To see the other types of publications on this topic, follow the link: Integration numerical.

Journal articles on the topic 'Integration numerical'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Integration numerical.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Matušů, Josef, Gejza Dohnal, and Martin Matušů. "On one method of numerical integration." Applications of Mathematics 36, no. 4 (1991): 241–63. http://dx.doi.org/10.21136/am.1991.104464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Faou, Erwan, Ernst Hairer, Marlis Hochbruck, and Christian Lubich. "Geometric Numerical Integration." Oberwolfach Reports 13, no. 1 (2016): 869–948. http://dx.doi.org/10.4171/owr/2016/18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Elliott, David, H. Brass, and G. Hammerlin. "Numerical Integration IV." Mathematics of Computation 64, no. 210 (April 1995): 901. http://dx.doi.org/10.2307/2153467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

G., W., H. Brass, and G. H. Hammerlin. "Numerical Integration III." Mathematics of Computation 53, no. 187 (July 1989): 451. http://dx.doi.org/10.2307/2008381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dyer, Stephen, and Justin Dyer. "bythenumbers - Numerical integration." IEEE Instrumentation & Measurement Magazine 11, no. 2 (April 2008): 47–49. http://dx.doi.org/10.1109/mim.2008.4483733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Clegg, D. B., and A. N. Richmond. "Perfect numerical integration." International Journal of Mathematical Education in Science and Technology 18, no. 4 (July 1987): 519–25. http://dx.doi.org/10.1080/0020739870180403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zadiraka, V. K., L. V. Luts, and I. V. Shvidchenko. "Optimal Numerical Integration." Cybernetics and Computer Technologies, no. 4 (December 31, 2020): 47–64. http://dx.doi.org/10.34229/2707-451x.20.4.4.

Full text
Abstract:
Introduction. In many applied problems, such as statistical data processing, digital filtering, computed tomography, pattern recognition, and many others, there is a need for numerical integration, moreover, with a given (often quite high) accuracy. Classical quadrature formulas cannot always provide the required accuracy, since, as a rule, they do not take into account the oscillation of the integrand. In this regard, the development of methods for constructing optimal in accuracy (and close to them) quadrature formulas for the integration of rapidly oscillating functions is rather important and topical problem of computational mathematics. The purpose of the article is to use the example of constructing optimal in accuracy (and close to them) quadrature formulas for calculating integrals for integrands of various degrees of smoothness and for oscillating factors of different types and constructing a priori estimates of their total error, as well as applying to them of the theory of testing the quality of algorithms-programs to create a theory of optimal numerical integration. Results. The optimal in accuracy (and close to them) quadrature formulas for calculating the Fourier transform, wavelet transforms, and Bessel transform were constructed both in the classical formulation of the problem and for interpolation classes of functions corresponding to the case when the information operator about the integrand is given by a fixed table of its values. The paper considers a passive pure minimax strategy for solving the problem. Within the framework of this strategy, we used the method of “caps” by N. S. Bakhvalov and the method of boundary functions developed at the V.M. Glushkov Institute of Cybernetics of the NAS of Ukraine. Great attention is paid to the quality of the error estimates and the methods to obtain them. The article describes some aspects of the theory of algorithms-programs testing and presents the results of testing the constructed quadrature formulas for calculating integrals of rapidly oscillating functions and estimates of their characteristics. The problem of determining the ranges of admissible values of control parameters of programs for calculating integrals with the required accuracy, as well as their best values for integration with the minimum possible error, is considered for programs calculating a priori estimates of characteristics. Conclusions. The results obtained make it possible to create a theory of optimal integration, which makes it possible to reasonably choose and efficiently use computational resources to find the value of the integral with a given accuracy or with the minimum possible error. Keywords: quadrature formula, optimal algorithm, interpolation class, rapidly oscillating function, quality testing.
APA, Harvard, Vancouver, ISO, and other styles
8

Burk, Frank. "Numerical Integration via Integration by Parts." College Mathematics Journal 17, no. 5 (November 1986): 418. http://dx.doi.org/10.2307/2686254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Burk, Frank. "Numerical Integration via Integration by Parts." College Mathematics Journal 17, no. 5 (November 1986): 418–22. http://dx.doi.org/10.1080/07468342.1986.11972993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Arthur, D. W., Philip J. Davis, and Philip Rabinowitz. "Methods of Numerical Integration." Mathematical Gazette 70, no. 451 (March 1986): 70. http://dx.doi.org/10.2307/3615859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Bland, J. A., and H. V. Smith. "Numerical Methods of Integration." Mathematical Gazette 79, no. 484 (March 1995): 244. http://dx.doi.org/10.2307/3620126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

S., F., and H. V. Smith. "Numerical Methods of Integration." Mathematics of Computation 64, no. 210 (April 1995): 900. http://dx.doi.org/10.2307/2153466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Chen, Chuanmiao, Michal Křížek, and Liping Liu. "Numerical Integration over Pyramids." Advances in Applied Mathematics and Mechanics 5, no. 03 (June 2013): 309–20. http://dx.doi.org/10.4208/aamm.12-m12110.

