and David Weiss. Integrating biochemical and genomic approaches to elucidate C6-C2 volatile production: improvement of floral scent and fruit aroma. United States Department of Agriculture, September 2007. http://dx.doi.org/10.32747/2007.7696514.bard.
Full textCrisosto, Carlos, Susan Lurie, Haya Friedman, Ebenezer Ogundiwin, Cameron Peace, and George Manganaris. Biological Systems Approach to Developing Mealiness-free Peach and Nectarine Fruit. United States Department of Agriculture, 2007. http://dx.doi.org/10.32747/2007.7592650.bard.
Full textEshed-Williams, Leor, and Daniel Zilberman. Genetic and cellular networks regulating cell fate at the shoot apical meristem. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7699862.bard.
Full textMinz, Dror, Stefan J. Green, Noa Sela, Yitzhak Hadar, Janet Jansson, and Steven Lindow. Soil and rhizosphere microbiome response to treated waste water irrigation. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7598153.bard.
Full textGur, Amit, Edward Buckler, Joseph Burger, Yaakov Tadmor, and Iftach Klapp. Characterization of genetic variation and yield heterosis in Cucumis melo. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7600047.bard.
Full text