Full text
Abstract:
AbstractPyramidal elements are often used to connect tetrahedral and hexahedral elements in the finite element method. In this paper we derive three new higher order numerical cubature formulae for pyramidal elements.
APA, Harvard, Vancouver, ISO, and other styles
14

Kalaida, A. F. "Matrix numerical integration algorithm." Journal of Mathematical Sciences 69, no. 6 (May 1994): 1369–78. http://dx.doi.org/10.1007/bf01250578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Jacka, K., and David Lewin. "Numerical measures of integration." Journal of Advanced Nursing 11, no. 6 (November 1986): 679–85. http://dx.doi.org/10.1111/j.1365-2648.1986.tb03385.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Schmee, Josef. "Tables for Numerical Integration." Technometrics 27, no. 1 (February 1985): 90–91. http://dx.doi.org/10.1080/00401706.1985.10488025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Laue, Hans. "Elementary numerical integration methods." American Journal of Physics 56, no. 9 (September 1988): 849–50. http://dx.doi.org/10.1119/1.15441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Voronin, S. M., and V. I. Skalyga. "On numerical integration algorithms." Izvestiya: Mathematics 60, no. 5 (October 31, 1996): 887–91. http://dx.doi.org/10.1070/im1996v060n05abeh000084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Huang, Xiaowei, Chuansheng Wu, and Jun Zhou. "Numerical differentiation by integration." Mathematics of Computation 83, no. 286 (June 4, 2013): 789–807. http://dx.doi.org/10.1090/s0025-5718-2013-02722-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

S., F., Philip J. Davis, and Philip Rabinowitz. "Methods of Numerical Integration." Mathematics of Computation 46, no. 174 (April 1986): 760. http://dx.doi.org/10.2307/2008014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Monahan, John F., Philip J. Davis, and Philip Rabinowitz. "Methods of Numerical Integration." Journal of the American Statistical Association 80, no. 392 (December 1985): 1081. http://dx.doi.org/10.2307/2288607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Hashish, H., S. H. Behiry, and N. A. El-Shamy. "Numerical integration using wavelets." Applied Mathematics and Computation 211, no. 2 (May 2009): 480–87. http://dx.doi.org/10.1016/j.amc.2009.01.084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Valliappan, S., and K. K. Ang. "? method of numerical integration." Computational Mechanics 5, no. 5 (1989): 321–36. http://dx.doi.org/10.1007/bf01047049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Xin, Wu, and Huang Tian-yi. "Constraints and numerical integration." Chinese Astronomy and Astrophysics 29, no. 1 (January 2005): 81–91. http://dx.doi.org/10.1016/j.chinastron.2005.01.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Obradovic, Dragan, Lakshmi Narayan Mishra, and Vishnu Narayan Mishra. "Numerical Differentiation and Integration." JOURNAL OF ADVANCES IN PHYSICS 19 (January 25, 2021): 1–5. http://dx.doi.org/10.24297/jap.v19i.8938.

Full text
Abstract:
There are several reasons why numerical differentiation and integration are used. The function that integrates f (x) can be known only in certain places, which is done by taking a sample. Some supercomputers and other computer applications sometimes need numerical integration for this very reason. The formula for the function to be integrated may be known, but it may be difficult or impossible to find the antiderivation that is an elementary function. One example is the function f (x) = exp (−x2), an antiderivation that cannot be written in elementary form. It is possible to find antiderivation symbolically, but it is much easier to find a numerical approximation than to calculate antiderivation (anti-derivative). This can be used if antiderivation is given as an unlimited array of products, or if the budget would require special features that are not available to computers.
APA, Harvard, Vancouver, ISO, and other styles
26

Murphy, Robin. "103.45 Improving elementary numerical integration using numerical differentiation." Mathematical Gazette 103, no. 558 (October 21, 2019): 548–56. http://dx.doi.org/10.1017/mag.2019.127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Abdulle, Assyr. "The role of numerical integration in numerical homogenization." ESAIM: Proceedings and Surveys 50 (March 2015): 1–20. http://dx.doi.org/10.1051/proc/201550001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Malmquist, Jens, and Robert Strichartz. "Numerical integration for fractal measures." Journal of Fractal Geometry 5, no. 2 (June 4, 2018): 165–226. http://dx.doi.org/10.4171/jfg/60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bakirov, N. K., and I. R. Gallyamov. "Comparison of numerical integration formulas." Russian Mathematics 54, no. 12 (November 27, 2010): 1–16. http://dx.doi.org/10.3103/s1066369x10120017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Assouline, F., and P. Lailly. "Numerical Integration for Kirchhoff Migration." Oil & Gas Science and Technology 58, no. 3 (May 2003): 385–412. http://dx.doi.org/10.2516/ogst:2003024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

de Doncker, Elise. "Methods for enhancing numerical integration." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 502, no. 2-3 (April 2003): 358–63. http://dx.doi.org/10.1016/s0168-9002(03)00443-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Soper, Davison E. "QCD calculations by numerical integration." Nuclear Physics B - Proceedings Supplements 79, no. 1-3 (October 1999): 444–46. http://dx.doi.org/10.1016/s0920-5632(99)00748-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Caligaris, Marta, Georgina Rodríguez, and Lorena Laugero. "Designing Tools for Numerical Integration." Procedia - Social and Behavioral Sciences 176 (February 2015): 270–75. http://dx.doi.org/10.1016/j.sbspro.2015.01.471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Holloway, Damien Scott. "Numerical stabilisation of motion integration." ANZIAM Journal 49 (July 16, 2007): 249. http://dx.doi.org/10.21914/anziamj.v48i0.51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Smith, Harry V. "Numerical integration — a different approach." Mathematical Gazette 90, no. 517 (March 2006): 21–24. http://dx.doi.org/10.1017/s0025557200178994.

Full text
Abstract:
In common with, I suspect, many people the author does not have access to the NAG library and so, when I was asked recently to calculate the value of the integralcorrect to 10 decimal places my first reaction was to try several different calculators as well as several mathematical software packages. On doing so it was disappointing to find they either gave widely differing values such as 7.9065200767, 4.1317217452 or 0.9174196842 or an error message indicating that the method had not converged.
APA, Harvard, Vancouver, ISO, and other styles
36

Treutler, Oliver, and Reinhart Ahlrichs. "Efficient molecular numerical integration schemes." Journal of Chemical Physics 102, no. 1 (January 1995): 346–54. http://dx.doi.org/10.1063/1.469408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Balkir, S., M. Yanilmaz, and M. Plonus. "Numerical integration using Bezier splines." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 13, no. 6 (June 1994): 737–45. http://dx.doi.org/10.1109/43.285248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

de Doncker, Elise, Ajay Gupta, and Rodger R. Zanny. "Large-scale parallel numerical integration." Journal of Computational and Applied Mathematics 112, no. 1-2 (November 1999): 29–44. http://dx.doi.org/10.1016/s0377-0427(99)00210-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ginestar, D., G. Verdú, and J. March-Leuba. "Thermohydraulics Oscillations and Numerical Integration." Nuclear Science and Engineering 140, no. 2 (February 2002): 172–80. http://dx.doi.org/10.13182/nse02-a2253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Rees, W. G. "Numerical integration of orbital motion." European Journal of Physics 6, no. 4 (October 1, 1985): 302–6. http://dx.doi.org/10.1088/0143-0807/6/4/017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

McLachlan, Robert I. "Perspectives on geometric numerical integration." Journal of the Royal Society of New Zealand 49, no. 2 (February 4, 2019): 114–25. http://dx.doi.org/10.1080/03036758.2018.1564676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Cools, Ronald, Daan Huybrechs, and Dirk Nuyens. "Recent topics in numerical integration." International Journal of Quantum Chemistry 109, no. 8 (2009): 1748–55. http://dx.doi.org/10.1002/qua.22101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Novak, Erich, and Ingo Roschmann. "Numerical Integration of Peak Functions." Journal of Complexity 12, no. 4 (December 1996): 358–79. http://dx.doi.org/10.1006/jcom.1996.0023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Mathé, Peter. "Asymptotically Optimal Weighted Numerical Integration." Journal of Complexity 14, no. 1 (March 1998): 34–48. http://dx.doi.org/10.1006/jcom.1997.0467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Scherf, O. "Numerical Integration of Viscoplastic Problems." ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 80, S2 (2000): 543–44. http://dx.doi.org/10.1002/zamm.200008014141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Griffiths, D. V. "Generalized numerical integration of moments." International Journal for Numerical Methods in Engineering 32, no. 1 (July 1991): 129–47. http://dx.doi.org/10.1002/nme.1620320108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Sidi, Avram. "Variable transformations in numerical integration." PAMM 7, no. 1 (December 2007): 2020019–20. http://dx.doi.org/10.1002/pamm.200700104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Soper, Davison E. "QCD Calculations by Numerical Integration." Physical Review Letters 81, no. 13 (September 28, 1998): 2638–41. http://dx.doi.org/10.1103/physrevlett.81.2638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

OCHIAI, Yoshihiro. "Numerical Integration for Meshless BEM." Transactions of the Japan Society of Mechanical Engineers Series B 69, no. 677 (2003): 82–87. http://dx.doi.org/10.1299/kikaib.69.82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Rabinowitz, Philip. "Extrapolation methods in numerical integration." Numerical Algorithms 3, no. 1 (December 1992): 17–28. http://dx.doi.org/10.1007/bf02141912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography